10738a759cb2af39937465a7feb387307ed68b1f
[alexxy/gromacs.git] / src / gromacs / listed_forces / listed_forces.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2014,2015,2016,2017,2018 by the GROMACS development team.
5  * Copyright (c) 2019,2020, by the GROMACS development team, led by
6  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
7  * and including many others, as listed in the AUTHORS file in the
8  * top-level source directory and at http://www.gromacs.org.
9  *
10  * GROMACS is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public License
12  * as published by the Free Software Foundation; either version 2.1
13  * of the License, or (at your option) any later version.
14  *
15  * GROMACS is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with GROMACS; if not, see
22  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
23  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
24  *
25  * If you want to redistribute modifications to GROMACS, please
26  * consider that scientific software is very special. Version
27  * control is crucial - bugs must be traceable. We will be happy to
28  * consider code for inclusion in the official distribution, but
29  * derived work must not be called official GROMACS. Details are found
30  * in the README & COPYING files - if they are missing, get the
31  * official version at http://www.gromacs.org.
32  *
33  * To help us fund GROMACS development, we humbly ask that you cite
34  * the research papers on the package. Check out http://www.gromacs.org.
35  */
36 /*! \internal \file
37  *
38  * \brief This file defines high-level functions for mdrun to compute
39  * energies and forces for listed interactions.
40  *
41  * \author Mark Abraham <mark.j.abraham@gmail.com>
42  *
43  * \ingroup module_listed_forces
44  */
45 #include "gmxpre.h"
46
47 #include "listed_forces.h"
48
49 #include <cassert>
50
51 #include <algorithm>
52 #include <array>
53
54 #include "gromacs/gmxlib/network.h"
55 #include "gromacs/gmxlib/nrnb.h"
56 #include "gromacs/listed_forces/bonded.h"
57 #include "gromacs/listed_forces/disre.h"
58 #include "gromacs/listed_forces/orires.h"
59 #include "gromacs/listed_forces/pairs.h"
60 #include "gromacs/listed_forces/position_restraints.h"
61 #include "gromacs/math/vec.h"
62 #include "gromacs/mdlib/enerdata_utils.h"
63 #include "gromacs/mdlib/force.h"
64 #include "gromacs/mdtypes/commrec.h"
65 #include "gromacs/mdtypes/fcdata.h"
66 #include "gromacs/mdtypes/forceoutput.h"
67 #include "gromacs/mdtypes/forcerec.h"
68 #include "gromacs/mdtypes/inputrec.h"
69 #include "gromacs/mdtypes/md_enums.h"
70 #include "gromacs/mdtypes/simulation_workload.h"
71 #include "gromacs/pbcutil/ishift.h"
72 #include "gromacs/pbcutil/pbc.h"
73 #include "gromacs/timing/wallcycle.h"
74 #include "gromacs/topology/topology.h"
75 #include "gromacs/utility/exceptions.h"
76 #include "gromacs/utility/fatalerror.h"
77 #include "gromacs/utility/smalloc.h"
78
79 #include "listed_internal.h"
80 #include "utilities.h"
81
82 namespace
83 {
84
85 using gmx::ArrayRef;
86
87 /*! \brief Return true if ftype is an explicit pair-listed LJ or
88  * COULOMB interaction type: bonded LJ (usually 1-4), or special
89  * listed non-bonded for FEP. */
90 bool isPairInteraction(int ftype)
91 {
92     return ((ftype) >= F_LJ14 && (ftype) <= F_LJC_PAIRS_NB);
93 }
94
95 /*! \brief Zero thread-local output buffers */
96 void zero_thread_output(f_thread_t* f_t)
97 {
98     constexpr int nelem_fa = sizeof(f_t->f[0]) / sizeof(real);
99
100     for (int i = 0; i < f_t->nblock_used; i++)
101     {
102         int a0 = f_t->block_index[i] * reduction_block_size;
103         int a1 = a0 + reduction_block_size;
104         for (int a = a0; a < a1; a++)
105         {
106             for (int d = 0; d < nelem_fa; d++)
107             {
108                 f_t->f[a][d] = 0;
109             }
110         }
111     }
112
113     for (int i = 0; i < SHIFTS; i++)
114     {
115         clear_rvec(f_t->fshift[i]);
116     }
117     for (int i = 0; i < F_NRE; i++)
118     {
