fix minor CUDA NB kernel performance regression
[alexxy/gromacs.git] / src / gromacs / mdlib / nbnxn_cuda / nbnxn_cuda_kernel.cuh
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35
36 /*! \internal \file
37  *  \brief
38  *  CUDA non-bonded kernel used through preprocessor-based code generation
39  *  of multiple kernel flavors, see nbnxn_cuda_kernels.cuh.
40  *
41  *  NOTE: No include fence as it is meant to be included multiple times.
42  *
43  *  \author Szilárd Páll <pall.szilard@gmail.com>
44  *  \ingroup module_mdlib
45  */
46 #include "config.h"
47
48 #include "gromacs/math/utilities.h"
49 #include "gromacs/pbcutil/ishift.h"
50 /* Note that floating-point constants in CUDA code should be suffixed
51  * with f (e.g. 0.5f), to stop the compiler producing intermediate
52  * code that is in double precision.
53  */
54
55 #if __CUDA_ARCH__ >= 300
56 #define REDUCE_SHUFFLE
57 /* On Kepler pre-loading i-atom types to shmem gives a few %,
58    but on Fermi it does not */
59 #define IATYPE_SHMEM
60 #endif
61
62 #if defined EL_EWALD_ANA || defined EL_EWALD_TAB
63 /* Note: convenience macro, needs to be undef-ed at the end of the file. */
64 #define EL_EWALD_ANY
65 #endif
66
67 #if defined EL_EWALD_ANY || defined EL_RF || defined LJ_EWALD || (defined EL_CUTOFF && defined CALC_ENERGIES)
68 /* Macro to control the calculation of exclusion forces in the kernel
69  * We do that with Ewald (elec/vdw) and RF. Cut-off only has exclusion
70  * energy terms.
71  *
72  * Note: convenience macro, needs to be undef-ed at the end of the file.
73  */
74 #define EXCLUSION_FORCES
75 #endif
76
77 #if defined LJ_EWALD_COMB_GEOM || defined LJ_EWALD_COMB_LB
78 /* Note: convenience macro, needs to be undef-ed at the end of the file. */
79 #define LJ_EWALD
80 #endif
81
82 /*
83    Kernel launch parameters:
84     - #blocks   = #pair lists, blockId = pair list Id
85     - #threads  = NTHREAD_Z * CL_SIZE^2
86     - shmem     = see nbnxn_cuda.cu:calc_shmem_required()
87
88     Each thread calculates an i force-component taking one pair of i-j atoms.
89  */
90
91 #if __CUDA_ARCH__ >= 350
92 __launch_bounds__(THREADS_PER_BLOCK, MIN_BLOCKS_PER_MP)
93 #else
94 __launch_bounds__(THREADS_PER_BLOCK)
95 #endif
96 #ifdef PRUNE_NBL
97 #ifdef CALC_ENERGIES
98 __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _VF_prune_cuda)
99 #else
100 __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_prune_cuda)
101 #endif
102 #else
103 #ifdef CALC_ENERGIES
104 __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _VF_cuda)
105 #else
106 __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
107 #endif
108 #endif
109 (const cu_atomdata_t atdat,
110  const cu_nbparam_t nbparam,
111  const cu_plist_t plist,
112  bool bCalcFshift)
113 {
114     /* convenience variables */
115     const nbnxn_sci_t *pl_sci       = plist.sci;
116 #ifndef PRUNE_NBL
117     const
118 #endif
119     nbnxn_cj4_t        *pl_cj4      = plist.cj4;
120     const nbnxn_excl_t *excl        = plist.excl;
121     const int          *atom_types  = atdat.atom_types;
122     int                 ntypes      = atdat.ntypes;
123     const float4       *xq          = atdat.xq;
124     float3             *f           = atdat.f;
125     const float3       *shift_vec   = atdat.shift_vec;
126     float               rcoulomb_sq = nbparam.rcoulomb_sq;
127 #ifdef VDW_CUTOFF_CHECK
128     float               rvdw_sq     = nbparam.rvdw_sq;
129     float               vdw_in_range;
130 #endif
131 #ifdef LJ_EWALD
132     float               lje_coeff2, lje_coeff6_6;
133 #endif
134 #ifdef EL_RF
135     float two_k_rf              = nbparam.two_k_rf;
136 #endif
137 #ifdef EL_EWALD_TAB
138     float coulomb_tab_scale     = nbparam.coulomb_tab_scale;
