710eb9bdc02f2ab2006923e8111fc225e72cefa0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse4_1_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
101     real             *vftab;
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm_set1_ps(fr->ic->k_rf);
120     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
121     crf              = _mm_set1_ps(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
160
161         fix0             = _mm_setzero_ps();
162         fiy0             = _mm_setzero_ps();
163         fiz0             = _mm_setzero_ps();
164
165         /* Load parameters for i particles */
166         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
167         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_ps();
171         vvdwsum          = _mm_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               x+j_coord_offsetC,x+j_coord_offsetD,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_ps(ix0,jx0);
194             dy00             = _mm_sub_ps(iy0,jy0);
195             dz00             = _mm_sub_ps(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
199
200             rinv00           = gmx_mm_invsqrt_ps(rsq00);
201
202             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
206                                                               charge+jnrC+0,charge+jnrD+0);
207             vdwjidx0A        = 2*vdwtype[jnrA+0];
208             vdwjidx0B        = 2*vdwtype[jnrB+0];
209             vdwjidx0C        = 2*vdwtype[jnrC+0];
210             vdwjidx0D        = 2*vdwtype[jnrD+0];
211
212             /**************************
213              * CALCULATE INTERACTIONS *
214              **************************/
215
216             r00              = _mm_mul_ps(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm_mul_ps(iq0,jq0);
220             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,
222                                          vdwparam+vdwioffset0+vdwjidx0C,
223                                          vdwparam+vdwioffset0+vdwjidx0D,
224                                          &c6_00,&c12_00);
225
226             /* Calculate table index by multiplying r with table scale and truncate to integer */
227             rt               = _mm_mul_ps(r00,vftabscale);
228             vfitab           = _mm_cvttps_epi32(rt);
229             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
230             vfitab           = _mm_slli_epi32(vfitab,3);
231
232             /* REACTION-FIELD ELECTROSTATICS */
233             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
234             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
235
236             /* CUBIC SPLINE TABLE DISPERSION */
237             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
238             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
239             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
240             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
241             _MM_TRANSPOSE4_PS(Y,F,G,H);
242             Heps             = _mm_mul_ps(vfeps,H);
243             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
244             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
245             vvdw6            = _mm_mul_ps(c6_00,VV);
246             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
247             fvdw6            = _mm_mul_ps(c6_00,FF);
248
249             /* CUBIC SPLINE TABLE REPULSION */
250             vfitab           = _mm_add_epi32(vfitab,ifour);
251             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
252             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
253             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
254             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
255             _MM_TRANSPOSE4_PS(Y,F,G,H);
256             Heps             = _mm_mul_ps(vfeps,H);
257             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
258             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
259             vvdw12           = _mm_mul_ps(c12_00,VV);
260             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
261             fvdw12           = _mm_mul_ps(c12_00,FF);
262             vvdw             = _mm_add_ps(vvdw12,vvdw6);
263             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velecsum         = _mm_add_ps(velecsum,velec);
267             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
268
269             fscal            = _mm_add_ps(felec,fvdw);
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm_mul_ps(fscal,dx00);
273             ty               = _mm_mul_ps(fscal,dy00);
274             tz               = _mm_mul_ps(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm_add_ps(fix0,tx);
278             fiy0             = _mm_add_ps(fiy0,ty);
279             fiz0             = _mm_add_ps(fiz0,tz);
280
281             fjptrA             = f+j_coord_offsetA;
282             fjptrB             = f+j_coord_offsetB;
283             fjptrC             = f+j_coord_offsetC;
284             fjptrD             = f+j_coord_offsetD;
285             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
286
287             /* Inner loop uses 67 flops */
288         }
289
290         if(jidx<j_index_end)
291         {
292
293             /* Get j neighbor index, and coordinate index */
294             jnrlistA         = jjnr[jidx];
295             jnrlistB         = jjnr[jidx+1];
296             jnrlistC         = jjnr[jidx+2];
297             jnrlistD         = jjnr[jidx+3];
298             /* Sign of each element will be negative for non-real atoms.
