Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / mdlib / force.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5  * Copyright (c) 2001-2004, The GROMACS development team.
6  * Copyright (c) 2013,2014, by the GROMACS development team, led by
7  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8  * and including many others, as listed in the AUTHORS file in the
9  * top-level source directory and at http://www.gromacs.org.
10  *
11  * GROMACS is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public License
13  * as published by the Free Software Foundation; either version 2.1
14  * of the License, or (at your option) any later version.
15  *
16  * GROMACS is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with GROMACS; if not, see
23  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
25  *
26  * If you want to redistribute modifications to GROMACS, please
27  * consider that scientific software is very special. Version
28  * control is crucial - bugs must be traceable. We will be happy to
29  * consider code for inclusion in the official distribution, but
30  * derived work must not be called official GROMACS. Details are found
31  * in the README & COPYING files - if they are missing, get the
32  * official version at http://www.gromacs.org.
33  *
34  * To help us fund GROMACS development, we humbly ask that you cite
35  * the research papers on the package. Check out http://www.gromacs.org.
36  */
37 #ifdef HAVE_CONFIG_H
38 #include <config.h>
39 #endif
40
41 #include <math.h>
42 #include <string.h>
43 #include <assert.h>
44 #include "typedefs.h"
45 #include "macros.h"
46 #include "gromacs/utility/smalloc.h"
47 #include "macros.h"
48 #include "physics.h"
49 #include "force.h"
50 #include "nonbonded.h"
51 #include "names.h"
52 #include "network.h"
53 #include "pbc.h"
54 #include "ns.h"
55 #include "nrnb.h"
56 #include "bondf.h"
57 #include "mshift.h"
58 #include "txtdump.h"
59 #include "coulomb.h"
60 #include "pme.h"
61 #include "mdrun.h"
62 #include "domdec.h"
63 #include "qmmm.h"
64 #include "gmx_omp_nthreads.h"
65
66 #include "gromacs/timing/wallcycle.h"
67 #include "gromacs/utility/fatalerror.h"
68
69 void ns(FILE              *fp,
70         t_forcerec        *fr,
71         matrix             box,
72         gmx_groups_t      *groups,
73         gmx_localtop_t    *top,
74         t_mdatoms         *md,
75         t_commrec         *cr,
76         t_nrnb            *nrnb,
77         gmx_bool           bFillGrid,
78         gmx_bool           bDoLongRangeNS)
79 {
80     char   *ptr;
81     int     nsearch;
82
83
84     if (!fr->ns.nblist_initialized)
85     {
86         init_neighbor_list(fp, fr, md->homenr);
87     }
88
89     if (fr->bTwinRange)
90     {
91         fr->nlr = 0;
92     }
93
94     nsearch = search_neighbours(fp, fr, box, top, groups, cr, nrnb, md,
95                                 bFillGrid, bDoLongRangeNS);
96     if (debug)
97     {
98         fprintf(debug, "nsearch = %d\n", nsearch);
99     }
100
101     /* Check whether we have to do dynamic load balancing */
102     /*if ((nsb->nstDlb > 0) && (mod(step,nsb->nstDlb) == 0))
103        count_nb(cr,nsb,&(top->blocks[ebCGS]),nns,fr->nlr,
104        &(top->idef),opts->ngener);
105      */
106     if (fr->ns.dump_nl > 0)
107     {
108         dump_nblist(fp, cr, fr, fr->ns.dump_nl);
109     }
110 }
111
112 static void reduce_thread_forces(int n, rvec *f,
113                                  tensor vir_q, tensor vir_lj,
114                                  real *Vcorr_q, real *Vcorr_lj,
115                                  real *dvdl_q, real *dvdl_lj,
116                                  int nthreads, f_thread_t *f_t)
117 {
118     int t, i;
119
120     /* This reduction can run over any number of threads */
121 #pragma omp parallel for num_threads(gmx_omp_nthreads_get(emntBonded)) private(t) schedule(static)
122     for (i = 0; i < n; i++)
123     {
124         for (t = 1; t < nthreads; t++)
125         {
126             rvec_inc(f[i], f_t[t].f[i]);
127         }
128     }
129     for (t = 1; t < nthreads; t++)
130     {
131         *Vcorr_q  += f_t[t].Vcorr_q;
132         *Vcorr_lj += f_t[t].Vcorr_lj;
133         *dvdl_q   += f_t[t].dvdl[efptCOUL];
134         *dvdl_lj  += f_t[t].dvdl[efptVDW];
135         m_add(vir_q, f_t[t].vir_q, vir_q);
136         m_add(vir_lj, f_t[t].vir_lj, vir_lj);
137     }
138 }
139
140 void gmx_print_sepdvdl(FILE *fplog, const char *s, real v, real dvdlambda)
141 {
142     fprintf(fplog, "  %-30s V %12.5e  dVdl %12.5e\n", s, v, dvdlambda);
143 }
144
145 void do_force_lowlevel(FILE       *fplog,   gmx_int64_t step,
146                        t_forcerec *fr,      t_inputrec *ir,
147                        t_idef     *idef,    t_commrec  *cr,
