Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwNone_GeomW4P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4P1_VF_sse4_1_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwNone_GeomW4P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset1;
70     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
71     int              vdwioffset2;
72     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
73     int              vdwioffset3;
74     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     __m128           dummy_mask,cutoff_mask;
83     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
84     __m128           one     = _mm_set1_ps(1.0);
85     __m128           two     = _mm_set1_ps(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_ps(fr->epsfac);
98     charge           = mdatoms->chargeA;
99     krf              = _mm_set1_ps(fr->ic->k_rf);
100     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
101     crf              = _mm_set1_ps(fr->ic->c_rf);
102
103     /* Setup water-specific parameters */
104     inr              = nlist->iinr[0];
105     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
106     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
107     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
108
109     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
110     rcutoff_scalar   = fr->rcoulomb;
111     rcutoff          = _mm_set1_ps(rcutoff_scalar);
112     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = jnrC = jnrD = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118     j_coord_offsetC = 0;
119     j_coord_offsetD = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     for(iidx=0;iidx<4*DIM;iidx++)
125     {
126         scratch[iidx] = 0.0;
127     }
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
145                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
146
147         fix1             = _mm_setzero_ps();
148         fiy1             = _mm_setzero_ps();
149         fiz1             = _mm_setzero_ps();
150         fix2             = _mm_setzero_ps();
151         fiy2             = _mm_setzero_ps();
152         fiz2             = _mm_setzero_ps();
153         fix3             = _mm_setzero_ps();
154         fiy3             = _mm_setzero_ps();
155         fiz3             = _mm_setzero_ps();
156
157         /* Reset potential sums */
158         velecsum         = _mm_setzero_ps();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             jnrC             = jjnr[jidx+2];
168             jnrD             = jjnr[jidx+3];
169             j_coord_offsetA  = DIM*jnrA;
170             j_coord_offsetB  = DIM*jnrB;
171             j_coord_offsetC  = DIM*jnrC;
172             j_coord_offsetD  = DIM*jnrD;
173
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               x+j_coord_offsetC,x+j_coord_offsetD,
177                                               &jx0,&jy0,&jz0);
178
179             /* Calculate displacement vector */
180             dx10             = _mm_sub_ps(ix1,jx0);
181             dy10             = _mm_sub_ps(iy1,jy0);
182             dz10             = _mm_sub_ps(iz1,jz0);
183             dx20             = _mm_sub_ps(ix2,jx0);
184             dy20             = _mm_sub_ps(iy2,jy0);
185             dz20             = _mm_sub_ps(iz2,jz0);
186             dx30             = _mm_sub_ps(ix3,jx0);
187             dy30             = _mm_sub_ps(iy3,jy0);
188             dz30             = _mm_sub_ps(iz3,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
192             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
193             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
194
195             rinv10           = gmx_mm_invsqrt_ps(rsq10);
196             rinv20           = gmx_mm_invsqrt_ps(rsq20);
197             rinv30           = gmx_mm_invsqrt_ps(rsq30);
198
199             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
200             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
201             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
202
203             /* Load parameters for j particles */
204             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
205                                                               charge+jnrC+0,charge+jnrD+0);
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             if (gmx_mm_any_lt(rsq10,rcutoff2))
212             {
213
214             /* Compute parameters for interactions between i and j atoms */
215             qq10             = _mm_mul_ps(iq1,jq0);
216
217             /* REACTION-FIELD ELECTROSTATICS */
218             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