299              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
300              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
301              */
302             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
303             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
304             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
305             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
306             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
307             j_coord_offsetA  = DIM*jnrA;
308             j_coord_offsetB  = DIM*jnrB;
309             j_coord_offsetC  = DIM*jnrC;
310             j_coord_offsetD  = DIM*jnrD;
311
312             /* load j atom coordinates */
313             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
314                                               x+j_coord_offsetC,x+j_coord_offsetD,
315                                               &jx0,&jy0,&jz0);
316
317             /* Calculate displacement vector */
318             dx00             = _mm_sub_ps(ix0,jx0);
319             dy00             = _mm_sub_ps(iy0,jy0);
320             dz00             = _mm_sub_ps(iz0,jz0);
321
322             /* Calculate squared distance and things based on it */
323             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
324
325             rinv00           = gmx_mm_invsqrt_ps(rsq00);
326
327             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
328
329             /* Load parameters for j particles */
330             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
331                                                               charge+jnrC+0,charge+jnrD+0);
332             vdwjidx0A        = 2*vdwtype[jnrA+0];
333             vdwjidx0B        = 2*vdwtype[jnrB+0];
334             vdwjidx0C        = 2*vdwtype[jnrC+0];
335             vdwjidx0D        = 2*vdwtype[jnrD+0];
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             r00              = _mm_mul_ps(rsq00,rinv00);
342             r00              = _mm_andnot_ps(dummy_mask,r00);
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq00             = _mm_mul_ps(iq0,jq0);
346             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
347                                          vdwparam+vdwioffset0+vdwjidx0B,
348                                          vdwparam+vdwioffset0+vdwjidx0C,
349                                          vdwparam+vdwioffset0+vdwjidx0D,
350                                          &c6_00,&c12_00);
351
352             /* Calculate table index by multiplying r with table scale and truncate to integer */
353             rt               = _mm_mul_ps(r00,vftabscale);
354             vfitab           = _mm_cvttps_epi32(rt);
355             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
356             vfitab           = _mm_slli_epi32(vfitab,3);
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
360             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
361
362             /* CUBIC SPLINE TABLE DISPERSION */
363             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
364             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
365             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
366             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
367             _MM_TRANSPOSE4_PS(Y,F,G,H);
368             Heps             = _mm_mul_ps(vfeps,H);
369             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
370             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
371             vvdw6            = _mm_mul_ps(c6_00,VV);
372             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
373             fvdw6            = _mm_mul_ps(c6_00,FF);
374
375             /* CUBIC SPLINE TABLE REPULSION */
376             vfitab           = _mm_add_epi32(vfitab,ifour);
377             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
378             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
379             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
380             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
381             _MM_TRANSPOSE4_PS(Y,F,G,H);
382             Heps             = _mm_mul_ps(vfeps,H);
383             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
384             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
385             vvdw12           = _mm_mul_ps(c12_00,VV);
386             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
387             fvdw12           = _mm_mul_ps(c12_00,FF);
388             vvdw             = _mm_add_ps(vvdw12,vvdw6);
389             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velec            = _mm_andnot_ps(dummy_mask,velec);
393             velecsum         = _mm_add_ps(velecsum,velec);
394             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
395             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
396
397             fscal            = _mm_add_ps(felec,fvdw);
398
399             fscal            = _mm_andnot_ps(dummy_mask,fscal);
400
401             /* Calculate temporary vectorial force */
402             tx               = _mm_mul_ps(fscal,dx00);
403             ty               = _mm_mul_ps(fscal,dy00);
404             tz               = _mm_mul_ps(fscal,dz00);
405
406             /* Update vectorial force */
407             fix0             = _mm_add_ps(fix0,tx);
408             fiy0             = _mm_add_ps(fiy0,ty);
409             fiz0             = _mm_add_ps(fiz0,tz);
410
411             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
412             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
413             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
414             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
415             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
416
417             /* Inner loop uses 68 flops */
418         }
419
420         /* End of innermost loop */
421
422         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
423                                               f+i_coord_offset,fshift+i_shift_offset);
424
425         ggid                        = gid[iidx];
426         /* Update potential energies */
427         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
428         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
429
430         /* Increment number of inner iterations */
431         inneriter                  += j_index_end - j_index_start;
432
433         /* Outer loop uses 9 flops */
434     }
435
436     /* Increment number of outer iterations */
437     outeriter        += nri;
438
439     /* Update outer/inner flops */
440
441     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
442 }
443 /*
444  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse4_1_single
445  * Electrostatics interaction: ReactionField
446  * VdW interaction:            CubicSplineTable
447  * Geometry:                   Particle-Particle
448  * Calculate force/pot:        Force
449  */
450 void
451 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse4_1_single
452                     (t_nblist                    * gmx_restrict       nlist,
453                      rvec                        * gmx_restrict          xx,
454                      rvec                        * gmx_restrict          ff,
455                      t_forcerec                  * gmx_restrict          fr,
456                      t_mdatoms                   * gmx_restrict     mdatoms,
457                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
458                      t_nrnb                      * gmx_restrict        nrnb)
459 {
460     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
461      * just 0 for non-waters.