148                        t_nrnb     *nrnb,    gmx_wallcycle_t wcycle,
149                        t_mdatoms  *md,
150                        rvec       x[],      history_t  *hist,
151                        rvec       f[],
152                        rvec       f_longrange[],
153                        gmx_enerdata_t *enerd,
154                        t_fcdata   *fcd,
155                        gmx_localtop_t *top,
156                        gmx_genborn_t *born,
157                        t_atomtypes *atype,
158                        gmx_bool       bBornRadii,
159                        matrix     box,
160                        t_lambda   *fepvals,
161                        real       *lambda,
162                        t_graph    *graph,
163                        t_blocka   *excl,
164                        rvec       mu_tot[],
165                        int        flags,
166                        float      *cycles_pme)
167 {
168     int         i, j;
169     int         donb_flags;
170     gmx_bool    bDoEpot, bSepDVDL, bSB;
171     int         pme_flags;
172     matrix      boxs;
173     rvec        box_size;
174     t_pbc       pbc;
175     char        buf[22];
176     double      clam_i, vlam_i;
177     real        dvdl_dum[efptNR], dvdl_nb[efptNR], lam_i[efptNR];
178     real        dvdl_q, dvdl_lj;
179
180 #ifdef GMX_MPI
181     double  t0 = 0.0, t1, t2, t3; /* time measurement for coarse load balancing */
182 #endif
183
184 #define PRINT_SEPDVDL(s, v, dvdlambda) if (bSepDVDL) { gmx_print_sepdvdl(fplog, s, v, dvdlambda); }
185
186     set_pbc(&pbc, fr->ePBC, box);
187
188     /* reset free energy components */
189     for (i = 0; i < efptNR; i++)
190     {
191         dvdl_nb[i]  = 0;
192         dvdl_dum[i] = 0;
193     }
194
195     /* Reset box */
196     for (i = 0; (i < DIM); i++)
197     {
198         box_size[i] = box[i][i];
199     }
200
201     bSepDVDL = (fr->bSepDVDL && do_per_step(step, ir->nstlog));
202     debug_gmx();
203
204     /* do QMMM first if requested */
205     if (fr->bQMMM)
206     {
207         enerd->term[F_EQM] = calculate_QMMM(cr, x, f, fr);
208     }
209
210     if (bSepDVDL)
211     {
212         fprintf(fplog, "Step %s: non-bonded V and dVdl for node %d:\n",
213                 gmx_step_str(step, buf), cr->nodeid);
214     }
215
216     /* Call the short range functions all in one go. */
217
218 #ifdef GMX_MPI
219     /*#define TAKETIME ((cr->npmenodes) && (fr->timesteps < 12))*/
220 #define TAKETIME FALSE
221     if (TAKETIME)
222     {
223         MPI_Barrier(cr->mpi_comm_mygroup);
224         t0 = MPI_Wtime();
225     }
226 #endif
227
228     if (ir->nwall)
229     {
230         /* foreign lambda component for walls */
231         real dvdl_walls = do_walls(ir, fr, box, md, x, f, lambda[efptVDW],
232                                    enerd->grpp.ener[egLJSR], nrnb);
233         PRINT_SEPDVDL("Walls", 0.0, dvdl_walls);
234         enerd->dvdl_lin[efptVDW] += dvdl_walls;
235     }
236
237     /* If doing GB, reset dvda and calculate the Born radii */
238     if (ir->implicit_solvent)
239     {
240         wallcycle_sub_start(wcycle, ewcsNONBONDED);
241
242         for (i = 0; i < born->nr; i++)
243         {
244             fr->dvda[i] = 0;
245         }
246
247         if (bBornRadii)
248         {
249             calc_gb_rad(cr, fr, ir, top, x, &(fr->gblist), born, md, nrnb);
250         }
251
252         wallcycle_sub_stop(wcycle, ewcsNONBONDED);
253     }
254
255     where();
256     /* We only do non-bonded calculation with group scheme here, the verlet
257      * calls are done from do_force_cutsVERLET(). */
258     if (fr->cutoff_scheme == ecutsGROUP && (flags & GMX_FORCE_NONBONDED))
259     {
260         donb_flags = 0;
261         /* Add short-range interactions */
262         donb_flags |= GMX_NONBONDED_DO_SR;
263
264         /* Currently all group scheme kernels always calculate (shift-)forces */
265         if (flags & GMX_FORCE_FORCES)
266         {
267             donb_flags |= GMX_NONBONDED_DO_FORCE;
268         }
269         if (flags & GMX_FORCE_VIRIAL)
270         {
271             donb_flags |= GMX_NONBONDED_DO_SHIFTFORCE;
272         }
273         if (flags & GMX_FORCE_ENERGY)
274         {
275             donb_flags |= GMX_NONBONDED_DO_POTENTIAL;
276         }
277         if (flags & GMX_FORCE_DO_LR)
278         {
279             donb_flags |= GMX_NONBONDED_DO_LR;
280         }
281
282         wallcycle_sub_start(wcycle, ewcsNONBONDED);
283         do_nonbonded(fr, x, f, f_longrange, md, excl,
284                      &enerd->grpp, nrnb,
285                      lambda, dvdl_nb, -1, -1, donb_flags);
286
287         /* If we do foreign lambda and we have soft-core interactions
288          * we have to recalculate the (non-linear) energies contributions.