219             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
220
221             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
222
223             /* Update potential sum for this i atom from the interaction with this j atom. */
224             velec            = _mm_and_ps(velec,cutoff_mask);
225             velecsum         = _mm_add_ps(velecsum,velec);
226
227             fscal            = felec;
228
229             fscal            = _mm_and_ps(fscal,cutoff_mask);
230
231             /* Calculate temporary vectorial force */
232             tx               = _mm_mul_ps(fscal,dx10);
233             ty               = _mm_mul_ps(fscal,dy10);
234             tz               = _mm_mul_ps(fscal,dz10);
235
236             /* Update vectorial force */
237             fix1             = _mm_add_ps(fix1,tx);
238             fiy1             = _mm_add_ps(fiy1,ty);
239             fiz1             = _mm_add_ps(fiz1,tz);
240
241             fjptrA             = f+j_coord_offsetA;
242             fjptrB             = f+j_coord_offsetB;
243             fjptrC             = f+j_coord_offsetC;
244             fjptrD             = f+j_coord_offsetD;
245             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
246
247             }
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             if (gmx_mm_any_lt(rsq20,rcutoff2))
254             {
255
256             /* Compute parameters for interactions between i and j atoms */
257             qq20             = _mm_mul_ps(iq2,jq0);
258
259             /* REACTION-FIELD ELECTROSTATICS */
260             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
261             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
262
263             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velec            = _mm_and_ps(velec,cutoff_mask);
267             velecsum         = _mm_add_ps(velecsum,velec);
268
269             fscal            = felec;
270
271             fscal            = _mm_and_ps(fscal,cutoff_mask);
272
273             /* Calculate temporary vectorial force */
274             tx               = _mm_mul_ps(fscal,dx20);
275             ty               = _mm_mul_ps(fscal,dy20);
276             tz               = _mm_mul_ps(fscal,dz20);
277
278             /* Update vectorial force */
279             fix2             = _mm_add_ps(fix2,tx);
280             fiy2             = _mm_add_ps(fiy2,ty);
281             fiz2             = _mm_add_ps(fiz2,tz);
282
283             fjptrA             = f+j_coord_offsetA;
284             fjptrB             = f+j_coord_offsetB;
285             fjptrC             = f+j_coord_offsetC;
286             fjptrD             = f+j_coord_offsetD;
287             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
288
289             }
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             if (gmx_mm_any_lt(rsq30,rcutoff2))
296             {
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq30             = _mm_mul_ps(iq3,jq0);
300
301             /* REACTION-FIELD ELECTROSTATICS */
302             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
303             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
304
305             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velec            = _mm_and_ps(velec,cutoff_mask);
309             velecsum         = _mm_add_ps(velecsum,velec);
310
311             fscal            = felec;
312
313             fscal            = _mm_and_ps(fscal,cutoff_mask);
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm_mul_ps(fscal,dx30);
317             ty               = _mm_mul_ps(fscal,dy30);
318             tz               = _mm_mul_ps(fscal,dz30);
319
320             /* Update vectorial force */
321             fix3             = _mm_add_ps(fix3,tx);
322             fiy3             = _mm_add_ps(fiy3,ty);
323             fiz3             = _mm_add_ps(fiz3,tz);
324
325             fjptrA             = f+j_coord_offsetA;
326             fjptrB             = f+j_coord_offsetB;
327             fjptrC             = f+j_coord_offsetC;
328             fjptrD             = f+j_coord_offsetD;
329             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
330
331             }
332
333             /* Inner loop uses 108 flops */
334         }
335
336         if(jidx<j_index_end)
337         {
338
339             /* Get j neighbor index, and coordinate index */
340             jnrlistA         = jjnr[jidx];
341             jnrlistB         = jjnr[jidx+1];
342             jnrlistC         = jjnr[jidx+2];
343             jnrlistD         = jjnr[jidx+3];
344             /* Sign of each element will be negative for non-real atoms.