139 #endif
140 #ifdef EL_EWALD_ANA
141     float beta2                 = nbparam.ewald_beta*nbparam.ewald_beta;
142     float beta3                 = nbparam.ewald_beta*nbparam.ewald_beta*nbparam.ewald_beta;
143 #endif
144 #ifdef PRUNE_NBL
145     float rlist_sq              = nbparam.rlist_sq;
146 #endif
147
148 #ifdef CALC_ENERGIES
149 #ifdef EL_EWALD_ANY
150     float  beta        = nbparam.ewald_beta;
151     float  ewald_shift = nbparam.sh_ewald;
152 #else
153     float  c_rf        = nbparam.c_rf;
154 #endif /* EL_EWALD_ANY */
155     float *e_lj        = atdat.e_lj;
156     float *e_el        = atdat.e_el;
157 #endif /* CALC_ENERGIES */
158
159     /* thread/block/warp id-s */
160     unsigned int tidxi  = threadIdx.x;
161     unsigned int tidxj  = threadIdx.y;
162     unsigned int tidx   = threadIdx.y * blockDim.x + threadIdx.x;
163 #if NTHREAD_Z == 1
164     unsigned int tidxz  = 0;
165 #else
166     unsigned int tidxz  = threadIdx.z;
167 #endif
168     unsigned int bidx   = blockIdx.x;
169     unsigned int widx   = tidx / WARP_SIZE; /* warp index */
170
171     int          sci, ci, cj, ci_offset,
172                  ai, aj,
173                  cij4_start, cij4_end,
174                  typei, typej,
175                  i, jm, j4, wexcl_idx;
176     float        qi, qj_f,
177                  r2, inv_r, inv_r2, inv_r6,
178                  c6, c12,
179                  int_bit,
180                  F_invr;
181 #ifdef CALC_ENERGIES
182     float        E_lj, E_el;
183 #endif
184 #if defined CALC_ENERGIES || defined LJ_POT_SWITCH
185     float        E_lj_p;
186 #endif
187     unsigned int wexcl, imask, mask_ji;
188     float4       xqbuf;
189     float3       xi, xj, rv, f_ij, fcj_buf;
190     float3       fci_buf[NCL_PER_SUPERCL]; /* i force buffer */
191     nbnxn_sci_t  nb_sci;
192
193     /* shmem buffer for i x+q pre-loading */
194     extern __shared__  float4 xqib[];
195     /* shmem buffer for cj, for each warp separately */
196     int *cjs     = ((int *)(xqib + NCL_PER_SUPERCL * CL_SIZE)) + tidxz * 2 * NBNXN_GPU_JGROUP_SIZE;
197 #ifdef IATYPE_SHMEM
198     /* shmem buffer for i atom-type pre-loading */
199     int *atib    = ((int *)(xqib + NCL_PER_SUPERCL * CL_SIZE)) + NTHREAD_Z * 2 * NBNXN_GPU_JGROUP_SIZE;
200 #endif
201
202 #ifndef REDUCE_SHUFFLE
203     /* shmem j force buffer */
204 #ifdef IATYPE_SHMEM
205     float *f_buf = (float *)(atib + NCL_PER_SUPERCL * CL_SIZE);
206 #else
207     float *f_buf = (float *)(cjs + NTHREAD_Z * 2 * NBNXN_GPU_JGROUP_SIZE);
208 #endif
209 #endif
210
211     nb_sci      = pl_sci[bidx];         /* my i super-cluster's index = current bidx */
212     sci         = nb_sci.sci;           /* super-cluster */
213     cij4_start  = nb_sci.cj4_ind_start; /* first ...*/
214     cij4_end    = nb_sci.cj4_ind_end;   /* and last index of j clusters */
215
216     if (tidxz == 0)
217     {
218         /* Pre-load i-atom x and q into shared memory */
219         ci = sci * NCL_PER_SUPERCL + tidxj;
220         ai = ci * CL_SIZE + tidxi;
221         xqib[tidxj * CL_SIZE + tidxi] = xq[ai] + shift_vec[nb_sci.shift];
222 #ifdef IATYPE_SHMEM
223         /* Pre-load the i-atom types into shared memory */
224         atib[tidxj * CL_SIZE + tidxi] = atom_types[ai];
225 #endif
226     }
227     __syncthreads();
228
229     for (ci_offset = 0; ci_offset < NCL_PER_SUPERCL; ci_offset++)
230     {
231         fci_buf[ci_offset] = make_float3(0.0f);
232     }
233
234 #ifdef LJ_EWALD
235     /* TODO: we are trading registers with flops by keeping lje_coeff-s, try re-calculating it later */
236     lje_coeff2   = nbparam.ewaldcoeff_lj*nbparam.ewaldcoeff_lj;
