Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_sse4_1_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse4_1_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
98     real             *vftab;
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_ps(fr->ic->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm_set1_ps(fr->ic->k_rf);
117     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
118     crf              = _mm_set1_ps(fr->ic->c_rf);
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_vdw->data;
124     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm_setzero_ps();
159         fiy0             = _mm_setzero_ps();
160         fiz0             = _mm_setzero_ps();
161
162         /* Load parameters for i particles */
163         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
164         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_ps();
168         vvdwsum          = _mm_setzero_ps();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               x+j_coord_offsetC,x+j_coord_offsetD,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_ps(ix0,jx0);
191             dy00             = _mm_sub_ps(iy0,jy0);
192             dz00             = _mm_sub_ps(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
196
197             rinv00           = sse41_invsqrt_f(rsq00);
198
199             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
203                                                               charge+jnrC+0,charge+jnrD+0);
204             vdwjidx0A        = 2*vdwtype[jnrA+0];
205             vdwjidx0B        = 2*vdwtype[jnrB+0];
206             vdwjidx0C        = 2*vdwtype[jnrC+0];
207             vdwjidx0D        = 2*vdwtype[jnrD+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             r00              = _mm_mul_ps(rsq00,rinv00);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq00             = _mm_mul_ps(iq0,jq0);
217             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
218                                          vdwparam+vdwioffset0+vdwjidx0B,
219                                          vdwparam+vdwioffset0+vdwjidx0C,
220                                          vdwparam+vdwioffset0+vdwjidx0D,
221                                          &c6_00,&c12_00);
222
223             /* Calculate table index by multiplying r with table scale and truncate to integer */
224             rt               = _mm_mul_ps(r00,vftabscale);
225             vfitab           = _mm_cvttps_epi32(rt);
226             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
227             vfitab           = _mm_slli_epi32(vfitab,3);
228
229             /* REACTION-FIELD ELECTROSTATICS */
230             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
231             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
232
233             /* CUBIC SPLINE TABLE DISPERSION */
234             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
235             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
236             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
237             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
238             _MM_TRANSPOSE4_PS(Y,F,G,H);
239             Heps             = _mm_mul_ps(vfeps,H);
240             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
241             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
242             vvdw6            = _mm_mul_ps(c6_00,VV);
243             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
244             fvdw6            = _mm_mul_ps(c6_00,FF);
245
246             /* CUBIC SPLINE TABLE REPULSION */
247             vfitab           = _mm_add_epi32(vfitab,ifour);
248             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
249             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
250             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
251             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
252             _MM_TRANSPOSE4_PS(Y,F,G,H);
253             Heps             = _mm_mul_ps(vfeps,H);
254             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
255             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
256             vvdw12           = _mm_mul_ps(c12_00,VV);
257             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
258             fvdw12           = _mm_mul_ps(c12_00,FF);
259             vvdw             = _mm_add_ps(vvdw12,vvdw6);
260             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velecsum         = _mm_add_ps(velecsum,velec);
264             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
265
266             fscal            = _mm_add_ps(felec,fvdw);
267
268             /* Calculate temporary vectorial force */
269             tx               = _mm_mul_ps(fscal,dx00);
270             ty               = _mm_mul_ps(fscal,dy00);
271             tz               = _mm_mul_ps(fscal,dz00);
272
273             /* Update vectorial force */
274             fix0             = _mm_add_ps(fix0,tx);
275             fiy0             = _mm_add_ps(fiy0,ty);
276             fiz0             = _mm_add_ps(fiz0,tz);
277
278             fjptrA             = f+j_coord_offsetA;
279             fjptrB             = f+j_coord_offsetB;
280             fjptrC             = f+j_coord_offsetC;
281             fjptrD             = f+j_coord_offsetD;
282             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
283
284             /* Inner loop uses 67 flops */
285         }
286
287         if(jidx<j_index_end)
288         {
289
290             /* Get j neighbor index, and coordinate index */
291             jnrlistA         = jjnr[jidx];
292             jnrlistB         = jjnr[jidx+1];
293             jnrlistC         = jjnr[jidx+2];
294             jnrlistD         = jjnr[jidx+3];
295             /* Sign of each element will be negative for non-real atoms.