119         f_t->ener[i] = 0;
120     }
121     for (int i = 0; i < egNR; i++)
122     {
123         for (int j = 0; j < f_t->grpp.nener; j++)
124         {
125             f_t->grpp.ener[i][j] = 0;
126         }
127     }
128     for (int i = 0; i < efptNR; i++)
129     {
130         f_t->dvdl[i] = 0;
131     }
132 }
133
134 /*! \brief The max thread number is arbitrary, we used a fixed number
135  * to avoid memory management.  Using more than 16 threads is probably
136  * never useful performance wise. */
137 #define MAX_BONDED_THREADS 256
138
139 /*! \brief Reduce thread-local force buffers */
140 void reduce_thread_forces(int n, gmx::ArrayRef<gmx::RVec> force, const bonded_threading_t* bt, int nthreads)
141 {
142     if (nthreads > MAX_BONDED_THREADS)
143     {
144         gmx_fatal(FARGS, "Can not reduce bonded forces on more than %d threads", MAX_BONDED_THREADS);
145     }
146
147     rvec* gmx_restrict f = as_rvec_array(force.data());
148
149     /* This reduction can run on any number of threads,
150      * independently of bt->nthreads.
151      * But if nthreads matches bt->nthreads (which it currently does)
152      * the uniform distribution of the touched blocks over nthreads will
153      * match the distribution of bonded over threads well in most cases,
154      * which means that threads mostly reduce their own data which increases
155      * the number of cache hits.
156      */
157 #pragma omp parallel for num_threads(nthreads) schedule(static)
158     for (int b = 0; b < bt->nblock_used; b++)
159     {
160         try
161         {
162             int    ind = bt->block_index[b];
163             rvec4* fp[MAX_BONDED_THREADS];
164
165             /* Determine which threads contribute to this block */
166             int nfb = 0;
167             for (int ft = 0; ft < bt->nthreads; ft++)
168             {
169                 if (bitmask_is_set(bt->mask[ind], ft))
170                 {
171                     fp[nfb++] = bt->f_t[ft]->f;
172                 }
173             }
174             if (nfb > 0)
175             {
176                 /* Reduce force buffers for threads that contribute */
177                 int a0 = ind * reduction_block_size;
178                 int a1 = (ind + 1) * reduction_block_size;
179                 /* It would be nice if we could pad f to avoid this min */
180                 a1 = std::min(a1, n);
181                 for (int a = a0; a < a1; a++)
182                 {
183                     for (int fb = 0; fb < nfb; fb++)
184                     {
185                         rvec_inc(f[a], fp[fb][a]);
186                     }
187                 }
188             }
189         }
190         GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
191     }
192 }
193
194 /*! \brief Reduce thread-local forces, shift forces and energies */
195 void reduce_thread_output(int                        n,
196                           gmx::ForceWithShiftForces* forceWithShiftForces,
197                           real*                      ener,
198                           gmx_grppairener_t*         grpp,
199                           real*                      dvdl,
200                           const bonded_threading_t*  bt,
201                           const gmx::StepWorkload&   stepWork)
202 {
203     assert(bt->haveBondeds);
204
205     if (bt->nblock_used > 0)
206     {
207         /* Reduce the bonded force buffer */
208         reduce_thread_forces(n, forceWithShiftForces->force(), bt, bt->nthreads);
209     }
210
211     rvec* gmx_restrict fshift = as_rvec_array(forceWithShiftForces->shiftForces().data());
212
213     /* When necessary, reduce energy and virial using one thread only */
214     if ((stepWork.computeEnergy || stepWork.computeVirial || stepWork.computeDhdl) && bt->nthreads > 1)
215     {
216         gmx::ArrayRef<const std::unique_ptr<f_thread_t>> f_t = bt->f_t;
217
218         if (stepWork.computeVirial)
219         {
220             for (int i = 0; i < SHIFTS; i++)
221             {
222                 for (int t = 1; t < bt->nthreads; t++)