237     lje_coeff6_6 = lje_coeff2*lje_coeff2*lje_coeff2*ONE_SIXTH_F;
238 #endif /* LJ_EWALD */
239
240
241 #ifdef CALC_ENERGIES
242     E_lj = 0.0f;
243     E_el = 0.0f;
244
245 #if defined EXCLUSION_FORCES /* Ewald or RF */
246     if (nb_sci.shift == CENTRAL && pl_cj4[cij4_start].cj[0] == sci*NCL_PER_SUPERCL)
247     {
248         /* we have the diagonal: add the charge and LJ self interaction energy term */
249         for (i = 0; i < NCL_PER_SUPERCL; i++)
250         {
251 #if defined EL_EWALD_ANY || defined EL_RF || defined EL_CUTOFF
252             qi    = xqib[i * CL_SIZE + tidxi].w;
253             E_el += qi*qi;
254 #endif
255
256 #if defined LJ_EWALD
257 #ifdef USE_TEXOBJ
258             E_lj += tex1Dfetch<float>(nbparam.nbfp_texobj, atom_types[(sci*NCL_PER_SUPERCL + i)*CL_SIZE + tidxi]*(ntypes + 1)*2);
259 #else
260             E_lj += tex1Dfetch(nbfp_texref, atom_types[(sci*NCL_PER_SUPERCL + i)*CL_SIZE + tidxi]*(ntypes + 1)*2);
261 #endif /* USE_TEXOBJ */
262 #endif /* LJ_EWALD */
263
264         }
265
266         /* divide the self term(s) equally over the j-threads, then multiply with the coefficients. */
267 #ifdef LJ_EWALD
268         E_lj /= CL_SIZE*NTHREAD_Z;
269         E_lj *= 0.5f*ONE_SIXTH_F*lje_coeff6_6;
270 #endif  /* LJ_EWALD */
271
272 #if defined EL_EWALD_ANY || defined EL_RF || defined EL_CUTOFF
273         E_el /= CL_SIZE*NTHREAD_Z;
274 #if defined EL_RF || defined EL_CUTOFF
275         E_el *= -nbparam.epsfac*0.5f*c_rf;
276 #else
277         E_el *= -nbparam.epsfac*beta*M_FLOAT_1_SQRTPI; /* last factor 1/sqrt(pi) */
278 #endif
279 #endif                                                 /* EL_EWALD_ANY || defined EL_RF || defined EL_CUTOFF */
280     }
281 #endif                                                 /* EXCLUSION_FORCES */
282
283 #endif                                                 /* CALC_ENERGIES */
284
285     /* skip central shifts when summing shift forces */
286     if (nb_sci.shift == CENTRAL)
287     {
288         bCalcFshift = false;
289     }
290
291     /* loop over the j clusters = seen by any of the atoms in the current super-cluster */
292     for (j4 = cij4_start + tidxz; j4 < cij4_end; j4 += NTHREAD_Z)
293     {
294         wexcl_idx   = pl_cj4[j4].imei[widx].excl_ind;
295         imask       = pl_cj4[j4].imei[widx].imask;
296         wexcl       = excl[wexcl_idx].pair[(tidx) & (WARP_SIZE - 1)];
297
298 #ifndef PRUNE_NBL
299         if (imask)
300 #endif
301         {
302             /* Pre-load cj into shared memory on both warps separately */
303             if ((tidxj == 0 || tidxj == 4) && tidxi < NBNXN_GPU_JGROUP_SIZE)
304             {
305                 cjs[tidxi + tidxj * NBNXN_GPU_JGROUP_SIZE / 4] = pl_cj4[j4].cj[tidxi];
306             }
307
308             /* Unrolling this loop
309                - with pruning leads to register spilling;
310                - on Kepler is much slower;
311                - doesn't work on CUDA <v4.1
312                Tested with nvcc 3.2 - 5.0.7 */
313 #if !defined PRUNE_NBL && __CUDA_ARCH__ < 300 && GMX_CUDA_VERSION >= 4010
314 #pragma unroll 4
315 #endif
316             for (jm = 0; jm < NBNXN_GPU_JGROUP_SIZE; jm++)
317             {
318                 if (imask & (supercl_interaction_mask << (jm * NCL_PER_SUPERCL)))
319                 {
320                     mask_ji = (1U << (jm * NCL_PER_SUPERCL));
321
322                     cj      = cjs[jm + (tidxj & 4) * NBNXN_GPU_JGROUP_SIZE / 4];
323                     aj      = cj * CL_SIZE + tidxj;
324
325                     /* load j atom data */
326                     xqbuf   = xq[aj];
327                     xj      = make_float3(xqbuf.x, xqbuf.y, xqbuf.z);
328                     qj_f    = nbparam.epsfac * xqbuf.w;