289          */
290         if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) && fepvals->sc_alpha != 0)
291         {
292             for (i = 0; i < enerd->n_lambda; i++)
293             {
294                 for (j = 0; j < efptNR; j++)
295                 {
296                     lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i-1]);
297                 }
298                 reset_foreign_enerdata(enerd);
299                 do_nonbonded(fr, x, f, f_longrange, md, excl,
300                              &(enerd->foreign_grpp), nrnb,
301                              lam_i, dvdl_dum, -1, -1,
302                              (donb_flags & ~GMX_NONBONDED_DO_FORCE) | GMX_NONBONDED_DO_FOREIGNLAMBDA);
303                 sum_epot(&(enerd->foreign_grpp), enerd->foreign_term);
304                 enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT];
305             }
306         }
307         wallcycle_sub_stop(wcycle, ewcsNONBONDED);
308         where();
309     }
310
311     /* If we are doing GB, calculate bonded forces and apply corrections
312      * to the solvation forces */
313     /* MRS: Eventually, many need to include free energy contribution here! */
314     if (ir->implicit_solvent)
315     {
316         wallcycle_sub_start(wcycle, ewcsBONDED);
317         calc_gb_forces(cr, md, born, top, x, f, fr, idef,
318                        ir->gb_algorithm, ir->sa_algorithm, nrnb, &pbc, graph, enerd);
319         wallcycle_sub_stop(wcycle, ewcsBONDED);
320     }
321
322 #ifdef GMX_MPI
323     if (TAKETIME)
324     {
325         t1          = MPI_Wtime();
326         fr->t_fnbf += t1-t0;
327     }
328 #endif
329
330     if (fepvals->sc_alpha != 0)
331     {
332         enerd->dvdl_nonlin[efptVDW] += dvdl_nb[efptVDW];
333     }
334     else
335     {
336         enerd->dvdl_lin[efptVDW] += dvdl_nb[efptVDW];
337     }
338
339     if (fepvals->sc_alpha != 0)
340
341     /* even though coulomb part is linear, we already added it, beacuse we
342        need to go through the vdw calculation anyway */
343     {
344         enerd->dvdl_nonlin[efptCOUL] += dvdl_nb[efptCOUL];
345     }
346     else
347     {
348         enerd->dvdl_lin[efptCOUL] += dvdl_nb[efptCOUL];
349     }
350
351     if (bSepDVDL)
352     {
353         real V_short_range    = 0;
354         real dvdl_short_range = 0;
355
356         for (i = 0; i < enerd->grpp.nener; i++)
357         {
358             V_short_range +=
359                 (fr->bBHAM ?
360                  enerd->grpp.ener[egBHAMSR][i] :
361                  enerd->grpp.ener[egLJSR][i])
362                 + enerd->grpp.ener[egCOULSR][i] + enerd->grpp.ener[egGB][i];
363         }
364         dvdl_short_range = dvdl_nb[efptVDW] + dvdl_nb[efptCOUL];
365         PRINT_SEPDVDL("VdW and Coulomb SR particle-p.",
366                       V_short_range,
367                       dvdl_short_range);
368     }
369     debug_gmx();
370
371
372     if (debug)
373     {
374         pr_rvecs(debug, 0, "fshift after SR", fr->fshift, SHIFTS);
375     }
376
377     /* Shift the coordinates. Must be done before bonded forces and PPPM,
378      * but is also necessary for SHAKE and update, therefore it can NOT
379      * go when no bonded forces have to be evaluated.
380      */
381
382     /* Here sometimes we would not need to shift with NBFonly,
383      * but we do so anyhow for consistency of the returned coordinates.
384      */
385     if (graph)
386     {
387         shift_self(graph, box, x);
388         if (TRICLINIC(box))
389         {
390             inc_nrnb(nrnb, eNR_SHIFTX, 2*graph->nnodes);
391         }
392         else
393         {
394             inc_nrnb(nrnb, eNR_SHIFTX, graph->nnodes);
395         }
396     }
397     /* Check whether we need to do bondeds or correct for exclusions */
398     if (fr->bMolPBC &&
399         ((flags & GMX_FORCE_BONDED)
400          || EEL_RF(fr->eeltype) || EEL_FULL(fr->eeltype) || EVDW_PME(fr->vdwtype)))
401     {
402         /* Since all atoms are in the rectangular or triclinic unit-cell,
403          * only single box vector shifts (2 in x) are required.
404          */
405         set_pbc_dd(&pbc, fr->ePBC, cr->dd, TRUE, box);
406     }
407     debug_gmx();
408
409     if (flags & GMX_FORCE_BONDED)
410     {
411         wallcycle_sub_start(wcycle, ewcsBONDED);
412         calc_bonds(fplog, cr->ms,
413                    idef, x, hist, f, fr, &pbc, graph, enerd, nrnb, lambda, md, fcd,
414                    DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL, atype, born,
415                    flags,
416                    fr->bSepDVDL && do_per_step(step, ir->nstlog), step);
417
418         /* Check if we have to determine energy differences
419          * at foreign lambda's.