462      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
463      * jnr indices corresponding to data put in the four positions in the SIMD register.
464      */
465     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
466     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
467     int              jnrA,jnrB,jnrC,jnrD;
468     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
469     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
470     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
471     real             rcutoff_scalar;
472     real             *shiftvec,*fshift,*x,*f;
473     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
474     real             scratch[4*DIM];
475     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
476     int              vdwioffset0;
477     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
478     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
479     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
480     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
481     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
482     real             *charge;
483     int              nvdwtype;
484     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
485     int              *vdwtype;
486     real             *vdwparam;
487     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
488     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
489     __m128i          vfitab;
490     __m128i          ifour       = _mm_set1_epi32(4);
491     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
492     real             *vftab;
493     __m128           dummy_mask,cutoff_mask;
494     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
495     __m128           one     = _mm_set1_ps(1.0);
496     __m128           two     = _mm_set1_ps(2.0);
497     x                = xx[0];
498     f                = ff[0];
499
500     nri              = nlist->nri;
501     iinr             = nlist->iinr;
502     jindex           = nlist->jindex;
503     jjnr             = nlist->jjnr;
504     shiftidx         = nlist->shift;
505     gid              = nlist->gid;
506     shiftvec         = fr->shift_vec[0];
507     fshift           = fr->fshift[0];
508     facel            = _mm_set1_ps(fr->epsfac);
509     charge           = mdatoms->chargeA;
510     krf              = _mm_set1_ps(fr->ic->k_rf);
511     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
512     crf              = _mm_set1_ps(fr->ic->c_rf);
513     nvdwtype         = fr->ntype;
514     vdwparam         = fr->nbfp;
515     vdwtype          = mdatoms->typeA;
516
517     vftab            = kernel_data->table_vdw->data;
518     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
519
520     /* Avoid stupid compiler warnings */
521     jnrA = jnrB = jnrC = jnrD = 0;
522     j_coord_offsetA = 0;
523     j_coord_offsetB = 0;
524     j_coord_offsetC = 0;
525     j_coord_offsetD = 0;
526
527     outeriter        = 0;
528     inneriter        = 0;
529
530     for(iidx=0;iidx<4*DIM;iidx++)
531     {
532         scratch[iidx] = 0.0;
533     }
534
535     /* Start outer loop over neighborlists */
536     for(iidx=0; iidx<nri; iidx++)
537     {
538         /* Load shift vector for this list */
539         i_shift_offset   = DIM*shiftidx[iidx];
540
541         /* Load limits for loop over neighbors */
542         j_index_start    = jindex[iidx];
543         j_index_end      = jindex[iidx+1];
544
545         /* Get outer coordinate index */
546         inr              = iinr[iidx];
547         i_coord_offset   = DIM*inr;
548
549         /* Load i particle coords and add shift vector */
550         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
551
552         fix0             = _mm_setzero_ps();
553         fiy0             = _mm_setzero_ps();
554         fiz0             = _mm_setzero_ps();
555
556         /* Load parameters for i particles */
557         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
558         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
559
560         /* Start inner kernel loop */
561         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
562         {
563
564             /* Get j neighbor index, and coordinate index */
565             jnrA             = jjnr[jidx];
566             jnrB             = jjnr[jidx+1];
567             jnrC             = jjnr[jidx+2];
568             jnrD             = jjnr[jidx+3];
569             j_coord_offsetA  = DIM*jnrA;
570             j_coord_offsetB  = DIM*jnrB;
571             j_coord_offsetC  = DIM*jnrC;
572             j_coord_offsetD  = DIM*jnrD;
573
574             /* load j atom coordinates */
575             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
