f8820e4cebfa2753046240a8f189ca568cdaf0bb
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRF_VdwLJ_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_sse4_1_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm_set1_ps(fr->ic->k_rf);
120     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
121     crf              = _mm_set1_ps(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
129     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
130     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
165
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169         fix1             = _mm_setzero_ps();
170         fiy1             = _mm_setzero_ps();
171         fiz1             = _mm_setzero_ps();
172         fix2             = _mm_setzero_ps();
173         fiy2             = _mm_setzero_ps();
174         fiz2             = _mm_setzero_ps();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_ps();
178         vvdwsum          = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               x+j_coord_offsetC,x+j_coord_offsetD,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_ps(ix0,jx0);
201             dy00             = _mm_sub_ps(iy0,jy0);
202             dz00             = _mm_sub_ps(iz0,jz0);
203             dx10             = _mm_sub_ps(ix1,jx0);
204             dy10             = _mm_sub_ps(iy1,jy0);
205             dz10             = _mm_sub_ps(iz1,jz0);
206             dx20             = _mm_sub_ps(ix2,jx0);
207             dy20             = _mm_sub_ps(iy2,jy0);
208             dz20             = _mm_sub_ps(iz2,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
214
215             rinv00           = gmx_mm_invsqrt_ps(rsq00);
216             rinv10           = gmx_mm_invsqrt_ps(rsq10);
217             rinv20           = gmx_mm_invsqrt_ps(rsq20);
218
219             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
220             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
221             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
225                                                               charge+jnrC+0,charge+jnrD+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228             vdwjidx0C        = 2*vdwtype[jnrC+0];
229             vdwjidx0D        = 2*vdwtype[jnrD+0];
230
231             fjx0             = _mm_setzero_ps();
232             fjy0             = _mm_setzero_ps();
233             fjz0             = _mm_setzero_ps();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm_mul_ps(iq0,jq0);
241             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,
243                                          vdwparam+vdwioffset0+vdwjidx0C,
244                                          vdwparam+vdwioffset0+vdwjidx0D,
245                                          &c6_00,&c12_00);
246
247             /* REACTION-FIELD ELECTROSTATICS */
248             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
249             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
250
251             /* LENNARD-JONES DISPERSION/REPULSION */
252
253             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
254             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
255             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
256             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
257             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
258
259             /* Update potential sum for this i atom from the interaction with this j atom. */
260             velecsum         = _mm_add_ps(velecsum,velec);
261             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
262
263             fscal            = _mm_add_ps(felec,fvdw);
264
265             /* Calculate temporary vectorial force */
266             tx               = _mm_mul_ps(fscal,dx00);
267             ty               = _mm_mul_ps(fscal,dy00);
268             tz               = _mm_mul_ps(fscal,dz00);
269
270             /* Update vectorial force */
271             fix0             = _mm_add_ps(fix0,tx);
272             fiy0             = _mm_add_ps(fiy0,ty);
273             fiz0             = _mm_add_ps(fiz0,tz);
274
275             fjx0             = _mm_add_ps(fjx0,tx);
276             fjy0             = _mm_add_ps(fjy0,ty);
277             fjz0             = _mm_add_ps(fjz0,tz);
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             /* Compute parameters for interactions between i and j atoms */
284             qq10             = _mm_mul_ps(iq1,jq0);
285
286             /* REACTION-FIELD ELECTROSTATICS */
287             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
288             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             velecsum         = _mm_add_ps(velecsum,velec);
292
293             fscal            = felec;
294
295             /* Calculate temporary vectorial force */
296             tx               = _mm_mul_ps(fscal,dx10);
297             ty               = _mm_mul_ps(fscal,dy10);
298             tz               = _mm_mul_ps(fscal,dz10);
299
300             /* Update vectorial force */
301             fix1             = _mm_add_ps(fix1,tx);
302             fiy1             = _mm_add_ps(fiy1,ty);
303             fiz1             = _mm_add_ps(fiz1,tz);
304
305             fjx0             = _mm_add_ps(fjx0,tx);
306             fjy0             = _mm_add_ps(fjy0,ty);
307             fjz0             = _mm_add_ps(fjz0,tz);
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             /* Compute parameters for interactions between i and j atoms */
314             qq20             = _mm_mul_ps(iq2,jq0);
315
316             /* REACTION-FIELD ELECTROSTATICS */
317             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