223                 {
224                     rvec_inc(fshift[i], f_t[t]->fshift[i]);
225                 }
226             }
227         }
228         if (stepWork.computeEnergy)
229         {
230             for (int i = 0; i < F_NRE; i++)
231             {
232                 for (int t = 1; t < bt->nthreads; t++)
233                 {
234                     ener[i] += f_t[t]->ener[i];
235                 }
236             }
237             for (int i = 0; i < egNR; i++)
238             {
239                 for (int j = 0; j < f_t[1]->grpp.nener; j++)
240                 {
241                     for (int t = 1; t < bt->nthreads; t++)
242                     {
243                         grpp->ener[i][j] += f_t[t]->grpp.ener[i][j];
244                     }
245                 }
246             }
247         }
248         if (stepWork.computeDhdl)
249         {
250             for (int i = 0; i < efptNR; i++)
251             {
252
253                 for (int t = 1; t < bt->nthreads; t++)
254                 {
255                     dvdl[i] += f_t[t]->dvdl[i];
256                 }
257             }
258         }
259     }
260 }
261
262 /*! \brief Returns the bonded kernel flavor
263  *
264  * Note that energies are always requested when the virial
265  * is requested (performance gain would be small).
266  * Note that currently we do not have bonded kernels that
267  * do not compute forces.
268  */
269 BondedKernelFlavor selectBondedKernelFlavor(const gmx::StepWorkload& stepWork,
270                                             const bool               useSimdKernels,
271                                             const bool               havePerturbedInteractions)
272 {
273     BondedKernelFlavor flavor;
274     if (stepWork.computeEnergy || stepWork.computeVirial)
275     {
276         if (stepWork.computeVirial)
277         {
278             flavor = BondedKernelFlavor::ForcesAndVirialAndEnergy;
279         }
280         else
281         {
282             flavor = BondedKernelFlavor::ForcesAndEnergy;
283         }
284     }
285     else
286     {
287         if (useSimdKernels && !havePerturbedInteractions)
288         {
289             flavor = BondedKernelFlavor::ForcesSimdWhenAvailable;
290         }
291         else
292         {
293             flavor = BondedKernelFlavor::ForcesNoSimd;
294         }
295     }
296
297     return flavor;
298 }
299
300 /*! \brief Calculate one element of the list of bonded interactions
301     for this thread */
302 real calc_one_bond(int                           thread,
303                    int                           ftype,
304                    const InteractionDefinitions& idef,
305                    ArrayRef<const int>           iatoms,
306                    const int                     numNonperturbedInteractions,
307                    const WorkDivision&           workDivision,
308                    const rvec                    x[],
309                    rvec4                         f[],
310                    rvec                          fshift[],
311                    const t_forcerec*             fr,
312                    const t_pbc*                  pbc,
313                    gmx_grppairener_t*            grpp,
314                    t_nrnb*                       nrnb,
315                    const real*                   lambda,
316                    real*                         dvdl,
317                    const t_mdatoms*              md,
318                    t_fcdata*                     fcd,
319                    const gmx::StepWorkload&      stepWork,
320                    int*                          global_atom_index)
321 {
322     GMX_ASSERT(idef.ilsort == ilsortNO_FE || idef.ilsort == ilsortFE_SORTED,
323                "The topology should be marked either as no FE or sorted on FE");
324
325     const bool havePerturbedInteractions =
326             (idef.ilsort == ilsortFE_SORTED && numNonperturbedInteractions < iatoms.ssize());
327     BondedKernelFlavor flavor =