420          */
421         if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) &&
422             idef->ilsort != ilsortNO_FE)
423         {
424             if (idef->ilsort != ilsortFE_SORTED)
425             {
426                 gmx_incons("The bonded interactions are not sorted for free energy");
427             }
428             for (i = 0; i < enerd->n_lambda; i++)
429             {
430                 reset_foreign_enerdata(enerd);
431                 for (j = 0; j < efptNR; j++)
432                 {
433                     lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i-1]);
434                 }
435                 calc_bonds_lambda(fplog, idef, x, fr, &pbc, graph, &(enerd->foreign_grpp), enerd->foreign_term, nrnb, lam_i, md,
436                                   fcd, DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL);
437                 sum_epot(&(enerd->foreign_grpp), enerd->foreign_term);
438                 enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT];
439             }
440         }
441         debug_gmx();
442
443         wallcycle_sub_stop(wcycle, ewcsBONDED);
444     }
445
446     where();
447
448     *cycles_pme = 0;
449     if (EEL_FULL(fr->eeltype) || EVDW_PME(fr->vdwtype))
450     {
451         real Vlr             = 0, Vcorr = 0;
452         real dvdl_long_range = 0;
453         int  status          = 0;
454
455         bSB = (ir->nwall == 2);
456         if (bSB)
457         {
458             copy_mat(box, boxs);
459             svmul(ir->wall_ewald_zfac, boxs[ZZ], boxs[ZZ]);
460             box_size[ZZ] *= ir->wall_ewald_zfac;
461         }
462     }
463
464     /* Do long-range electrostatics and/or LJ-PME, including related short-range
465      * corrections.
466      */
467
468     clear_mat(fr->vir_el_recip);
469     clear_mat(fr->vir_lj_recip);
470
471     if (EEL_FULL(fr->eeltype) || EVDW_PME(fr->vdwtype))
472     {
473         real Vlr_q             = 0, Vlr_lj = 0, Vcorr_q = 0, Vcorr_lj = 0;
474         real dvdl_long_range_q = 0, dvdl_long_range_lj = 0;
475         int  status            = 0;
476
477         if (EEL_PME_EWALD(fr->eeltype) || EVDW_PME(fr->vdwtype))
478         {
479             real dvdl_long_range_correction_q   = 0;
480             real dvdl_long_range_correction_lj  = 0;
481             /* With the Verlet scheme exclusion forces are calculated
482              * in the non-bonded kernel.
483              */
484             /* The TPI molecule does not have exclusions with the rest
485              * of the system and no intra-molecular PME grid
486              * contributions will be calculated in
487              * gmx_pme_calc_energy.
488              */
489             if ((ir->cutoff_scheme == ecutsGROUP && fr->n_tpi == 0) ||
490                 ir->ewald_geometry != eewg3D ||
491                 ir->epsilon_surface != 0)
492             {
493                 int nthreads, t;
494
495                 wallcycle_sub_start(wcycle, ewcsEWALD_CORRECTION);
496
497                 if (fr->n_tpi > 0)
498                 {
499                     gmx_fatal(FARGS, "TPI with PME currently only works in a 3D geometry with tin-foil boundary conditions");
500                 }
501
502                 nthreads = gmx_omp_nthreads_get(emntBonded);
503 #pragma omp parallel for num_threads(nthreads) schedule(static)
504                 for (t = 0; t < nthreads; t++)
505                 {
506                     int     s, e, i;
507                     rvec   *fnv;
508                     tensor *vir_q, *vir_lj;
509                     real   *Vcorrt_q, *Vcorrt_lj, *dvdlt_q, *dvdlt_lj;
510                     if (t == 0)
511                     {
512                         fnv       = fr->f_novirsum;
513                         vir_q     = &fr->vir_el_recip;
514                         vir_lj    = &fr->vir_lj_recip;
515                         Vcorrt_q  = &Vcorr_q;
516                         Vcorrt_lj = &Vcorr_lj;
517                         dvdlt_q   = &dvdl_long_range_correction_q;
518                         dvdlt_lj  = &dvdl_long_range_correction_lj;
519                     }
520                     else
521                     {
522                         fnv       = fr->f_t[t].f;
523                         vir_q     = &fr->f_t[t].vir_q;
524                         vir_lj    = &fr->f_t[t].vir_lj;
525                         Vcorrt_q  = &fr->f_t[t].Vcorr_q;
526                         Vcorrt_lj = &fr->f_t[t].Vcorr_lj;
527                         dvdlt_q   = &fr->f_t[t].dvdl[efptCOUL];
528                         dvdlt_lj  = &fr->f_t[t].dvdl[efptVDW];
529                         for (i = 0; i < fr->natoms_force; i++)
530                         {
531                             clear_rvec(fnv[i]);
532                         }
533                         clear_mat(*vir_q);
534                         clear_mat(*vir_lj);
535                     }
536                     *dvdlt_q  = 0;
537                     *dvdlt_lj = 0;
538
539                     ewald_LRcorrection(fr->excl_load[t], fr->excl_load[t+1],
540                                        cr, t, fr,
541                                        md->chargeA,
542                                        md->nChargePerturbed ? md->chargeB : NULL,
543                                        md->sqrt_c6A,
544                                        md->nTypePerturbed ? md->sqrt_c6B : NULL,