296              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
297              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
298              */
299             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
300             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
301             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
302             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
303             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
304             j_coord_offsetA  = DIM*jnrA;
305             j_coord_offsetB  = DIM*jnrB;
306             j_coord_offsetC  = DIM*jnrC;
307             j_coord_offsetD  = DIM*jnrD;
308
309             /* load j atom coordinates */
310             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
311                                               x+j_coord_offsetC,x+j_coord_offsetD,
312                                               &jx0,&jy0,&jz0);
313
314             /* Calculate displacement vector */
315             dx00             = _mm_sub_ps(ix0,jx0);
316             dy00             = _mm_sub_ps(iy0,jy0);
317             dz00             = _mm_sub_ps(iz0,jz0);
318
319             /* Calculate squared distance and things based on it */
320             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
321
322             rinv00           = sse41_invsqrt_f(rsq00);
323
324             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
325
326             /* Load parameters for j particles */
327             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
328                                                               charge+jnrC+0,charge+jnrD+0);
329             vdwjidx0A        = 2*vdwtype[jnrA+0];
330             vdwjidx0B        = 2*vdwtype[jnrB+0];
331             vdwjidx0C        = 2*vdwtype[jnrC+0];
332             vdwjidx0D        = 2*vdwtype[jnrD+0];
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             r00              = _mm_mul_ps(rsq00,rinv00);
339             r00              = _mm_andnot_ps(dummy_mask,r00);
340
341             /* Compute parameters for interactions between i and j atoms */
342             qq00             = _mm_mul_ps(iq0,jq0);
343             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
344                                          vdwparam+vdwioffset0+vdwjidx0B,
345                                          vdwparam+vdwioffset0+vdwjidx0C,
346                                          vdwparam+vdwioffset0+vdwjidx0D,
347                                          &c6_00,&c12_00);
348
349             /* Calculate table index by multiplying r with table scale and truncate to integer */
350             rt               = _mm_mul_ps(r00,vftabscale);
351             vfitab           = _mm_cvttps_epi32(rt);
352             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
353             vfitab           = _mm_slli_epi32(vfitab,3);
354
355             /* REACTION-FIELD ELECTROSTATICS */
356             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
357             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
358
359             /* CUBIC SPLINE TABLE DISPERSION */
360             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
361             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
362             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
363             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
364             _MM_TRANSPOSE4_PS(Y,F,G,H);
365             Heps             = _mm_mul_ps(vfeps,H);
366             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
367             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
368             vvdw6            = _mm_mul_ps(c6_00,VV);
369             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
370             fvdw6            = _mm_mul_ps(c6_00,FF);
371
372             /* CUBIC SPLINE TABLE REPULSION */
373             vfitab           = _mm_add_epi32(vfitab,ifour);
374             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
375             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
376             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
377             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
378             _MM_TRANSPOSE4_PS(Y,F,G,H);
379             Heps             = _mm_mul_ps(vfeps,H);
380             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
381             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
382             vvdw12           = _mm_mul_ps(c12_00,VV);
383             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
384             fvdw12           = _mm_mul_ps(c12_00,FF);
385             vvdw             = _mm_add_ps(vvdw12,vvdw6);
386             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velec            = _mm_andnot_ps(dummy_mask,velec);
390             velecsum         = _mm_add_ps(velecsum,velec);
391             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
392             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
393
394             fscal            = _mm_add_ps(felec,fvdw);
395
396             fscal            = _mm_andnot_ps(dummy_mask,fscal);
397
398             /* Calculate temporary vectorial force */
399             tx               = _mm_mul_ps(fscal,dx00);
400             ty               = _mm_mul_ps(fscal,dy00);
401             tz               = _mm_mul_ps(fscal,dz00);
402
403             /* Update vectorial force */
404             fix0             = _mm_add_ps(fix0,tx);
405             fiy0             = _mm_add_ps(fiy0,ty);
406             fiz0             = _mm_add_ps(fiz0,tz);
407
408             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
409             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
410             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
411             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
412             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
413
414             /* Inner loop uses 68 flops */
415         }
416
417         /* End of innermost loop */
418
419         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
420                                               f+i_coord_offset,fshift+i_shift_offset);
421
422         ggid                        = gid[iidx];
423         /* Update potential energies */
424         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
425         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
426
427         /* Increment number of inner iterations */
428         inneriter                  += j_index_end - j_index_start;
429
430         /* Outer loop uses 9 flops */
431     }
432
433     /* Increment number of outer iterations */
434     outeriter        += nri;
435
436     /* Update outer/inner flops */
437
438     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
439 }
440 /*
441  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse4_1_single
442  * Electrostatics interaction: ReactionField
443  * VdW interaction:            CubicSplineTable
444  * Geometry:                   Particle-Particle
445  * Calculate force/pot:        Force
446  */
447 void
448 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse4_1_single
449                     (t_nblist                    * gmx_restrict       nlist,
450                      rvec                        * gmx_restrict          xx,
451                      rvec                        * gmx_restrict          ff,
452                      struct t_forcerec           * gmx_restrict          fr,
453                      t_mdatoms                   * gmx_restrict     mdatoms,
454                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
455                      t_nrnb                      * gmx_restrict        nrnb)
456 {
457     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
458      * just 0 for non-waters.