576                                               x+j_coord_offsetC,x+j_coord_offsetD,
577                                               &jx0,&jy0,&jz0);
578
579             /* Calculate displacement vector */
580             dx00             = _mm_sub_ps(ix0,jx0);
581             dy00             = _mm_sub_ps(iy0,jy0);
582             dz00             = _mm_sub_ps(iz0,jz0);
583
584             /* Calculate squared distance and things based on it */
585             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
586
587             rinv00           = gmx_mm_invsqrt_ps(rsq00);
588
589             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
590
591             /* Load parameters for j particles */
592             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
593                                                               charge+jnrC+0,charge+jnrD+0);
594             vdwjidx0A        = 2*vdwtype[jnrA+0];
595             vdwjidx0B        = 2*vdwtype[jnrB+0];
596             vdwjidx0C        = 2*vdwtype[jnrC+0];
597             vdwjidx0D        = 2*vdwtype[jnrD+0];
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             r00              = _mm_mul_ps(rsq00,rinv00);
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq00             = _mm_mul_ps(iq0,jq0);
607             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
608                                          vdwparam+vdwioffset0+vdwjidx0B,
609                                          vdwparam+vdwioffset0+vdwjidx0C,
610                                          vdwparam+vdwioffset0+vdwjidx0D,
611                                          &c6_00,&c12_00);
612
613             /* Calculate table index by multiplying r with table scale and truncate to integer */
614             rt               = _mm_mul_ps(r00,vftabscale);
615             vfitab           = _mm_cvttps_epi32(rt);
616             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
617             vfitab           = _mm_slli_epi32(vfitab,3);
618
619             /* REACTION-FIELD ELECTROSTATICS */
620             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
621
622             /* CUBIC SPLINE TABLE DISPERSION */
623             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
624             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
625             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
626             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
627             _MM_TRANSPOSE4_PS(Y,F,G,H);
628             Heps             = _mm_mul_ps(vfeps,H);
629             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
630             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
631             fvdw6            = _mm_mul_ps(c6_00,FF);
632
633             /* CUBIC SPLINE TABLE REPULSION */
634             vfitab           = _mm_add_epi32(vfitab,ifour);
635             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
636             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
637             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
638             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
639             _MM_TRANSPOSE4_PS(Y,F,G,H);
640             Heps             = _mm_mul_ps(vfeps,H);
641             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
642             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
643             fvdw12           = _mm_mul_ps(c12_00,FF);
644             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
645
646             fscal            = _mm_add_ps(felec,fvdw);
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm_mul_ps(fscal,dx00);
650             ty               = _mm_mul_ps(fscal,dy00);
651             tz               = _mm_mul_ps(fscal,dz00);
652
653             /* Update vectorial force */
654             fix0             = _mm_add_ps(fix0,tx);
655             fiy0             = _mm_add_ps(fiy0,ty);
656             fiz0             = _mm_add_ps(fiz0,tz);
657
658             fjptrA             = f+j_coord_offsetA;
659             fjptrB             = f+j_coord_offsetB;
660             fjptrC             = f+j_coord_offsetC;
661             fjptrD             = f+j_coord_offsetD;
662             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
663
664             /* Inner loop uses 54 flops */
665         }
666
667         if(jidx<j_index_end)
668         {
669
670             /* Get j neighbor index, and coordinate index */
671             jnrlistA         = jjnr[jidx];
672             jnrlistB         = jjnr[jidx+1];
673             jnrlistC         = jjnr[jidx+2];
674             jnrlistD         = jjnr[jidx+3];
675             /* Sign of each element will be negative for non-real atoms.