318             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velecsum         = _mm_add_ps(velecsum,velec);
322
323             fscal            = felec;
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm_mul_ps(fscal,dx20);
327             ty               = _mm_mul_ps(fscal,dy20);
328             tz               = _mm_mul_ps(fscal,dz20);
329
330             /* Update vectorial force */
331             fix2             = _mm_add_ps(fix2,tx);
332             fiy2             = _mm_add_ps(fiy2,ty);
333             fiz2             = _mm_add_ps(fiz2,tz);
334
335             fjx0             = _mm_add_ps(fjx0,tx);
336             fjy0             = _mm_add_ps(fjy0,ty);
337             fjz0             = _mm_add_ps(fjz0,tz);
338
339             fjptrA             = f+j_coord_offsetA;
340             fjptrB             = f+j_coord_offsetB;
341             fjptrC             = f+j_coord_offsetC;
342             fjptrD             = f+j_coord_offsetD;
343
344             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
345
346             /* Inner loop uses 108 flops */
347         }
348
349         if(jidx<j_index_end)
350         {
351
352             /* Get j neighbor index, and coordinate index */
353             jnrlistA         = jjnr[jidx];
354             jnrlistB         = jjnr[jidx+1];
355             jnrlistC         = jjnr[jidx+2];
356             jnrlistD         = jjnr[jidx+3];
357             /* Sign of each element will be negative for non-real atoms.
358              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
359              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
360              */
361             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
362             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
363             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
364             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
365             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
366             j_coord_offsetA  = DIM*jnrA;
367             j_coord_offsetB  = DIM*jnrB;
368             j_coord_offsetC  = DIM*jnrC;
369             j_coord_offsetD  = DIM*jnrD;
370
371             /* load j atom coordinates */
372             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
373                                               x+j_coord_offsetC,x+j_coord_offsetD,
374                                               &jx0,&jy0,&jz0);
375
376             /* Calculate displacement vector */
377             dx00             = _mm_sub_ps(ix0,jx0);
378             dy00             = _mm_sub_ps(iy0,jy0);
379             dz00             = _mm_sub_ps(iz0,jz0);
380             dx10             = _mm_sub_ps(ix1,jx0);
381             dy10             = _mm_sub_ps(iy1,jy0);
382             dz10             = _mm_sub_ps(iz1,jz0);
383             dx20             = _mm_sub_ps(ix2,jx0);
384             dy20             = _mm_sub_ps(iy2,jy0);
385             dz20             = _mm_sub_ps(iz2,jz0);
386
387             /* Calculate squared distance and things based on it */
388             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
389             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
390             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
391
392             rinv00           = gmx_mm_invsqrt_ps(rsq00);
393             rinv10           = gmx_mm_invsqrt_ps(rsq10);
394             rinv20           = gmx_mm_invsqrt_ps(rsq20);
395
396             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
397             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
398             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
399
400             /* Load parameters for j particles */
401             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
402                                                               charge+jnrC+0,charge+jnrD+0);
403             vdwjidx0A        = 2*vdwtype[jnrA+0];
404             vdwjidx0B        = 2*vdwtype[jnrB+0];
405             vdwjidx0C        = 2*vdwtype[jnrC+0];
406             vdwjidx0D        = 2*vdwtype[jnrD+0];
407
408             fjx0             = _mm_setzero_ps();
409             fjy0             = _mm_setzero_ps();
410             fjz0             = _mm_setzero_ps();
411
412             /**************************
413              * CALCULATE INTERACTIONS *
414              **************************/
415
416             /* Compute parameters for interactions between i and j atoms */
417             qq00             = _mm_mul_ps(iq0,jq0);
418             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
419                                          vdwparam+vdwioffset0+vdwjidx0B,
420                                          vdwparam+vdwioffset0+vdwjidx0C,
421                                          vdwparam+vdwioffset0+vdwjidx0D,
422                                          &c6_00,&c12_00);
423
424             /* REACTION-FIELD ELECTROSTATICS */
425             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
426             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
427
428             /* LENNARD-JONES DISPERSION/REPULSION */
429
430             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
431             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
432             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
433             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
434             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
435
436             /* Update potential sum for this i atom from the interaction with this j atom. */
437             velec            = _mm_andnot_ps(dummy_mask,velec);
438             velecsum         = _mm_add_ps(velecsum,velec);
439             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