459      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
460      * jnr indices corresponding to data put in the four positions in the SIMD register.
461      */
462     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
463     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
464     int              jnrA,jnrB,jnrC,jnrD;
465     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
466     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
467     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
468     real             rcutoff_scalar;
469     real             *shiftvec,*fshift,*x,*f;
470     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
471     real             scratch[4*DIM];
472     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
473     int              vdwioffset0;
474     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
475     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
476     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
477     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
478     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
479     real             *charge;
480     int              nvdwtype;
481     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
482     int              *vdwtype;
483     real             *vdwparam;
484     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
485     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
486     __m128i          vfitab;
487     __m128i          ifour       = _mm_set1_epi32(4);
488     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
489     real             *vftab;
490     __m128           dummy_mask,cutoff_mask;
491     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
492     __m128           one     = _mm_set1_ps(1.0);
493     __m128           two     = _mm_set1_ps(2.0);
494     x                = xx[0];
495     f                = ff[0];
496
497     nri              = nlist->nri;
498     iinr             = nlist->iinr;
499     jindex           = nlist->jindex;
500     jjnr             = nlist->jjnr;
501     shiftidx         = nlist->shift;
502     gid              = nlist->gid;
503     shiftvec         = fr->shift_vec[0];
504     fshift           = fr->fshift[0];
505     facel            = _mm_set1_ps(fr->ic->epsfac);
506     charge           = mdatoms->chargeA;
507     krf              = _mm_set1_ps(fr->ic->k_rf);
508     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
509     crf              = _mm_set1_ps(fr->ic->c_rf);
510     nvdwtype         = fr->ntype;
511     vdwparam         = fr->nbfp;
512     vdwtype          = mdatoms->typeA;
513
514     vftab            = kernel_data->table_vdw->data;
515     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
516
517     /* Avoid stupid compiler warnings */
518     jnrA = jnrB = jnrC = jnrD = 0;
519     j_coord_offsetA = 0;
520     j_coord_offsetB = 0;
521     j_coord_offsetC = 0;
522     j_coord_offsetD = 0;
523
524     outeriter        = 0;
525     inneriter        = 0;
526
527     for(iidx=0;iidx<4*DIM;iidx++)
528     {
529         scratch[iidx] = 0.0;
530     }
531
532     /* Start outer loop over neighborlists */
533     for(iidx=0; iidx<nri; iidx++)
534     {
535         /* Load shift vector for this list */
536         i_shift_offset   = DIM*shiftidx[iidx];
537
538         /* Load limits for loop over neighbors */
539         j_index_start    = jindex[iidx];
540         j_index_end      = jindex[iidx+1];
541
542         /* Get outer coordinate index */
543         inr              = iinr[iidx];
544         i_coord_offset   = DIM*inr;
545
546         /* Load i particle coords and add shift vector */
547         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
548
549         fix0             = _mm_setzero_ps();
550         fiy0             = _mm_setzero_ps();
551         fiz0             = _mm_setzero_ps();
552
553         /* Load parameters for i particles */
554         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
555         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
556
557         /* Start inner kernel loop */
558         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
559         {
560
561             /* Get j neighbor index, and coordinate index */
562             jnrA             = jjnr[jidx];
563             jnrB             = jjnr[jidx+1];
564             jnrC             = jjnr[jidx+2];
565             jnrD             = jjnr[jidx+3];
566             j_coord_offsetA  = DIM*jnrA;
567             j_coord_offsetB  = DIM*jnrB;
568             j_coord_offsetC  = DIM*jnrC;
569             j_coord_offsetD  = DIM*jnrD;
570
571             /* load j atom coordinates */
572             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
573                                               x+j_coord_offsetC,x+j_coord_offsetD,