329                     typej   = atom_types[aj];
330
331                     fcj_buf = make_float3(0.0f);
332
333                     /* The PME and RF kernels don't unroll with CUDA <v4.1. */
334 #if !defined PRUNE_NBL && !(GMX_CUDA_VERSION < 4010 && defined EXCLUSION_FORCES)
335 #pragma unroll 8
336 #endif
337                     for (i = 0; i < NCL_PER_SUPERCL; i++)
338                     {
339                         if (imask & mask_ji)
340                         {
341                             ci_offset   = i;                     /* i force buffer offset */
342
343                             ci      = sci * NCL_PER_SUPERCL + i; /* i cluster index */
344                             ai      = ci * CL_SIZE + tidxi;      /* i atom index */
345
346                             /* all threads load an atom from i cluster ci into shmem! */
347                             xqbuf   = xqib[i * CL_SIZE + tidxi];
348                             xi      = make_float3(xqbuf.x, xqbuf.y, xqbuf.z);
349
350                             /* distance between i and j atoms */
351                             rv      = xi - xj;
352                             r2      = norm2(rv);
353
354 #ifdef PRUNE_NBL
355                             /* If _none_ of the atoms pairs are in cutoff range,
356                                the bit corresponding to the current
357                                cluster-pair in imask gets set to 0. */
358                             if (!__any(r2 < rlist_sq))
359                             {
360                                 imask &= ~mask_ji;
361                             }
362 #endif
363
364                             int_bit = (wexcl & mask_ji) ? 1.0f : 0.0f;
365
366                             /* cutoff & exclusion check */
367 #ifdef EXCLUSION_FORCES
368                             if (r2 < rcoulomb_sq *
369                                 (nb_sci.shift != CENTRAL || ci != cj || tidxj > tidxi))
370 #else
371                             if (r2 < rcoulomb_sq * int_bit)
372 #endif
373                             {
374                                 /* load the rest of the i-atom parameters */
375                                 qi      = xqbuf.w;
376 #ifdef IATYPE_SHMEM
377                                 typei   = atib[i * CL_SIZE + tidxi];
378 #else
379                                 typei   = atom_types[ai];
380 #endif
381
382                                 /* LJ 6*C6 and 12*C12 */
383 #ifdef USE_TEXOBJ
384                                 c6      = tex1Dfetch<float>(nbparam.nbfp_texobj, 2 * (ntypes * typei + typej));
385                                 c12     = tex1Dfetch<float>(nbparam.nbfp_texobj, 2 * (ntypes * typei + typej) + 1);
386 #else
387                                 c6      = tex1Dfetch(nbfp_texref, 2 * (ntypes * typei + typej));
388                                 c12     = tex1Dfetch(nbfp_texref, 2 * (ntypes * typei + typej) + 1);
389 #endif                          /* USE_TEXOBJ */
390
391
392                                 /* avoid NaN for excluded pairs at r=0 */
393                                 r2      += (1.0f - int_bit) * NBNXN_AVOID_SING_R2_INC;
394
395                                 inv_r   = rsqrt(r2);
396                                 inv_r2  = inv_r * inv_r;
397                                 inv_r6  = inv_r2 * inv_r2 * inv_r2;
398 #if defined EXCLUSION_FORCES
399                                 /* We could mask inv_r2, but with Ewald
400                                  * masking both inv_r6 and F_invr is faster */
401                                 inv_r6  *= int_bit;
402 #endif                          /* EXCLUSION_FORCES */
403