440             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
441
442             fscal            = _mm_add_ps(felec,fvdw);
443
444             fscal            = _mm_andnot_ps(dummy_mask,fscal);
445
446             /* Calculate temporary vectorial force */
447             tx               = _mm_mul_ps(fscal,dx00);
448             ty               = _mm_mul_ps(fscal,dy00);
449             tz               = _mm_mul_ps(fscal,dz00);
450
451             /* Update vectorial force */
452             fix0             = _mm_add_ps(fix0,tx);
453             fiy0             = _mm_add_ps(fiy0,ty);
454             fiz0             = _mm_add_ps(fiz0,tz);
455
456             fjx0             = _mm_add_ps(fjx0,tx);
457             fjy0             = _mm_add_ps(fjy0,ty);
458             fjz0             = _mm_add_ps(fjz0,tz);
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             /* Compute parameters for interactions between i and j atoms */
465             qq10             = _mm_mul_ps(iq1,jq0);
466
467             /* REACTION-FIELD ELECTROSTATICS */
468             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
469             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
470
471             /* Update potential sum for this i atom from the interaction with this j atom. */
472             velec            = _mm_andnot_ps(dummy_mask,velec);
473             velecsum         = _mm_add_ps(velecsum,velec);
474
475             fscal            = felec;
476
477             fscal            = _mm_andnot_ps(dummy_mask,fscal);
478
479             /* Calculate temporary vectorial force */
480             tx               = _mm_mul_ps(fscal,dx10);
481             ty               = _mm_mul_ps(fscal,dy10);
482             tz               = _mm_mul_ps(fscal,dz10);
483
484             /* Update vectorial force */
485             fix1             = _mm_add_ps(fix1,tx);
486             fiy1             = _mm_add_ps(fiy1,ty);
487             fiz1             = _mm_add_ps(fiz1,tz);
488
489             fjx0             = _mm_add_ps(fjx0,tx);
490             fjy0             = _mm_add_ps(fjy0,ty);
491             fjz0             = _mm_add_ps(fjz0,tz);
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             /* Compute parameters for interactions between i and j atoms */
498             qq20             = _mm_mul_ps(iq2,jq0);
499
500             /* REACTION-FIELD ELECTROSTATICS */
501             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
502             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
503
504             /* Update potential sum for this i atom from the interaction with this j atom. */
505             velec            = _mm_andnot_ps(dummy_mask,velec);
506             velecsum         = _mm_add_ps(velecsum,velec);
507
508             fscal            = felec;
509
510             fscal            = _mm_andnot_ps(dummy_mask,fscal);
511
512             /* Calculate temporary vectorial force */
513             tx               = _mm_mul_ps(fscal,dx20);
514             ty               = _mm_mul_ps(fscal,dy20);
515             tz               = _mm_mul_ps(fscal,dz20);
516
517             /* Update vectorial force */
518             fix2             = _mm_add_ps(fix2,tx);
519             fiy2             = _mm_add_ps(fiy2,ty);
520             fiz2             = _mm_add_ps(fiz2,tz);
521
522             fjx0             = _mm_add_ps(fjx0,tx);
523             fjy0             = _mm_add_ps(fjy0,ty);
524             fjz0             = _mm_add_ps(fjz0,tz);
525
526             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
527             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
528             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
529             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
530
531             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
532
533             /* Inner loop uses 108 flops */
534         }
535
536         /* End of innermost loop */
537
538         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
539                                               f+i_coord_offset,fshift+i_shift_offset);
540
541         ggid                        = gid[iidx];
542         /* Update potential energies */
543         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
544         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
545
546         /* Increment number of inner iterations */
547         inneriter                  += j_index_end - j_index_start;
548
549         /* Outer loop uses 20 flops */
550     }
551
552     /* Increment number of outer iterations */
553     outeriter        += nri;
554
555     /* Update outer/inner flops */
556
557     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*108);
558 }
559 /*
560  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_sse4_1_single
561  * Electrostatics interaction: ReactionField
562  * VdW interaction:            LennardJones
563  * Geometry:                   Water3-Particle
564  * Calculate force/pot:        Force
565  */
566 void
567 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_sse4_1_single
568                     (t_nblist                    * gmx_restrict       nlist,
569                      rvec                        * gmx_restrict          xx,
570                      rvec                        * gmx_restrict          ff,
571                      t_forcerec                  * gmx_restrict          fr,
572                      t_mdatoms                   * gmx_restrict     mdatoms,
573                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
574                      t_nrnb                      * gmx_restrict        nrnb)
575 {
576     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
577      * just 0 for non-waters.