574                                               &jx0,&jy0,&jz0);
575
576             /* Calculate displacement vector */
577             dx00             = _mm_sub_ps(ix0,jx0);
578             dy00             = _mm_sub_ps(iy0,jy0);
579             dz00             = _mm_sub_ps(iz0,jz0);
580
581             /* Calculate squared distance and things based on it */
582             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
583
584             rinv00           = sse41_invsqrt_f(rsq00);
585
586             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
587
588             /* Load parameters for j particles */
589             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
590                                                               charge+jnrC+0,charge+jnrD+0);
591             vdwjidx0A        = 2*vdwtype[jnrA+0];
592             vdwjidx0B        = 2*vdwtype[jnrB+0];
593             vdwjidx0C        = 2*vdwtype[jnrC+0];
594             vdwjidx0D        = 2*vdwtype[jnrD+0];
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             r00              = _mm_mul_ps(rsq00,rinv00);
601
602             /* Compute parameters for interactions between i and j atoms */
603             qq00             = _mm_mul_ps(iq0,jq0);
604             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
605                                          vdwparam+vdwioffset0+vdwjidx0B,
606                                          vdwparam+vdwioffset0+vdwjidx0C,
607                                          vdwparam+vdwioffset0+vdwjidx0D,
608                                          &c6_00,&c12_00);
609
610             /* Calculate table index by multiplying r with table scale and truncate to integer */
611             rt               = _mm_mul_ps(r00,vftabscale);
612             vfitab           = _mm_cvttps_epi32(rt);
613             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
614             vfitab           = _mm_slli_epi32(vfitab,3);
615
616             /* REACTION-FIELD ELECTROSTATICS */
617             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
618
619             /* CUBIC SPLINE TABLE DISPERSION */
620             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
621             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
622             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
623             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
624             _MM_TRANSPOSE4_PS(Y,F,G,H);
625             Heps             = _mm_mul_ps(vfeps,H);
626             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
627             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
628             fvdw6            = _mm_mul_ps(c6_00,FF);
629
630             /* CUBIC SPLINE TABLE REPULSION */
631             vfitab           = _mm_add_epi32(vfitab,ifour);
632             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
633             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
634             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
635             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
636             _MM_TRANSPOSE4_PS(Y,F,G,H);
637             Heps             = _mm_mul_ps(vfeps,H);
638             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
639             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
640             fvdw12           = _mm_mul_ps(c12_00,FF);
641             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
642
643             fscal            = _mm_add_ps(felec,fvdw);
644
645             /* Calculate temporary vectorial force */
646             tx               = _mm_mul_ps(fscal,dx00);
647             ty               = _mm_mul_ps(fscal,dy00);
648             tz               = _mm_mul_ps(fscal,dz00);
649
650             /* Update vectorial force */
651             fix0             = _mm_add_ps(fix0,tx);
652             fiy0             = _mm_add_ps(fiy0,ty);
653             fiz0             = _mm_add_ps(fiz0,tz);
654
655             fjptrA             = f+j_coord_offsetA;
656             fjptrB             = f+j_coord_offsetB;
657             fjptrC             = f+j_coord_offsetC;
658             fjptrD             = f+j_coord_offsetD;
659             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
660
661             /* Inner loop uses 54 flops */
662         }
663
664         if(jidx<j_index_end)
665         {
666
667             /* Get j neighbor index, and coordinate index */
668             jnrlistA         = jjnr[jidx];
669             jnrlistB         = jjnr[jidx+1];
670             jnrlistC         = jjnr[jidx+2];
671             jnrlistD         = jjnr[jidx+3];
672             /* Sign of each element will be negative for non-real atoms.
