Enable splitting of listed interaction calculation
[alexxy/gromacs.git] / src / gromacs / mdlib / force.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5  * Copyright (c) 2001-2004, The GROMACS development team.
6  * Copyright (c) 2013,2014,2015,2016,2017 by the GROMACS development team.
7  * Copyright (c) 2018,2019,2020, by the GROMACS development team, led by
8  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
9  * and including many others, as listed in the AUTHORS file in the
10  * top-level source directory and at http://www.gromacs.org.
11  *
12  * GROMACS is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public License
14  * as published by the Free Software Foundation; either version 2.1
15  * of the License, or (at your option) any later version.
16  *
17  * GROMACS is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with GROMACS; if not, see
24  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
25  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
26  *
27  * If you want to redistribute modifications to GROMACS, please
28  * consider that scientific software is very special. Version
29  * control is crucial - bugs must be traceable. We will be happy to
30  * consider code for inclusion in the official distribution, but
31  * derived work must not be called official GROMACS. Details are found
32  * in the README & COPYING files - if they are missing, get the
33  * official version at http://www.gromacs.org.
34  *
35  * To help us fund GROMACS development, we humbly ask that you cite
36  * the research papers on the package. Check out http://www.gromacs.org.
37  */
38 #include "gmxpre.h"
39
40 #include "force.h"
41
42 #include <cassert>
43 #include <cmath>
44 #include <cstring>
45
46 #include "gromacs/domdec/dlbtiming.h"
47 #include "gromacs/domdec/domdec.h"
48 #include "gromacs/domdec/domdec_struct.h"
49 #include "gromacs/ewald/ewald.h"
50 #include "gromacs/ewald/long_range_correction.h"
51 #include "gromacs/ewald/pme.h"
52 #include "gromacs/gmxlib/network.h"
53 #include "gromacs/gmxlib/nrnb.h"
54 #include "gromacs/listed_forces/listed_forces.h"
55 #include "gromacs/math/vec.h"
56 #include "gromacs/math/vecdump.h"
57 #include "gromacs/mdlib/forcerec_threading.h"
58 #include "gromacs/mdlib/rf_util.h"
59 #include "gromacs/mdlib/wall.h"
60 #include "gromacs/mdtypes/commrec.h"
61 #include "gromacs/mdtypes/enerdata.h"
62 #include "gromacs/mdtypes/forceoutput.h"
63 #include "gromacs/mdtypes/forcerec.h"
64 #include "gromacs/mdtypes/inputrec.h"
65 #include "gromacs/mdtypes/interaction_const.h"
66 #include "gromacs/mdtypes/md_enums.h"
67 #include "gromacs/mdtypes/mdatom.h"
68 #include "gromacs/mdtypes/simulation_workload.h"
69 #include "gromacs/pbcutil/ishift.h"
70 #include "gromacs/pbcutil/pbc.h"
71 #include "gromacs/timing/wallcycle.h"
72 #include "gromacs/utility/exceptions.h"
73 #include "gromacs/utility/fatalerror.h"
74 #include "gromacs/utility/smalloc.h"
75
76 using gmx::ArrayRef;
77 using gmx::RVec;
78
79 static void clearEwaldThreadOutput(ewald_corr_thread_t* ewc_t)
80 {
81     ewc_t->Vcorr_q        = 0;
82     ewc_t->Vcorr_lj       = 0;
83     ewc_t->dvdl[efptCOUL] = 0;
84     ewc_t->dvdl[efptVDW]  = 0;
85     clear_mat(ewc_t->vir_q);
86     clear_mat(ewc_t->vir_lj);
87 }
88
89 static void reduceEwaldThreadOuput(int nthreads, ewald_corr_thread_t* ewc_t)
90 {
91     ewald_corr_thread_t& dest = ewc_t[0];
92
93     for (int t = 1; t < nthreads; t++)
94     {
95         dest.Vcorr_q += ewc_t[t].Vcorr_q;
96         dest.Vcorr_lj += ewc_t[t].Vcorr_lj;
97         dest.dvdl[efptCOUL] += ewc_t[t].dvdl[efptCOUL];
98         dest.dvdl[efptVDW] += ewc_t[t].dvdl[efptVDW];
99         m_add(dest.vir_q, ewc_t[t].vir_q, dest.vir_q);
100         m_add(dest.vir_lj, ewc_t[t].vir_lj, dest.vir_lj);
101     }
102 }
103
104 void do_force_lowlevel(t_forcerec*                          fr,
105                        const t_inputrec*                    ir,
106                        const t_commrec*                     cr,
107                        const gmx_multisim_t*                ms,
108                        t_nrnb*                              nrnb,
109                        gmx_wallcycle_t                      wcycle,
110                        const t_mdatoms*                     md,
111                        gmx::ArrayRefWithPadding<const RVec> coordinates,
112                        ArrayRef<const RVec>                 xWholeMolecules,
113                        history_t*                           hist,
114                        gmx::ForceOutputs*                   forceOutputs,
115                        gmx_enerdata_t*                      enerd,
116                        const matrix                         box,
117                        const real*                          lambda,
118                        const rvec*                          mu_tot,
119                        const gmx::StepWorkload&             stepWork,
120                        const DDBalanceRegionHandler&        ddBalanceRegionHandler)
121 {
122     // TODO: Replace all uses of x by const coordinates
123     const rvec* x = as_rvec_array(coordinates.paddedArrayRef().data());
124
125     auto& forceWithVirial = forceOutputs->forceWithVirial();
126
127     /* Call the short range functions all in one go. */
128
129     if (ir->nwall)
130     {
131         /* foreign lambda component for walls */
132         real dvdl_walls = do_walls(*ir, *fr, box, *md, x, &forceWithVirial, lambda[efptVDW],
133                                    enerd->grpp.ener[egLJSR].data(), nrnb);
134         enerd->dvdl_lin[efptVDW] += dvdl_walls;
135     }
136
137     {
138         t_pbc pbc;
139
140         /* Check whether we need to take into account PBC in listed interactions. */
141         ListedForces& listedForces           = fr->listedForces[0];
142         const auto    needPbcForListedForces = fr->bMolPBC && stepWork.computeListedForces
143                                             && listedForces.haveCpuListedForces(*fr->fcdata);
144         if (needPbcForListedForces)
145         {
146             /* Since all atoms are in the rectangular or triclinic unit-cell,
147              * only single box vector shifts (2 in x) are required.