578      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
579      * jnr indices corresponding to data put in the four positions in the SIMD register.
580      */
581     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
582     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
583     int              jnrA,jnrB,jnrC,jnrD;
584     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
585     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
586     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
587     real             rcutoff_scalar;
588     real             *shiftvec,*fshift,*x,*f;
589     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
590     real             scratch[4*DIM];
591     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
592     int              vdwioffset0;
593     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
594     int              vdwioffset1;
595     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
596     int              vdwioffset2;
597     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
598     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
599     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
600     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
601     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
602     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
603     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
604     real             *charge;
605     int              nvdwtype;
606     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
607     int              *vdwtype;
608     real             *vdwparam;
609     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
610     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
611     __m128           dummy_mask,cutoff_mask;
612     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
613     __m128           one     = _mm_set1_ps(1.0);
614     __m128           two     = _mm_set1_ps(2.0);
615     x                = xx[0];
616     f                = ff[0];
617
618     nri              = nlist->nri;
619     iinr             = nlist->iinr;
620     jindex           = nlist->jindex;
621     jjnr             = nlist->jjnr;
622     shiftidx         = nlist->shift;
623     gid              = nlist->gid;
624     shiftvec         = fr->shift_vec[0];
625     fshift           = fr->fshift[0];
626     facel            = _mm_set1_ps(fr->epsfac);
627     charge           = mdatoms->chargeA;
628     krf              = _mm_set1_ps(fr->ic->k_rf);
629     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
630     crf              = _mm_set1_ps(fr->ic->c_rf);
631     nvdwtype         = fr->ntype;
632     vdwparam         = fr->nbfp;
633     vdwtype          = mdatoms->typeA;
634
635     /* Setup water-specific parameters */
636     inr              = nlist->iinr[0];
637     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
638     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
639     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
640     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
641
642     /* Avoid stupid compiler warnings */
643     jnrA = jnrB = jnrC = jnrD = 0;
644     j_coord_offsetA = 0;
645     j_coord_offsetB = 0;
646     j_coord_offsetC = 0;
647     j_coord_offsetD = 0;
648
649     outeriter        = 0;
650     inneriter        = 0;
651
652     for(iidx=0;iidx<4*DIM;iidx++)
653     {
654         scratch[iidx] = 0.0;
655     }
656
657     /* Start outer loop over neighborlists */
658     for(iidx=0; iidx<nri; iidx++)
659     {
660         /* Load shift vector for this list */
661         i_shift_offset   = DIM*shiftidx[iidx];
662
663         /* Load limits for loop over neighbors */
664         j_index_start    = jindex[iidx];
665         j_index_end      = jindex[iidx+1];
666
667         /* Get outer coordinate index */
668         inr              = iinr[iidx];
669         i_coord_offset   = DIM*inr;
670
671         /* Load i particle coords and add shift vector */
672         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
673                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
674
675         fix0             = _mm_setzero_ps();
676         fiy0             = _mm_setzero_ps();
677         fiz0             = _mm_setzero_ps();
678         fix1             = _mm_setzero_ps();
679         fiy1             = _mm_setzero_ps();
680         fiz1             = _mm_setzero_ps();
681         fix2             = _mm_setzero_ps();
682         fiy2             = _mm_setzero_ps();
683         fiz2             = _mm_setzero_ps();
684
685         /* Start inner kernel loop */
686         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
687         {
688
689             /* Get j neighbor index, and coordinate index */
690             jnrA             = jjnr[jidx];
691             jnrB             = jjnr[jidx+1];