328             selectBondedKernelFlavor(stepWork, fr->use_simd_kernels, havePerturbedInteractions);
329     int efptFTYPE;
330     if (IS_RESTRAINT_TYPE(ftype))
331     {
332         efptFTYPE = efptRESTRAINT;
333     }
334     else
335     {
336         efptFTYPE = efptBONDED;
337     }
338
339     const int nat1   = interaction_function[ftype].nratoms + 1;
340     const int nbonds = iatoms.ssize() / nat1;
341
342     GMX_ASSERT(fr->gpuBonded != nullptr || workDivision.end(ftype) == iatoms.ssize(),
343                "The thread division should match the topology");
344
345     const int nb0 = workDivision.bound(ftype, thread);
346     const int nbn = workDivision.bound(ftype, thread + 1) - nb0;
347
348     ArrayRef<const t_iparams> iparams = idef.iparams;
349
350     real v = 0;
351     if (!isPairInteraction(ftype))
352     {
353         if (ftype == F_CMAP)
354         {
355             /* TODO The execution time for CMAP dihedrals might be
356                nice to account to its own subtimer, but first
357                wallcycle needs to be extended to support calling from
358                multiple threads. */
359             v = cmap_dihs(nbn, iatoms.data() + nb0, iparams.data(), &idef.cmap_grid, x, f, fshift,
360                           pbc, lambda[efptFTYPE], &(dvdl[efptFTYPE]), md, fcd, global_atom_index);
361         }
362         else
363         {
364             v = calculateSimpleBond(ftype, nbn, iatoms.data() + nb0, iparams.data(), x, f, fshift,
365                                     pbc, lambda[efptFTYPE], &(dvdl[efptFTYPE]), md, fcd,
366                                     global_atom_index, flavor);
367         }
368     }
369     else
370     {
371         /* TODO The execution time for pairs might be nice to account
372            to its own subtimer, but first wallcycle needs to be
373            extended to support calling from multiple threads. */
374         do_pairs(ftype, nbn, iatoms.data() + nb0, iparams.data(), x, f, fshift, pbc, lambda, dvdl,
375                  md, fr, havePerturbedInteractions, stepWork, grpp, global_atom_index);
376     }
377
378     if (thread == 0)
379     {
380         inc_nrnb(nrnb, nrnbIndex(ftype), nbonds);
381     }
382
383     return v;
384 }
385
386 } // namespace
387
388 /*! \brief Compute the bonded part of the listed forces, parallelized over threads
389  */
390 static void calcBondedForces(const InteractionDefinitions& idef,
391                              const rvec                    x[],
392                              const t_forcerec*             fr,
393                              const t_pbc*                  pbc_null,
394                              rvec*                         fshiftMasterBuffer,
395                              gmx_enerdata_t*               enerd,
396                              t_nrnb*                       nrnb,
397                              const real*                   lambda,
398                              real*                         dvdl,
399                              const t_mdatoms*              md,
400                              t_fcdata*                     fcd,
401                              const gmx::StepWorkload&      stepWork,
402                              int*                          global_atom_index)
403 {
404     bonded_threading_t* bt = fr->bondedThreading;
405
406 #pragma omp parallel for num_threads(bt->nthreads) schedule(static)
407     for (int thread = 0; thread < bt->nthreads; thread++)
408     {
409         try
410         {
411             f_thread_t& threadBuffers = *bt->f_t[thread];
412             int         ftype;
413             real *      epot, v;
414             /* thread stuff */
415             rvec*              fshift;
416             real*              dvdlt;
417             gmx_grppairener_t* grpp;
418
419             zero_thread_output(&threadBuffers);
420
421             rvec4* ft = threadBuffers.f;
422
423             /* Thread 0 writes directly to the main output buffers.
424              * We might want to reconsider this.