148              */
149             set_pbc_dd(&pbc, fr->pbcType, DOMAINDECOMP(cr) ? cr->dd->numCells : nullptr, TRUE, box);
150         }
151
152         listedForces.calculate(wcycle, box, ir->fepvals, cr, ms, x, xWholeMolecules, fr->fcdata.get(),
153                                hist, forceOutputs, fr, &pbc, enerd, nrnb, lambda, md,
154                                DOMAINDECOMP(cr) ? cr->dd->globalAtomIndices.data() : nullptr, stepWork);
155     }
156
157     const bool computePmeOnCpu = (EEL_PME(fr->ic->eeltype) || EVDW_PME(fr->ic->vdwtype))
158                                  && thisRankHasDuty(cr, DUTY_PME)
159                                  && (pme_run_mode(fr->pmedata) == PmeRunMode::CPU);
160
161     const bool haveEwaldSurfaceTerm = haveEwaldSurfaceContribution(*ir);
162
163     /* Do long-range electrostatics and/or LJ-PME
164      * and compute PME surface terms when necessary.
165      */
166     if (computePmeOnCpu || fr->ic->eeltype == eelEWALD || haveEwaldSurfaceTerm)
167     {
168         int  status = 0;
169         real Vlr_q = 0, Vlr_lj = 0;
170
171         /* We reduce all virial, dV/dlambda and energy contributions, except
172          * for the reciprocal energies (Vlr_q, Vlr_lj) into the same struct.
173          */
174         ewald_corr_thread_t& ewaldOutput = fr->ewc_t[0];
175         clearEwaldThreadOutput(&ewaldOutput);
176
177         if (EEL_PME_EWALD(fr->ic->eeltype) || EVDW_PME(fr->ic->vdwtype))
178         {
179             /* Calculate the Ewald surface force and energy contributions, when necessary */
180             if (haveEwaldSurfaceTerm)
181             {
182                 wallcycle_sub_start(wcycle, ewcsEWALD_CORRECTION);
183
184                 int nthreads = fr->nthread_ewc;
185 #pragma omp parallel for num_threads(nthreads) schedule(static)
186                 for (int t = 0; t < nthreads; t++)
187                 {
188                     try
189                     {
190                         ewald_corr_thread_t& ewc_t = fr->ewc_t[t];
191                         if (t > 0)
192                         {
193                             clearEwaldThreadOutput(&ewc_t);
194                         }
195
196                         /* Threading is only supported with the Verlet cut-off
197                          * scheme and then only single particle forces (no
198                          * exclusion forces) are calculated, so we can store
199                          * the forces in the normal, single forceWithVirial->force_ array.
200                          */
201                         ewald_LRcorrection(md->homenr, cr, nthreads, t, *fr, *ir, md->chargeA,
202                                            md->chargeB, (md->nChargePerturbed != 0), x, box, mu_tot,
203                                            as_rvec_array(forceWithVirial.force_.data()),
204                                            &ewc_t.Vcorr_q, lambda[efptCOUL], &ewc_t.dvdl[efptCOUL]);
205                     }
206                     GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
207                 }
208                 if (nthreads > 1)
209                 {
210                     reduceEwaldThreadOuput(nthreads, fr->ewc_t);
211                 }
212                 wallcycle_sub_stop(wcycle, ewcsEWALD_CORRECTION);
213             }
214
215             if (EEL_PME_EWALD(fr->ic->eeltype) && fr->n_tpi == 0)
216             {
217                 /* This is not in a subcounter because it takes a
218                    negligible and constant-sized amount of time */
219                 ewaldOutput.Vcorr_q += ewald_charge_correction(
220                         cr, fr, lambda[efptCOUL], box, &ewaldOutput.dvdl[efptCOUL], ewaldOutput.vir_q);
221             }
222
223             if (computePmeOnCpu)
224             {
225                 /* Do reciprocal PME for Coulomb and/or LJ. */
226                 assert(fr->n_tpi >= 0);
227                 if (fr->n_tpi == 0 || stepWork.stateChanged)
228                 {
229                     /* With domain decomposition we close the CPU side load
230                      * balancing region here, because PME does global
231                      * communication that acts as a global barrier.