692             jnrC             = jjnr[jidx+2];
693             jnrD             = jjnr[jidx+3];
694             j_coord_offsetA  = DIM*jnrA;
695             j_coord_offsetB  = DIM*jnrB;
696             j_coord_offsetC  = DIM*jnrC;
697             j_coord_offsetD  = DIM*jnrD;
698
699             /* load j atom coordinates */
700             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
701                                               x+j_coord_offsetC,x+j_coord_offsetD,
702                                               &jx0,&jy0,&jz0);
703
704             /* Calculate displacement vector */
705             dx00             = _mm_sub_ps(ix0,jx0);
706             dy00             = _mm_sub_ps(iy0,jy0);
707             dz00             = _mm_sub_ps(iz0,jz0);
708             dx10             = _mm_sub_ps(ix1,jx0);
709             dy10             = _mm_sub_ps(iy1,jy0);
710             dz10             = _mm_sub_ps(iz1,jz0);
711             dx20             = _mm_sub_ps(ix2,jx0);
712             dy20             = _mm_sub_ps(iy2,jy0);
713             dz20             = _mm_sub_ps(iz2,jz0);
714
715             /* Calculate squared distance and things based on it */
716             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
717             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
718             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
719
720             rinv00           = gmx_mm_invsqrt_ps(rsq00);
721             rinv10           = gmx_mm_invsqrt_ps(rsq10);
722             rinv20           = gmx_mm_invsqrt_ps(rsq20);
723
724             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
725             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
726             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
727
728             /* Load parameters for j particles */
729             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
730                                                               charge+jnrC+0,charge+jnrD+0);
731             vdwjidx0A        = 2*vdwtype[jnrA+0];
732             vdwjidx0B        = 2*vdwtype[jnrB+0];
733             vdwjidx0C        = 2*vdwtype[jnrC+0];
734             vdwjidx0D        = 2*vdwtype[jnrD+0];
735
736             fjx0             = _mm_setzero_ps();
737             fjy0             = _mm_setzero_ps();
738             fjz0             = _mm_setzero_ps();
739
740             /**************************
741              * CALCULATE INTERACTIONS *
742              **************************/
743
744             /* Compute parameters for interactions between i and j atoms */
745             qq00             = _mm_mul_ps(iq0,jq0);
746             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
747                                          vdwparam+vdwioffset0+vdwjidx0B,
748                                          vdwparam+vdwioffset0+vdwjidx0C,
749                                          vdwparam+vdwioffset0+vdwjidx0D,
750                                          &c6_00,&c12_00);
751
752             /* REACTION-FIELD ELECTROSTATICS */
753             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
754
755             /* LENNARD-JONES DISPERSION/REPULSION */
756
757             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
758             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
759
760             fscal            = _mm_add_ps(felec,fvdw);
761
762             /* Calculate temporary vectorial force */
763             tx               = _mm_mul_ps(fscal,dx00);
764             ty               = _mm_mul_ps(fscal,dy00);
765             tz               = _mm_mul_ps(fscal,dz00);
766
767             /* Update vectorial force */
768             fix0             = _mm_add_ps(fix0,tx);
769             fiy0             = _mm_add_ps(fiy0,ty);
770             fiz0             = _mm_add_ps(fiz0,tz);
771
772             fjx0             = _mm_add_ps(fjx0,tx);
773             fjy0             = _mm_add_ps(fjy0,ty);
774             fjz0             = _mm_add_ps(fjz0,tz);
775
776             /**************************
777              * CALCULATE INTERACTIONS *
778              **************************/
779
780             /* Compute parameters for interactions between i and j atoms */
781             qq10             = _mm_mul_ps(iq1,jq0);
782
783             /* REACTION-FIELD ELECTROSTATICS */
784             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
785
786             fscal            = felec;
787
788             /* Calculate temporary vectorial force */
789             tx               = _mm_mul_ps(fscal,dx10);
790             ty               = _mm_mul_ps(fscal,dy10);
791             tz               = _mm_mul_ps(fscal,dz10);
792
793             /* Update vectorial force */
794             fix1             = _mm_add_ps(fix1,tx);
795             fiy1             = _mm_add_ps(fiy1,ty);