425              */
426             if (thread == 0)
427             {
428                 fshift = fshiftMasterBuffer;
429                 epot   = enerd->term;
430                 grpp   = &enerd->grpp;
431                 dvdlt  = dvdl;
432             }
433             else
434             {
435                 fshift = threadBuffers.fshift;
436                 epot   = threadBuffers.ener;
437                 grpp   = &threadBuffers.grpp;
438                 dvdlt  = threadBuffers.dvdl;
439             }
440             /* Loop over all bonded force types to calculate the bonded forces */
441             for (ftype = 0; (ftype < F_NRE); ftype++)
442             {
443                 const InteractionList& ilist = idef.il[ftype];
444                 if (!ilist.empty() && ftype_is_bonded_potential(ftype))
445                 {
446                     ArrayRef<const int> iatoms = gmx::makeConstArrayRef(ilist.iatoms);
447                     v = calc_one_bond(thread, ftype, idef, iatoms, idef.numNonperturbedInteractions[ftype],
448                                       fr->bondedThreading->workDivision, x, ft, fshift, fr, pbc_null,
449                                       grpp, nrnb, lambda, dvdlt, md, fcd, stepWork, global_atom_index);
450                     epot[ftype] += v;
451                 }
452             }
453         }
454         GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
455     }
456 }
457
458 bool haveRestraints(const InteractionDefinitions& idef, const t_fcdata& fcd)
459 {
460     return (!idef.il[F_POSRES].empty() || !idef.il[F_FBPOSRES].empty() || fcd.orires.nr > 0
461             || fcd.disres.nres > 0);
462 }
463
464 bool haveCpuBondeds(const t_forcerec& fr)
465 {
466     return fr.bondedThreading->haveBondeds;
467 }
468
469 bool haveCpuListedForces(const t_forcerec& fr, const InteractionDefinitions& idef, const t_fcdata& fcd)
470 {
471     return haveCpuBondeds(fr) || haveRestraints(idef, fcd);
472 }
473
474 namespace
475 {
476
477 /*! \brief Calculates all listed force interactions. */
478 void calc_listed(struct gmx_wallcycle*         wcycle,
479                  const InteractionDefinitions& idef,
480                  const rvec                    x[],
481                  gmx::ForceOutputs*            forceOutputs,
482                  const t_forcerec*             fr,
483                  const t_pbc*                  pbc,
484                  gmx_enerdata_t*               enerd,
485                  t_nrnb*                       nrnb,
486                  const real*                   lambda,
487                  const t_mdatoms*              md,
488                  t_fcdata*                     fcd,
489                  int*                          global_atom_index,
490                  const gmx::StepWorkload&      stepWork)
491 {
492     bonded_threading_t* bt = fr->bondedThreading;
493
494     if (haveCpuBondeds(*fr))
495     {
496         gmx::ForceWithShiftForces& forceWithShiftForces = forceOutputs->forceWithShiftForces();
497
498         wallcycle_sub_start(wcycle, ewcsLISTED);
499         /* The dummy array is to have a place to store the dhdl at other values
500            of lambda, which will be thrown away in the end */
501         real dvdl[efptNR] = { 0 };
502         calcBondedForces(idef, x, fr, fr->bMolPBC ? pbc : nullptr,
503                          as_rvec_array(forceWithShiftForces.shiftForces().data()), enerd, nrnb,
504                          lambda, dvdl, md, fcd, stepWork, global_atom_index);
505         wallcycle_sub_stop(wcycle, ewcsLISTED);
506
507         wallcycle_sub_start(wcycle, ewcsLISTED_BUF_OPS);
508         reduce_thread_output(fr->natoms_force, &forceWithShiftForces, enerd->term, &enerd->grpp,
509                              dvdl, bt, stepWork);
510
511         if (stepWork.computeDhdl)
512         {
513             for (int i = 0; i < efptNR; i++)
514             {
515                 enerd->dvdl_nonlin[i] += dvdl[i];
516             }
517         }
518         wallcycle_sub_stop(wcycle, ewcsLISTED_BUF_OPS);
519     }
520
521     /* Copy the sum of violations for the distance restraints from fcd */
522     if (fcd)
523     {
524         enerd->term[F_DISRESVIOL] = fcd->disres.sumviol;
525     }
526 }
527
528 /*! \brief As calc_listed(), but only determines the potential energy
529  * for the perturbed interactions.