404                                 F_invr  = inv_r6 * (c12 * inv_r6 - c6) * inv_r2;
405 #if defined CALC_ENERGIES || defined LJ_POT_SWITCH
406                                 E_lj_p  = int_bit * (c12 * (inv_r6 * inv_r6 + nbparam.repulsion_shift.cpot)*ONE_TWELVETH_F -
407                                                      c6 * (inv_r6 + nbparam.dispersion_shift.cpot)*ONE_SIXTH_F);
408 #endif
409
410 #ifdef LJ_FORCE_SWITCH
411 #ifdef CALC_ENERGIES
412                                 calculate_force_switch_F_E(nbparam, c6, c12, inv_r, r2, &F_invr, &E_lj_p);
413 #else
414                                 calculate_force_switch_F(nbparam, c6, c12, inv_r, r2, &F_invr);
415 #endif /* CALC_ENERGIES */
416 #endif /* LJ_FORCE_SWITCH */
417
418
419 #ifdef LJ_EWALD
420 #ifdef LJ_EWALD_COMB_GEOM
421 #ifdef CALC_ENERGIES
422                                 calculate_lj_ewald_comb_geom_F_E(nbparam, typei, typej, r2, inv_r2, lje_coeff2, lje_coeff6_6, int_bit, &F_invr, &E_lj_p);
423 #else
424                                 calculate_lj_ewald_comb_geom_F(nbparam, typei, typej, r2, inv_r2, lje_coeff2, lje_coeff6_6, &F_invr);
425 #endif                          /* CALC_ENERGIES */
426 #elif defined LJ_EWALD_COMB_LB
427                                 calculate_lj_ewald_comb_LB_F_E(nbparam, typei, typej, r2, inv_r2, lje_coeff2, lje_coeff6_6,
428 #ifdef CALC_ENERGIES
429                                                                int_bit, &F_invr, &E_lj_p
430 #else
431                                                                0, &F_invr, NULL
432 #endif /* CALC_ENERGIES */
433                                                                );
434 #endif /* LJ_EWALD_COMB_GEOM */
435 #endif /* LJ_EWALD */
436
437 #ifdef VDW_CUTOFF_CHECK
438                                 /* Separate VDW cut-off check to enable twin-range cut-offs
439                                  * (rvdw < rcoulomb <= rlist)
440                                  */
441                                 vdw_in_range  = (r2 < rvdw_sq) ? 1.0f : 0.0f;
442                                 F_invr       *= vdw_in_range;
443 #ifdef CALC_ENERGIES
444                                 E_lj_p       *= vdw_in_range;
445 #endif
446 #endif                          /* VDW_CUTOFF_CHECK */
447
448 #ifdef LJ_POT_SWITCH
449 #ifdef CALC_ENERGIES
450                                 calculate_potential_switch_F_E(nbparam, c6, c12, inv_r, r2, &F_invr, &E_lj_p);
451 #else
452                                 calculate_potential_switch_F(nbparam, c6, c12, inv_r, r2, &F_invr, &E_lj_p);
453 #endif /* CALC_ENERGIES */
454 #endif /* LJ_POT_SWITCH */
455
456 #ifdef CALC_ENERGIES
457                                 E_lj    += E_lj_p;
458 #endif
459
460
461 #ifdef EL_CUTOFF
462 #ifdef EXCLUSION_FORCES
463                                 F_invr  += qi * qj_f * int_bit * inv_r2 * inv_r;
464 #else
465                                 F_invr  += qi * qj_f * inv_r2 * inv_r;
466 #endif
467 #endif
468 #ifdef EL_RF
469                                 F_invr  += qi * qj_f * (int_bit*inv_r2 * inv_r - two_k_rf);
470 #endif
471 #if defined EL_EWALD_ANA
472                                 F_invr  += qi * qj_f * (int_bit*inv_r2*inv_r + pmecorrF(beta2*r2)*beta3);
473 #elif defined EL_EWALD_TAB
474                                 F_invr  += qi * qj_f * (int_bit*inv_r2 -
475 #ifdef USE_TEXOBJ
476                                                         interpolate_coulomb_force_r(nbparam.coulomb_tab_texobj, r2 * inv_r, coulomb_tab_scale)
477 #else
478                                                         interpolate_coulomb_force_r(r2 * inv_r, coulomb_tab_scale)
479 #endif /* USE_TEXOBJ */
480                                                         ) * inv_r;