545                                        md->sigmaA,
546                                        md->nTypePerturbed ? md->sigmaB : NULL,
547                                        md->sigma3A,
548                                        md->nTypePerturbed ? md->sigma3B : NULL,
549                                        ir->cutoff_scheme != ecutsVERLET,
550                                        excl, x, bSB ? boxs : box, mu_tot,
551                                        ir->ewald_geometry,
552                                        ir->epsilon_surface,
553                                        fnv, *vir_q, *vir_lj,
554                                        Vcorrt_q, Vcorrt_lj,
555                                        lambda[efptCOUL], lambda[efptVDW],
556                                        dvdlt_q, dvdlt_lj);
557                 }
558                 if (nthreads > 1)
559                 {
560                     reduce_thread_forces(fr->natoms_force, fr->f_novirsum,
561                                          fr->vir_el_recip, fr->vir_lj_recip,
562                                          &Vcorr_q, &Vcorr_lj,
563                                          &dvdl_long_range_correction_q,
564                                          &dvdl_long_range_correction_lj,
565                                          nthreads, fr->f_t);
566                 }
567                 wallcycle_sub_stop(wcycle, ewcsEWALD_CORRECTION);
568             }
569
570             if (EEL_PME_EWALD(fr->eeltype) && fr->n_tpi == 0)
571             {
572                 Vcorr_q += ewald_charge_correction(cr, fr, lambda[efptCOUL], box,
573                                                    &dvdl_long_range_correction_q,
574                                                    fr->vir_el_recip);
575             }
576
577             PRINT_SEPDVDL("Ewald excl./charge/dip. corr.", Vcorr_q, dvdl_long_range_correction_q);
578             PRINT_SEPDVDL("Ewald excl. corr. LJ", Vcorr_lj, dvdl_long_range_correction_lj);
579             enerd->dvdl_lin[efptCOUL] += dvdl_long_range_correction_q;
580             enerd->dvdl_lin[efptVDW]  += dvdl_long_range_correction_lj;
581         }
582
583         if ((EEL_PME(fr->eeltype) || EVDW_PME(fr->vdwtype)))
584         {
585             if (cr->duty & DUTY_PME)
586             {
587                 /* Do reciprocal PME for Coulomb and/or LJ. */
588                 assert(fr->n_tpi >= 0);
589                 if (fr->n_tpi == 0 || (flags & GMX_FORCE_STATECHANGED))
590                 {
591                     pme_flags = GMX_PME_SPREAD | GMX_PME_SOLVE;
592                     if (EEL_PME(fr->eeltype))
593                     {
594                         pme_flags     |= GMX_PME_DO_COULOMB;
595                     }
596                     if (EVDW_PME(fr->vdwtype))
597                     {
598                         pme_flags |= GMX_PME_DO_LJ;
599                     }
600                     if (flags & GMX_FORCE_FORCES)
601                     {
602                         pme_flags |= GMX_PME_CALC_F;
603                     }
604                     if (flags & GMX_FORCE_VIRIAL)
605                     {
606                         pme_flags |= GMX_PME_CALC_ENER_VIR;
607                     }
608                     if (fr->n_tpi > 0)
609                     {
610                         /* We don't calculate f, but we do want the potential */
611                         pme_flags |= GMX_PME_CALC_POT;
612                     }
613                     wallcycle_start(wcycle, ewcPMEMESH);
614                     status = gmx_pme_do(fr->pmedata,
615                                         0, md->homenr - fr->n_tpi,
616                                         x, fr->f_novirsum,
617                                         md->chargeA, md->chargeB,
618                                         md->sqrt_c6A, md->sqrt_c6B,
619                                         md->sigmaA, md->sigmaB,
620                                         bSB ? boxs : box, cr,
621                                         DOMAINDECOMP(cr) ? dd_pme_maxshift_x(cr->dd) : 0,
622                                         DOMAINDECOMP(cr) ? dd_pme_maxshift_y(cr->dd) : 0,
623                                         nrnb, wcycle,
624                                         fr->vir_el_recip, fr->ewaldcoeff_q,
625                                         fr->vir_lj_recip, fr->ewaldcoeff_lj,
626                                         &Vlr_q, &Vlr_lj,
627                                         lambda[efptCOUL], lambda[efptVDW],
628                                         &dvdl_long_range_q, &dvdl_long_range_lj, pme_flags);
629                     *cycles_pme = wallcycle_stop(wcycle, ewcPMEMESH);
630                     if (status != 0)
631                     {
632                         gmx_fatal(FARGS, "Error %d in reciprocal PME routine", status);
633                     }
634                     /* We should try to do as little computation after
635                      * this as possible, because parallel PME synchronizes
636                      * the nodes, so we want all load imbalance of the
637                      * rest of the force calculation to be before the PME
638                      * call.  DD load balancing is done on the whole time
639                      * of the force call (without PME).