676              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
677              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
678              */
679             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
680             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
681             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
682             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
683             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
684             j_coord_offsetA  = DIM*jnrA;
685             j_coord_offsetB  = DIM*jnrB;
686             j_coord_offsetC  = DIM*jnrC;
687             j_coord_offsetD  = DIM*jnrD;
688
689             /* load j atom coordinates */
690             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
691                                               x+j_coord_offsetC,x+j_coord_offsetD,
692                                               &jx0,&jy0,&jz0);
693
694             /* Calculate displacement vector */
695             dx00             = _mm_sub_ps(ix0,jx0);
696             dy00             = _mm_sub_ps(iy0,jy0);
697             dz00             = _mm_sub_ps(iz0,jz0);
698
699             /* Calculate squared distance and things based on it */
700             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
701
702             rinv00           = gmx_mm_invsqrt_ps(rsq00);
703
704             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
705
706             /* Load parameters for j particles */
707             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
708                                                               charge+jnrC+0,charge+jnrD+0);
709             vdwjidx0A        = 2*vdwtype[jnrA+0];
710             vdwjidx0B        = 2*vdwtype[jnrB+0];
711             vdwjidx0C        = 2*vdwtype[jnrC+0];
712             vdwjidx0D        = 2*vdwtype[jnrD+0];
713
714             /**************************
715              * CALCULATE INTERACTIONS *
716              **************************/
717
718             r00              = _mm_mul_ps(rsq00,rinv00);
719             r00              = _mm_andnot_ps(dummy_mask,r00);
720
721             /* Compute parameters for interactions between i and j atoms */
722             qq00             = _mm_mul_ps(iq0,jq0);
723             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
724                                          vdwparam+vdwioffset0+vdwjidx0B,
725                                          vdwparam+vdwioffset0+vdwjidx0C,
726                                          vdwparam+vdwioffset0+vdwjidx0D,
727                                          &c6_00,&c12_00);
728
729             /* Calculate table index by multiplying r with table scale and truncate to integer */
730             rt               = _mm_mul_ps(r00,vftabscale);
731             vfitab           = _mm_cvttps_epi32(rt);
732             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
733             vfitab           = _mm_slli_epi32(vfitab,3);
734
735             /* REACTION-FIELD ELECTROSTATICS */
736             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
737
738             /* CUBIC SPLINE TABLE DISPERSION */
739             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
740             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
741             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
742             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
743             _MM_TRANSPOSE4_PS(Y,F,G,H);
744             Heps             = _mm_mul_ps(vfeps,H);
745             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
746             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
747             fvdw6            = _mm_mul_ps(c6_00,FF);
748
749             /* CUBIC SPLINE TABLE REPULSION */
750             vfitab           = _mm_add_epi32(vfitab,ifour);
751             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
752             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
753             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
754             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
755             _MM_TRANSPOSE4_PS(Y,F,G,H);
756             Heps             = _mm_mul_ps(vfeps,H);
757             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
758             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
759             fvdw12           = _mm_mul_ps(c12_00,FF);
760             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
761
762             fscal            = _mm_add_ps(felec,fvdw);
763
764             fscal            = _mm_andnot_ps(dummy_mask,fscal);
765
766             /* Calculate temporary vectorial force */
767             tx               = _mm_mul_ps(fscal,dx00);
768             ty               = _mm_mul_ps(fscal,dy00);
769             tz               = _mm_mul_ps(fscal,dz00);
770
771             /* Update vectorial force */
772             fix0             = _mm_add_ps(fix0,tx);
773             fiy0             = _mm_add_ps(fiy0,ty);
774             fiz0             = _mm_add_ps(fiz0,tz);
775
776             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
777             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
778             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
779             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
780             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
781
782             /* Inner loop uses 55 flops */
783         }
784
785         /* End of innermost loop */
786
787         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
788                                               f+i_coord_offset,fshift+i_shift_offset);
789
790         /* Increment number of inner iterations */
791         inneriter                  += j_index_end - j_index_start;
792
793         /* Outer loop uses 7 flops */
794     }
795
796     /* Increment number of outer iterations */
797     outeriter        += nri;
798
799     /* Update outer/inner flops */
800
801     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
802 }