481 #endif /* EL_EWALD_ANA/TAB */
482
483 #ifdef CALC_ENERGIES
484 #ifdef EL_CUTOFF
485                                 E_el    += qi * qj_f * (int_bit*inv_r - c_rf);
486 #endif
487 #ifdef EL_RF
488                                 E_el    += qi * qj_f * (int_bit*inv_r + 0.5f * two_k_rf * r2 - c_rf);
489 #endif
490 #ifdef EL_EWALD_ANY
491                                 /* 1.0f - erff is faster than erfcf */
492                                 E_el    += qi * qj_f * (inv_r * (int_bit - erff(r2 * inv_r * beta)) - int_bit * ewald_shift);
493 #endif                          /* EL_EWALD_ANY */
494 #endif
495                                 f_ij    = rv * F_invr;
496
497                                 /* accumulate j forces in registers */
498                                 fcj_buf -= f_ij;
499
500                                 /* accumulate i forces in registers */
501                                 fci_buf[ci_offset] += f_ij;
502                             }
503                         }
504
505                         /* shift the mask bit by 1 */
506                         mask_ji += mask_ji;
507                     }
508
509                     /* reduce j forces */
510 #ifdef REDUCE_SHUFFLE
511                     reduce_force_j_warp_shfl(fcj_buf, f, tidxi, aj);
512 #else
513                     /* store j forces in shmem */
514                     f_buf[                  tidx] = fcj_buf.x;
515                     f_buf[    FBUF_STRIDE + tidx] = fcj_buf.y;
516                     f_buf[2 * FBUF_STRIDE + tidx] = fcj_buf.z;
517
518                     reduce_force_j_generic(f_buf, f, tidxi, tidxj, aj);
519 #endif
520                 }
521             }
522 #ifdef PRUNE_NBL
523             /* Update the imask with the new one which does not contain the
524                out of range clusters anymore. */
525             pl_cj4[j4].imei[widx].imask = imask;
526 #endif
527         }
528     }
529
530     float fshift_buf = 0.0f;
531
532     /* reduce i forces */
533     for (ci_offset = 0; ci_offset < NCL_PER_SUPERCL; ci_offset++)
534     {
535         ai  = (sci * NCL_PER_SUPERCL + ci_offset) * CL_SIZE + tidxi;
536 #ifdef REDUCE_SHUFFLE
537         reduce_force_i_warp_shfl(fci_buf[ci_offset], f,
538                                  &fshift_buf, bCalcFshift,
539                                  tidxj, ai);
540 #else
541         f_buf[                  tidx] = fci_buf[ci_offset].x;
542         f_buf[    FBUF_STRIDE + tidx] = fci_buf[ci_offset].y;
543         f_buf[2 * FBUF_STRIDE + tidx] = fci_buf[ci_offset].z;
544         __syncthreads();
545         reduce_force_i(f_buf, f,
546                        &fshift_buf, bCalcFshift,
547                        tidxi, tidxj, ai);
548         __syncthreads();
549 #endif
550     }
551
552     /* add up local shift forces into global mem, tidxj indexes x,y,z */
553 #ifdef REDUCE_SHUFFLE
554     if (bCalcFshift && (tidxj & 3) < 3)
555     {
556         atomicAdd(&(atdat.fshift[nb_sci.shift].x) + (tidxj & ~4), fshift_buf);
557     }
558 #else
559     if (bCalcFshift && tidxj < 3)
560     {
561         atomicAdd(&(atdat.fshift[nb_sci.shift].x) + tidxj, fshift_buf);
562     }
563 #endif
564
565 #ifdef CALC_ENERGIES
566 #ifdef REDUCE_SHUFFLE
567     /* reduce the energies over warps and store into global memory */
568     reduce_energy_warp_shfl(E_lj, E_el, e_lj, e_el, tidx);
569 #else
570     /* flush the energies to shmem and reduce them */
571     f_buf[              tidx] = E_lj;
572     f_buf[FBUF_STRIDE + tidx] = E_el;
573     reduce_energy_pow2(f_buf + (tidx & WARP_SIZE), e_lj, e_el, tidx & ~WARP_SIZE);
574 #endif
575 #endif
576 }
577
578 #undef EL_EWALD_ANY
579 #undef EXCLUSION_FORCES
580 #undef LJ_EWALD