640                      */
641                 }
642                 if (fr->n_tpi > 0)
643                 {
644                     if (EVDW_PME(ir->vdwtype))
645                     {
646
647                         gmx_fatal(FARGS, "Test particle insertion not implemented with LJ-PME");
648                     }
649                     /* Determine the PME grid energy of the test molecule
650                      * with the PME grid potential of the other charges.
651                      */
652                     gmx_pme_calc_energy(fr->pmedata, fr->n_tpi,
653                                         x + md->homenr - fr->n_tpi,
654                                         md->chargeA + md->homenr - fr->n_tpi,
655                                         &Vlr_q);
656                 }
657                 PRINT_SEPDVDL("PME mesh", Vlr_q + Vlr_lj, dvdl_long_range_q+dvdl_long_range_lj);
658             }
659         }
660
661         if (!EEL_PME(fr->eeltype) && EEL_PME_EWALD(fr->eeltype))
662         {
663             Vlr_q = do_ewald(ir, x, fr->f_novirsum,
664                              md->chargeA, md->chargeB,
665                              box_size, cr, md->homenr,
666                              fr->vir_el_recip, fr->ewaldcoeff_q,
667                              lambda[efptCOUL], &dvdl_long_range_q, fr->ewald_table);
668             PRINT_SEPDVDL("Ewald long-range", Vlr_q, dvdl_long_range_q);
669         }
670
671         /* Note that with separate PME nodes we get the real energies later */
672         enerd->dvdl_lin[efptCOUL] += dvdl_long_range_q;
673         enerd->dvdl_lin[efptVDW]  += dvdl_long_range_lj;
674         enerd->term[F_COUL_RECIP]  = Vlr_q + Vcorr_q;
675         enerd->term[F_LJ_RECIP]    = Vlr_lj + Vcorr_lj;
676         if (debug)
677         {
678             fprintf(debug, "Vlr_q = %g, Vcorr_q = %g, Vlr_corr_q = %g\n",
679                     Vlr_q, Vcorr_q, enerd->term[F_COUL_RECIP]);
680             pr_rvecs(debug, 0, "vir_el_recip after corr", fr->vir_el_recip, DIM);
681             pr_rvecs(debug, 0, "fshift after LR Corrections", fr->fshift, SHIFTS);
682             fprintf(debug, "Vlr_lj: %g, Vcorr_lj = %g, Vlr_corr_lj = %g\n",
683                     Vlr_lj, Vcorr_lj, enerd->term[F_LJ_RECIP]);
684             pr_rvecs(debug, 0, "vir_lj_recip after corr", fr->vir_lj_recip, DIM);
685         }
686     }
687     else
688     {
689         /* Is there a reaction-field exclusion correction needed? */
690         if (EEL_RF(fr->eeltype) && eelRF_NEC != fr->eeltype)
691         {
692             /* With the Verlet scheme, exclusion forces are calculated
693              * in the non-bonded kernel.
694              */
695             if (ir->cutoff_scheme != ecutsVERLET)
696             {
697                 real dvdl_rf_excl      = 0;
698                 enerd->term[F_RF_EXCL] =
699                     RF_excl_correction(fr, graph, md, excl, x, f,
700                                        fr->fshift, &pbc, lambda[efptCOUL], &dvdl_rf_excl);
701
702                 enerd->dvdl_lin[efptCOUL] += dvdl_rf_excl;
703                 PRINT_SEPDVDL("RF exclusion correction",
704                               enerd->term[F_RF_EXCL], dvdl_rf_excl);
705             }
706         }
707     }
708     where();
709     debug_gmx();
710
711     if (debug)
712     {
713         print_nrnb(debug, nrnb);
714     }
715     debug_gmx();
716
717 #ifdef GMX_MPI
718     if (TAKETIME)
719     {
720         t2 = MPI_Wtime();
721         MPI_Barrier(cr->mpi_comm_mygroup);
722         t3          = MPI_Wtime();
723         fr->t_wait += t3-t2;
724         if (fr->timesteps == 11)
725         {
726             fprintf(stderr, "* PP load balancing info: node %d, step %s, rel wait time=%3.0f%% , load string value: %7.2f\n",
727                     cr->nodeid, gmx_step_str(fr->timesteps, buf),
728                     100*fr->t_wait/(fr->t_wait+fr->t_fnbf),
729                     (fr->t_fnbf+fr->t_wait)/fr->t_fnbf);
730         }
731         fr->timesteps++;
732     }
733 #endif
734
735     if (debug)
736     {
737         pr_rvecs(debug, 0, "fshift after bondeds", fr->fshift, SHIFTS);
738     }
739
740 }
741
742 void init_enerdata(int ngener, int n_lambda, gmx_enerdata_t *enerd)
743 {
744     int i, n2;
745
746     for (i = 0; i < F_NRE; i++)
747     {
748         enerd->term[i]         = 0;
749         enerd->foreign_term[i] = 0;
750     }
751
752
753     for (i = 0; i < efptNR; i++)
754     {
755         enerd->dvdl_lin[i]     = 0;