673              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
674              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
675              */
676             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
677             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
678             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
679             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
680             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
681             j_coord_offsetA  = DIM*jnrA;
682             j_coord_offsetB  = DIM*jnrB;
683             j_coord_offsetC  = DIM*jnrC;
684             j_coord_offsetD  = DIM*jnrD;
685
686             /* load j atom coordinates */
687             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
688                                               x+j_coord_offsetC,x+j_coord_offsetD,
689                                               &jx0,&jy0,&jz0);
690
691             /* Calculate displacement vector */
692             dx00             = _mm_sub_ps(ix0,jx0);
693             dy00             = _mm_sub_ps(iy0,jy0);
694             dz00             = _mm_sub_ps(iz0,jz0);
695
696             /* Calculate squared distance and things based on it */
697             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
698
699             rinv00           = sse41_invsqrt_f(rsq00);
700
701             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
702
703             /* Load parameters for j particles */
704             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
705                                                               charge+jnrC+0,charge+jnrD+0);
706             vdwjidx0A        = 2*vdwtype[jnrA+0];
707             vdwjidx0B        = 2*vdwtype[jnrB+0];
708             vdwjidx0C        = 2*vdwtype[jnrC+0];
709             vdwjidx0D        = 2*vdwtype[jnrD+0];
710
711             /**************************
712              * CALCULATE INTERACTIONS *
713              **************************/
714
715             r00              = _mm_mul_ps(rsq00,rinv00);
716             r00              = _mm_andnot_ps(dummy_mask,r00);
717
718             /* Compute parameters for interactions between i and j atoms */
719             qq00             = _mm_mul_ps(iq0,jq0);
720             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
721                                          vdwparam+vdwioffset0+vdwjidx0B,
722                                          vdwparam+vdwioffset0+vdwjidx0C,
723                                          vdwparam+vdwioffset0+vdwjidx0D,
724                                          &c6_00,&c12_00);
725
726             /* Calculate table index by multiplying r with table scale and truncate to integer */
727             rt               = _mm_mul_ps(r00,vftabscale);
728             vfitab           = _mm_cvttps_epi32(rt);
729             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
730             vfitab           = _mm_slli_epi32(vfitab,3);
731
732             /* REACTION-FIELD ELECTROSTATICS */
733             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
734
735             /* CUBIC SPLINE TABLE DISPERSION */
736             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
737             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
738             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
739             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
740             _MM_TRANSPOSE4_PS(Y,F,G,H);
741             Heps             = _mm_mul_ps(vfeps,H);
742             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
743             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
744             fvdw6            = _mm_mul_ps(c6_00,FF);
745
746             /* CUBIC SPLINE TABLE REPULSION */
747             vfitab           = _mm_add_epi32(vfitab,ifour);
748             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
749             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
750             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
751             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
752             _MM_TRANSPOSE4_PS(Y,F,G,H);
753             Heps             = _mm_mul_ps(vfeps,H);
754             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
755             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
756             fvdw12           = _mm_mul_ps(c12_00,FF);
757             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
758
759             fscal            = _mm_add_ps(felec,fvdw);
760
761             fscal            = _mm_andnot_ps(dummy_mask,fscal);
762
763             /* Calculate temporary vectorial force */
764             tx               = _mm_mul_ps(fscal,dx00);
765             ty               = _mm_mul_ps(fscal,dy00);
766             tz               = _mm_mul_ps(fscal,dz00);
767
768             /* Update vectorial force */
769             fix0             = _mm_add_ps(fix0,tx);
770             fiy0             = _mm_add_ps(fiy0,ty);
771             fiz0             = _mm_add_ps(fiz0,tz);
772
773             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
774             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
775             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
776             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
777             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
778
779             /* Inner loop uses 55 flops */
780         }
781
782         /* End of innermost loop */
783
784         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
785                                               f+i_coord_offset,fshift+i_shift_offset);
786
787         /* Increment number of inner iterations */
788         inneriter                  += j_index_end - j_index_start;
789
790         /* Outer loop uses 7 flops */
791     }
792
793     /* Increment number of outer iterations */
794     outeriter        += nri;
795
796     /* Update outer/inner flops */
797
798     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
799 }