530  *
531  * The shift forces in fr are not affected.
532  */
533 void calc_listed_lambda(const InteractionDefinitions& idef,
534                         const rvec                    x[],
535                         const t_forcerec*             fr,
536                         const struct t_pbc*           pbc,
537                         gmx_grppairener_t*            grpp,
538                         real*                         epot,
539                         gmx::ArrayRef<real>           dvdl,
540                         t_nrnb*                       nrnb,
541                         const real*                   lambda,
542                         const t_mdatoms*              md,
543                         t_fcdata*                     fcd,
544                         int*                          global_atom_index)
545 {
546     real          v;
547     rvec4*        f;
548     rvec*         fshift;
549     const t_pbc*  pbc_null;
550     WorkDivision& workDivision = fr->bondedThreading->foreignLambdaWorkDivision;
551
552     if (fr->bMolPBC)
553     {
554         pbc_null = pbc;
555     }
556     else
557     {
558         pbc_null = nullptr;
559     }
560
561     /* We already have the forces, so we use temp buffers here */
562     // TODO: Get rid of these allocations by using permanent force buffers
563     snew(f, fr->natoms_force);
564     snew(fshift, SHIFTS);
565
566     /* Loop over all bonded force types to calculate the bonded energies */
567     for (int ftype = 0; (ftype < F_NRE); ftype++)
568     {
569         if (ftype_is_bonded_potential(ftype))
570         {
571             const InteractionList& ilist = idef.il[ftype];
572             /* Create a temporary iatom list with only perturbed interactions */
573             const int           numNonperturbed = idef.numNonperturbedInteractions[ftype];
574             ArrayRef<const int> iatomsPerturbed = gmx::constArrayRefFromArray(
575                     ilist.iatoms.data() + numNonperturbed, ilist.size() - numNonperturbed);
576             if (!iatomsPerturbed.empty())
577             {
578                 /* Set the work range of thread 0 to the perturbed bondeds */
579                 workDivision.setBound(ftype, 0, 0);
580                 workDivision.setBound(ftype, 1, iatomsPerturbed.ssize());
581
582                 gmx::StepWorkload tempFlags;
583                 tempFlags.computeEnergy = true;
584                 v = calc_one_bond(0, ftype, idef, iatomsPerturbed, iatomsPerturbed.ssize(),
585                                   workDivision, x, f, fshift, fr, pbc_null, grpp, nrnb, lambda,
586                                   dvdl.data(), md, fcd, tempFlags, global_atom_index);
587                 epot[ftype] += v;
588             }
589         }
590     }
591
592     sfree(fshift);
593     sfree(f);
594 }
595
596 } // namespace
597
598 void do_force_listed(struct gmx_wallcycle*          wcycle,
599                      const matrix                   box,
600                      const t_lambda*                fepvals,
601                      const t_commrec*               cr,
602                      const gmx_multisim_t*          ms,
603                      const InteractionDefinitions&  idef,
604                      const rvec                     x[],
605                      gmx::ArrayRef<const gmx::RVec> xWholeMolecules,
606                      history_t*                     hist,
607                      gmx::ForceOutputs*             forceOutputs,
608                      const t_forcerec*              fr,
609                      const struct t_pbc*            pbc,
610                      gmx_enerdata_t*                enerd,
611                      t_nrnb*                        nrnb,
612                      const real*                    lambda,
613                      const t_mdatoms*               md,
614                      t_fcdata*                      fcd,