756         enerd->dvdl_nonlin[i]  = 0;
757     }
758
759     n2 = ngener*ngener;
760     if (debug)
761     {
762         fprintf(debug, "Creating %d sized group matrix for energies\n", n2);
763     }
764     enerd->grpp.nener         = n2;
765     enerd->foreign_grpp.nener = n2;
766     for (i = 0; (i < egNR); i++)
767     {
768         snew(enerd->grpp.ener[i], n2);
769         snew(enerd->foreign_grpp.ener[i], n2);
770     }
771
772     if (n_lambda)
773     {
774         enerd->n_lambda = 1 + n_lambda;
775         snew(enerd->enerpart_lambda, enerd->n_lambda);
776     }
777     else
778     {
779         enerd->n_lambda = 0;
780     }
781 }
782
783 void destroy_enerdata(gmx_enerdata_t *enerd)
784 {
785     int i;
786
787     for (i = 0; (i < egNR); i++)
788     {
789         sfree(enerd->grpp.ener[i]);
790     }
791
792     for (i = 0; (i < egNR); i++)
793     {
794         sfree(enerd->foreign_grpp.ener[i]);
795     }
796
797     if (enerd->n_lambda)
798     {
799         sfree(enerd->enerpart_lambda);
800     }
801 }
802
803 static real sum_v(int n, real v[])
804 {
805     real t;
806     int  i;
807
808     t = 0.0;
809     for (i = 0; (i < n); i++)
810     {
811         t = t + v[i];
812     }
813
814     return t;
815 }
816
817 void sum_epot(gmx_grppairener_t *grpp, real *epot)
818 {
819     int i;
820
821     /* Accumulate energies */
822     epot[F_COUL_SR]  = sum_v(grpp->nener, grpp->ener[egCOULSR]);
823     epot[F_LJ]       = sum_v(grpp->nener, grpp->ener[egLJSR]);
824     epot[F_LJ14]     = sum_v(grpp->nener, grpp->ener[egLJ14]);
825     epot[F_COUL14]   = sum_v(grpp->nener, grpp->ener[egCOUL14]);
826     epot[F_COUL_LR]  = sum_v(grpp->nener, grpp->ener[egCOULLR]);
827     epot[F_LJ_LR]    = sum_v(grpp->nener, grpp->ener[egLJLR]);
828     /* We have already added 1-2,1-3, and 1-4 terms to F_GBPOL */
829     epot[F_GBPOL]   += sum_v(grpp->nener, grpp->ener[egGB]);
830
831 /* lattice part of LR doesnt belong to any group
832  * and has been added earlier
833  */
834     epot[F_BHAM]     = sum_v(grpp->nener, grpp->ener[egBHAMSR]);
835     epot[F_BHAM_LR]  = sum_v(grpp->nener, grpp->ener[egBHAMLR]);
836
837     epot[F_EPOT] = 0;
838     for (i = 0; (i < F_EPOT); i++)
839     {
840         if (i != F_DISRESVIOL && i != F_ORIRESDEV)
841         {
842             epot[F_EPOT] += epot[i];
843         }
844     }
845 }
846
847 void sum_dhdl(gmx_enerdata_t *enerd, real *lambda, t_lambda *fepvals)
848 {
849     int    i, j, index;
850     double dlam;
851
852     enerd->dvdl_lin[efptVDW] += enerd->term[F_DVDL_VDW];  /* include dispersion correction */
853     enerd->term[F_DVDL]       = 0.0;
854     for (i = 0; i < efptNR; i++)
855     {
856         if (fepvals->separate_dvdl[i])
857         {
858             /* could this be done more readably/compactly? */
859             switch (i)
860             {
861                 case (efptMASS):
862                     index = F_DKDL;
863                     break;
864                 case (efptCOUL):
865                     index = F_DVDL_COUL;
866                     break;
867                 case (efptVDW):
868                     index = F_DVDL_VDW;
869                     break;
870                 case (efptBONDED):
871                     index = F_DVDL_BONDED;
872                     break;
873                 case (efptRESTRAINT):
874                     index = F_DVDL_RESTRAINT;
875                     break;
876                 default:
877                     index = F_DVDL;
878                     break;
879             }
880             enerd->term[index] = enerd->dvdl_lin[i] + enerd->dvdl_nonlin[i];
881             if (debug)
882             {
883                 fprintf(debug, "dvdl-%s[%2d]: %f: non-linear %f + linear %f\n",
884                         efpt_names[i], i, enerd->term[index], enerd->dvdl_nonlin[i], enerd->dvdl_lin[i]);
885             }
886         }
887         else
888         {
889             enerd->term[F_DVDL] += enerd->dvdl_lin[i] + enerd->dvdl_nonlin[i];
890             if (debug)
891             {
892                 fprintf(debug, "dvd-%sl[%2d]: %f: non-linear %f + linear %f\n",
893                         efpt_names[0], i, enerd->term[F_DVDL], enerd->dvdl_nonlin[i], enerd->dvdl_lin[i]);
894             }
895         }
896     }
897
898     /* Notes on the foreign lambda free energy difference evaluation:
899      * Adding the potential and ekin terms that depend linearly on lambda
900      * as delta lam * dvdl to the energy differences is exact.