796             fiz1             = _mm_add_ps(fiz1,tz);
797
798             fjx0             = _mm_add_ps(fjx0,tx);
799             fjy0             = _mm_add_ps(fjy0,ty);
800             fjz0             = _mm_add_ps(fjz0,tz);
801
802             /**************************
803              * CALCULATE INTERACTIONS *
804              **************************/
805
806             /* Compute parameters for interactions between i and j atoms */
807             qq20             = _mm_mul_ps(iq2,jq0);
808
809             /* REACTION-FIELD ELECTROSTATICS */
810             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
811
812             fscal            = felec;
813
814             /* Calculate temporary vectorial force */
815             tx               = _mm_mul_ps(fscal,dx20);
816             ty               = _mm_mul_ps(fscal,dy20);
817             tz               = _mm_mul_ps(fscal,dz20);
818
819             /* Update vectorial force */
820             fix2             = _mm_add_ps(fix2,tx);
821             fiy2             = _mm_add_ps(fiy2,ty);
822             fiz2             = _mm_add_ps(fiz2,tz);
823
824             fjx0             = _mm_add_ps(fjx0,tx);
825             fjy0             = _mm_add_ps(fjy0,ty);
826             fjz0             = _mm_add_ps(fjz0,tz);
827
828             fjptrA             = f+j_coord_offsetA;
829             fjptrB             = f+j_coord_offsetB;
830             fjptrC             = f+j_coord_offsetC;
831             fjptrD             = f+j_coord_offsetD;
832
833             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
834
835             /* Inner loop uses 88 flops */
836         }
837
838         if(jidx<j_index_end)
839         {
840
841             /* Get j neighbor index, and coordinate index */
842             jnrlistA         = jjnr[jidx];
843             jnrlistB         = jjnr[jidx+1];
844             jnrlistC         = jjnr[jidx+2];
845             jnrlistD         = jjnr[jidx+3];
846             /* Sign of each element will be negative for non-real atoms.
847              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
848              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
849              */
850             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
851             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
852             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
853             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
854             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
855             j_coord_offsetA  = DIM*jnrA;
856             j_coord_offsetB  = DIM*jnrB;
857             j_coord_offsetC  = DIM*jnrC;
858             j_coord_offsetD  = DIM*jnrD;
859
860             /* load j atom coordinates */
861             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
862                                               x+j_coord_offsetC,x+j_coord_offsetD,
863                                               &jx0,&jy0,&jz0);
864
865             /* Calculate displacement vector */
866             dx00             = _mm_sub_ps(ix0,jx0);
867             dy00             = _mm_sub_ps(iy0,jy0);
868             dz00             = _mm_sub_ps(iz0,jz0);
869             dx10             = _mm_sub_ps(ix1,jx0);
870             dy10             = _mm_sub_ps(iy1,jy0);
871             dz10             = _mm_sub_ps(iz1,jz0);
872             dx20             = _mm_sub_ps(ix2,jx0);
873             dy20             = _mm_sub_ps(iy2,jy0);
874             dz20             = _mm_sub_ps(iz2,jz0);
875
876             /* Calculate squared distance and things based on it */
877             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
878             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
879             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
880
881             rinv00           = gmx_mm_invsqrt_ps(rsq00);
882             rinv10           = gmx_mm_invsqrt_ps(rsq10);
883             rinv20           = gmx_mm_invsqrt_ps(rsq20);
884
885             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
886             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
887             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
888
889             /* Load parameters for j particles */
890             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
891                                                               charge+jnrC+0,charge+jnrD+0);
892             vdwjidx0A        = 2*vdwtype[jnrA+0];
893             vdwjidx0B        = 2*vdwtype[jnrB+0];
894             vdwjidx0C        = 2*vdwtype[jnrC+0];
895             vdwjidx0D        = 2*vdwtype[jnrD+0];
896
897             fjx0             = _mm_setzero_ps();
898             fjy0             = _mm_setzero_ps();
899             fjz0             = _mm_setzero_ps();