232                      */
233                     ddBalanceRegionHandler.closeAfterForceComputationCpu();
234
235                     wallcycle_start(wcycle, ewcPMEMESH);
236                     status = gmx_pme_do(
237                             fr->pmedata,
238                             gmx::constArrayRefFromArray(coordinates.unpaddedConstArrayRef().data(),
239                                                         md->homenr - fr->n_tpi),
240                             forceWithVirial.force_, md->chargeA, md->chargeB, md->sqrt_c6A,
241                             md->sqrt_c6B, md->sigmaA, md->sigmaB, box, cr,
242                             DOMAINDECOMP(cr) ? dd_pme_maxshift_x(cr->dd) : 0,
243                             DOMAINDECOMP(cr) ? dd_pme_maxshift_y(cr->dd) : 0, nrnb, wcycle,
244                             ewaldOutput.vir_q, ewaldOutput.vir_lj, &Vlr_q, &Vlr_lj,
245                             lambda[efptCOUL], lambda[efptVDW], &ewaldOutput.dvdl[efptCOUL],
246                             &ewaldOutput.dvdl[efptVDW], stepWork);
247                     wallcycle_stop(wcycle, ewcPMEMESH);
248                     if (status != 0)
249                     {
250                         gmx_fatal(FARGS, "Error %d in reciprocal PME routine", status);
251                     }
252
253                     /* We should try to do as little computation after
254                      * this as possible, because parallel PME synchronizes
255                      * the nodes, so we want all load imbalance of the
256                      * rest of the force calculation to be before the PME
257                      * call.  DD load balancing is done on the whole time
258                      * of the force call (without PME).
259                      */
260                 }
261                 if (fr->n_tpi > 0)
262                 {
263                     /* Determine the PME grid energy of the test molecule
264                      * with the PME grid potential of the other charges.
265                      */
266                     gmx_pme_calc_energy(
267                             fr->pmedata,
268                             coordinates.unpaddedConstArrayRef().subArray(md->homenr - fr->n_tpi, fr->n_tpi),
269                             gmx::arrayRefFromArray(md->chargeA + md->homenr - fr->n_tpi, fr->n_tpi),
270                             &Vlr_q);
271                 }
272             }
273         }
274
275         if (fr->ic->eeltype == eelEWALD)
276         {
277             Vlr_q = do_ewald(ir, x, as_rvec_array(forceWithVirial.force_.data()), md->chargeA,
278                              md->chargeB, box, cr, md->homenr, ewaldOutput.vir_q, fr->ic->ewaldcoeff_q,
279                              lambda[efptCOUL], &ewaldOutput.dvdl[efptCOUL], fr->ewald_table);
280         }
281
282         /* Note that with separate PME nodes we get the real energies later */
283         // TODO it would be simpler if we just accumulated a single
284         // long-range virial contribution.
285         forceWithVirial.addVirialContribution(ewaldOutput.vir_q);
286         forceWithVirial.addVirialContribution(ewaldOutput.vir_lj);
287         enerd->dvdl_lin[efptCOUL] += ewaldOutput.dvdl[efptCOUL];
288         enerd->dvdl_lin[efptVDW] += ewaldOutput.dvdl[efptVDW];
289         enerd->term[F_COUL_RECIP] = Vlr_q + ewaldOutput.Vcorr_q;
290         enerd->term[F_LJ_RECIP]   = Vlr_lj + ewaldOutput.Vcorr_lj;
291
292         if (debug)
293         {
294             fprintf(debug, "Vlr_q = %g, Vcorr_q = %g, Vlr_corr_q = %g\n", Vlr_q,
295                     ewaldOutput.Vcorr_q, enerd->term[F_COUL_RECIP]);
296             pr_rvecs(debug, 0, "vir_el_recip after corr", ewaldOutput.vir_q, DIM);
297             rvec* fshift = as_rvec_array(forceOutputs->forceWithShiftForces().shiftForces().data());
298             pr_rvecs(debug, 0, "fshift after LR Corrections", fshift, SHIFTS);
299             fprintf(debug, "Vlr_lj: %g, Vcorr_lj = %g, Vlr_corr_lj = %g\n", Vlr_lj,
300                     ewaldOutput.Vcorr_lj, enerd->term[F_LJ_RECIP]);
301             pr_rvecs(debug, 0, "vir_lj_recip after corr", ewaldOutput.vir_lj, DIM);
302         }
303     }
304
305     if (debug)
306     {
307         print_nrnb(debug, nrnb);
308     }
309
310     if (debug)
311     {
312         rvec* fshift = as_rvec_array(forceOutputs->forceWithShiftForces().shiftForces().data());
313         pr_rvecs(debug, 0, "fshift after bondeds", fshift, SHIFTS);
314     }
315 }