901      * For the constraints this is not exact, but we have no other option
902      * without literally changing the lengths and reevaluating the energies at each step.
903      * (try to remedy this post 4.6 - MRS)
904      * For the non-bonded LR term we assume that the soft-core (if present)
905      * no longer affects the energy beyond the short-range cut-off,
906      * which is a very good approximation (except for exotic settings).
907      * (investigate how to overcome this post 4.6 - MRS)
908      */
909     if (fepvals->separate_dvdl[efptBONDED])
910     {
911         enerd->term[F_DVDL_BONDED] += enerd->term[F_DVDL_CONSTR];
912     }
913     else
914     {
915         enerd->term[F_DVDL] += enerd->term[F_DVDL_CONSTR];
916     }
917     enerd->term[F_DVDL_CONSTR] = 0;
918
919     for (i = 0; i < fepvals->n_lambda; i++)
920     {
921         /* note we are iterating over fepvals here!
922            For the current lam, dlam = 0 automatically,
923            so we don't need to add anything to the
924            enerd->enerpart_lambda[0] */
925
926         /* we don't need to worry about dvdl_lin contributions to dE at
927            current lambda, because the contributions to the current
928            lambda are automatically zeroed */
929
930         for (j = 0; j < efptNR; j++)
931         {
932             /* Note that this loop is over all dhdl components, not just the separated ones */
933             dlam = (fepvals->all_lambda[j][i]-lambda[j]);
934             enerd->enerpart_lambda[i+1] += dlam*enerd->dvdl_lin[j];
935             if (debug)
936             {
937                 fprintf(debug, "enerdiff lam %g: (%15s), non-linear %f linear %f*%f\n",
938                         fepvals->all_lambda[j][i], efpt_names[j],
939                         (enerd->enerpart_lambda[i+1] - enerd->enerpart_lambda[0]),
940                         dlam, enerd->dvdl_lin[j]);
941             }
942         }
943     }
944 }
945
946
947 void reset_foreign_enerdata(gmx_enerdata_t *enerd)
948 {
949     int  i, j;
950
951     /* First reset all foreign energy components.  Foreign energies always called on
952        neighbor search steps */
953     for (i = 0; (i < egNR); i++)
954     {
955         for (j = 0; (j < enerd->grpp.nener); j++)
956         {
957             enerd->foreign_grpp.ener[i][j] = 0.0;
958         }
959     }
960
961     /* potential energy components */
962     for (i = 0; (i <= F_EPOT); i++)
963     {
964         enerd->foreign_term[i] = 0.0;
965     }
966 }
967
968 void reset_enerdata(t_forcerec *fr, gmx_bool bNS,
969                     gmx_enerdata_t *enerd,
970                     gmx_bool bMaster)
971 {
972     gmx_bool bKeepLR;
973     int      i, j;
974
975     /* First reset all energy components, except for the long range terms
976      * on the master at non neighbor search steps, since the long range
977      * terms have already been summed at the last neighbor search step.
978      */
979     bKeepLR = (fr->bTwinRange && !bNS);
980     for (i = 0; (i < egNR); i++)
981     {
982         if (!(bKeepLR && bMaster && (i == egCOULLR || i == egLJLR)))
983         {
984             for (j = 0; (j < enerd->grpp.nener); j++)
985             {
986                 enerd->grpp.ener[i][j] = 0.0;
987             }
988         }
989     }
990     for (i = 0; i < efptNR; i++)
991     {
992         enerd->dvdl_lin[i]    = 0.0;
993         enerd->dvdl_nonlin[i] = 0.0;
994     }
995
996     /* Normal potential energy components */
997     for (i = 0; (i <= F_EPOT); i++)
998     {
999         enerd->term[i] = 0.0;
1000     }
1001     /* Initialize the dVdlambda term with the long range contribution */
1002     /* Initialize the dvdl term with the long range contribution */
1003     enerd->term[F_DVDL]            = 0.0;
1004     enerd->term[F_DVDL_COUL]       = 0.0;
1005     enerd->term[F_DVDL_VDW]        = 0.0;
1006     enerd->term[F_DVDL_BONDED]     = 0.0;
1007     enerd->term[F_DVDL_RESTRAINT]  = 0.0;
1008     enerd->term[F_DKDL]            = 0.0;
1009     if (enerd->n_lambda > 0)
1010     {
1011         for (i = 0; i < enerd->n_lambda; i++)
1012         {
1013             enerd->enerpart_lambda[i] = 0.0;
1014         }
1015     }
1016     /* reset foreign energy data - separate function since we also call it elsewhere */
1017     reset_foreign_enerdata(enerd);
1018 }