900
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             /* Compute parameters for interactions between i and j atoms */
906             qq00             = _mm_mul_ps(iq0,jq0);
907             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
908                                          vdwparam+vdwioffset0+vdwjidx0B,
909                                          vdwparam+vdwioffset0+vdwjidx0C,
910                                          vdwparam+vdwioffset0+vdwjidx0D,
911                                          &c6_00,&c12_00);
912
913             /* REACTION-FIELD ELECTROSTATICS */
914             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
915
916             /* LENNARD-JONES DISPERSION/REPULSION */
917
918             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
919             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
920
921             fscal            = _mm_add_ps(felec,fvdw);
922
923             fscal            = _mm_andnot_ps(dummy_mask,fscal);
924
925             /* Calculate temporary vectorial force */
926             tx               = _mm_mul_ps(fscal,dx00);
927             ty               = _mm_mul_ps(fscal,dy00);
928             tz               = _mm_mul_ps(fscal,dz00);
929
930             /* Update vectorial force */
931             fix0             = _mm_add_ps(fix0,tx);
932             fiy0             = _mm_add_ps(fiy0,ty);
933             fiz0             = _mm_add_ps(fiz0,tz);
934
935             fjx0             = _mm_add_ps(fjx0,tx);
936             fjy0             = _mm_add_ps(fjy0,ty);
937             fjz0             = _mm_add_ps(fjz0,tz);
938
939             /**************************
940              * CALCULATE INTERACTIONS *
941              **************************/
942
943             /* Compute parameters for interactions between i and j atoms */
944             qq10             = _mm_mul_ps(iq1,jq0);
945
946             /* REACTION-FIELD ELECTROSTATICS */
947             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
948
949             fscal            = felec;
950
951             fscal            = _mm_andnot_ps(dummy_mask,fscal);
952
953             /* Calculate temporary vectorial force */
954             tx               = _mm_mul_ps(fscal,dx10);
955             ty               = _mm_mul_ps(fscal,dy10);
956             tz               = _mm_mul_ps(fscal,dz10);
957
958             /* Update vectorial force */
959             fix1             = _mm_add_ps(fix1,tx);
960             fiy1             = _mm_add_ps(fiy1,ty);
961             fiz1             = _mm_add_ps(fiz1,tz);
962
963             fjx0             = _mm_add_ps(fjx0,tx);
964             fjy0             = _mm_add_ps(fjy0,ty);
965             fjz0             = _mm_add_ps(fjz0,tz);
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             /* Compute parameters for interactions between i and j atoms */
972             qq20             = _mm_mul_ps(iq2,jq0);
973
974             /* REACTION-FIELD ELECTROSTATICS */
975             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
976
977             fscal            = felec;
978
979             fscal            = _mm_andnot_ps(dummy_mask,fscal);
980
981             /* Calculate temporary vectorial force */
982             tx               = _mm_mul_ps(fscal,dx20);
983             ty               = _mm_mul_ps(fscal,dy20);
984             tz               = _mm_mul_ps(fscal,dz20);
985
986             /* Update vectorial force */
987             fix2             = _mm_add_ps(fix2,tx);
988             fiy2             = _mm_add_ps(fiy2,ty);
989             fiz2             = _mm_add_ps(fiz2,tz);
990
991             fjx0             = _mm_add_ps(fjx0,tx);
992             fjy0             = _mm_add_ps(fjy0,ty);
993             fjz0             = _mm_add_ps(fjz0,tz);
994
995             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
996             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
997             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
998             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
999
1000             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1001
1002             /* Inner loop uses 88 flops */
1003         }
1004
1005         /* End of innermost loop */
1006
1007         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1008                                               f+i_coord_offset,fshift+i_shift_offset);
1009
1010         /* Increment number of inner iterations */
1011         inneriter                  += j_index_end - j_index_start;
1012
1013         /* Outer loop uses 18 flops */
1014     }
1015
1016     /* Increment number of outer iterations */
1017     outeriter        += nri;
1018
1019     /* Update outer/inner flops */
1020
1021     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88);
1022 }