615                      int*                           global_atom_index,
616                      const gmx::StepWorkload&       stepWork)
617 {
618     if (!stepWork.computeListedForces)
619     {
620         return;
621     }
622
623     t_pbc pbc_full; /* Full PBC is needed for position restraints */
624     if (haveRestraints(idef, *fcd))
625     {
626         if (!idef.il[F_POSRES].empty() || !idef.il[F_FBPOSRES].empty())
627         {
628             /* Not enough flops to bother counting */
629             set_pbc(&pbc_full, fr->pbcType, box);
630         }
631
632         /* TODO Use of restraints triggers further function calls
633            inside the loop over calc_one_bond(), but those are too
634            awkward to account to this subtimer properly in the present
635            code. We don't test / care much about performance with
636            restraints, anyway. */
637         wallcycle_sub_start(wcycle, ewcsRESTRAINTS);
638
639         if (!idef.il[F_POSRES].empty())
640         {
641             posres_wrapper(nrnb, idef, &pbc_full, x, enerd, lambda, fr, &forceOutputs->forceWithVirial());
642         }
643
644         if (!idef.il[F_FBPOSRES].empty())
645         {
646             fbposres_wrapper(nrnb, idef, &pbc_full, x, enerd, fr, &forceOutputs->forceWithVirial());
647         }
648
649         /* Do pre force calculation stuff which might require communication */
650         if (fcd->orires.nr > 0)
651         {
652             GMX_ASSERT(!xWholeMolecules.empty(), "Need whole molecules for orienation restraints");
653             enerd->term[F_ORIRESDEV] = calc_orires_dev(
654                     ms, idef.il[F_ORIRES].size(), idef.il[F_ORIRES].iatoms.data(), idef.iparams.data(),
655                     md, xWholeMolecules, x, fr->bMolPBC ? pbc : nullptr, fcd, hist);
656         }
657         if (fcd->disres.nres > 0)
658         {
659             calc_disres_R_6(cr, ms, idef.il[F_DISRES].size(), idef.il[F_DISRES].iatoms.data(), x,
660                             fr->bMolPBC ? pbc : nullptr, fcd, hist);
661         }
662
663         wallcycle_sub_stop(wcycle, ewcsRESTRAINTS);
664     }
665
666     calc_listed(wcycle, idef, x, forceOutputs, fr, pbc, enerd, nrnb, lambda, md, fcd,
667                 global_atom_index, stepWork);
668
669     /* Check if we have to determine energy differences
670      * at foreign lambda's.
671      */
672     if (fepvals->n_lambda > 0 && stepWork.computeDhdl)
673     {
674         real dvdl[efptNR] = { 0 };
675         if (!idef.il[F_POSRES].empty())
676         {
677             posres_wrapper_lambda(wcycle, fepvals, idef, &pbc_full, x, enerd, lambda, fr);
678         }
679         if (idef.ilsort != ilsortNO_FE)
680         {
681             wallcycle_sub_start(wcycle, ewcsLISTED_FEP);
682             if (idef.ilsort != ilsortFE_SORTED)
683             {
684                 gmx_incons("The bonded interactions are not sorted for free energy");
685             }
686             for (size_t i = 0; i < enerd->enerpart_lambda.size(); i++)
687             {
688                 real lam_i[efptNR];
689
690                 reset_foreign_enerdata(enerd);
691                 for (int j = 0; j < efptNR; j++)
692                 {
693                     lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i - 1]);
694                 }
695                 calc_listed_lambda(idef, x, fr, pbc, &(enerd->foreign_grpp), enerd->foreign_term,
696                                    dvdl, nrnb, lam_i, md, fcd, global_atom_index);
697                 sum_epot(&(enerd->foreign_grpp), enerd->foreign_term);
698                 enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT];
699                 for (int j = 0; j < efptNR; j++)
700                 {
701                     enerd->dhdlLambda[i] += dvdl[j];
702                     dvdl[j] = 0;
703                 }
704             }
705             wallcycle_sub_stop(wcycle, ewcsLISTED_FEP);
706         }
707     }
708 }