345              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
346              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
347              */
348             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
349             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
350             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
351             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
352             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
353             j_coord_offsetA  = DIM*jnrA;
354             j_coord_offsetB  = DIM*jnrB;
355             j_coord_offsetC  = DIM*jnrC;
356             j_coord_offsetD  = DIM*jnrD;
357
358             /* load j atom coordinates */
359             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
360                                               x+j_coord_offsetC,x+j_coord_offsetD,
361                                               &jx0,&jy0,&jz0);
362
363             /* Calculate displacement vector */
364             dx10             = _mm_sub_ps(ix1,jx0);
365             dy10             = _mm_sub_ps(iy1,jy0);
366             dz10             = _mm_sub_ps(iz1,jz0);
367             dx20             = _mm_sub_ps(ix2,jx0);
368             dy20             = _mm_sub_ps(iy2,jy0);
369             dz20             = _mm_sub_ps(iz2,jz0);
370             dx30             = _mm_sub_ps(ix3,jx0);
371             dy30             = _mm_sub_ps(iy3,jy0);
372             dz30             = _mm_sub_ps(iz3,jz0);
373
374             /* Calculate squared distance and things based on it */
375             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
376             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
377             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
378
379             rinv10           = gmx_mm_invsqrt_ps(rsq10);
380             rinv20           = gmx_mm_invsqrt_ps(rsq20);
381             rinv30           = gmx_mm_invsqrt_ps(rsq30);
382
383             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
384             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
385             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
386
387             /* Load parameters for j particles */
388             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
389                                                               charge+jnrC+0,charge+jnrD+0);
390
391             /**************************
392              * CALCULATE INTERACTIONS *
393              **************************/
394
395             if (gmx_mm_any_lt(rsq10,rcutoff2))
396             {
397
398             /* Compute parameters for interactions between i and j atoms */
399             qq10             = _mm_mul_ps(iq1,jq0);
400
401             /* REACTION-FIELD ELECTROSTATICS */
402             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
403             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
404
405             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velec            = _mm_and_ps(velec,cutoff_mask);
409             velec            = _mm_andnot_ps(dummy_mask,velec);
410             velecsum         = _mm_add_ps(velecsum,velec);
411
412             fscal            = felec;
413
414             fscal            = _mm_and_ps(fscal,cutoff_mask);
415
416             fscal            = _mm_andnot_ps(dummy_mask,fscal);
417
418             /* Calculate temporary vectorial force */
419             tx               = _mm_mul_ps(fscal,dx10);
420             ty               = _mm_mul_ps(fscal,dy10);
421             tz               = _mm_mul_ps(fscal,dz10);
422
423             /* Update vectorial force */
424             fix1             = _mm_add_ps(fix1,tx);
425             fiy1             = _mm_add_ps(fiy1,ty);
426             fiz1             = _mm_add_ps(fiz1,tz);
427
428             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
429             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
430             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
431             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
432             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
433
434             }
435
436             /**************************
437              * CALCULATE INTERACTIONS *
438              **************************/
439
440             if (gmx_mm_any_lt(rsq20,rcutoff2))
441             {
442
443             /* Compute parameters for interactions between i and j atoms */
444             qq20             = _mm_mul_ps(iq2,jq0);
445
446             /* REACTION-FIELD ELECTROSTATICS */
447             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
448             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
449
450             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
451
452             /* Update potential sum for this i atom from the interaction with this j atom. */
453             velec            = _mm_and_ps(velec,cutoff_mask);
454             velec            = _mm_andnot_ps(dummy_mask,velec);
455             velecsum         = _mm_add_ps(velecsum,velec);
456
457             fscal            = felec;
458
459             fscal            = _mm_and_ps(fscal,cutoff_mask);
460
461             fscal            = _mm_andnot_ps(dummy_mask,fscal);
462
463             /* Calculate temporary vectorial force */
464             tx               = _mm_mul_ps(fscal,dx20);
465             ty               = _mm_mul_ps(fscal,dy20);
466             tz               = _mm_mul_ps(fscal,dz20);
467
468             /* Update vectorial force */
469             fix2             = _mm_add_ps(fix2,tx);
470             fiy2             = _mm_add_ps(fiy2,ty);
471             fiz2             = _mm_add_ps(fiz2,tz);
472
473             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
474             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
475             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
476             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
477             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
478
479             }
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             if (gmx_mm_any_lt(rsq30,rcutoff2))
486             {
487
488             /* Compute parameters for interactions between i and j atoms */
489             qq30             = _mm_mul_ps(iq3,jq0);
490
491             /* REACTION-FIELD ELECTROSTATICS */
492             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
493             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
494
495             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
496
497             /* Update potential sum for this i atom from the interaction with this j atom. */
498             velec            = _mm_and_ps(velec,cutoff_mask);
499             velec            = _mm_andnot_ps(dummy_mask,velec);
500             velecsum         = _mm_add_ps(velecsum,velec);
501
502             fscal            = felec;
503
504             fscal            = _mm_and_ps(fscal,cutoff_mask);
505
506             fscal            = _mm_andnot_ps(dummy_mask,fscal);
507
508             /* Calculate temporary vectorial force */
509             tx               = _mm_mul_ps(fscal,dx30);
510             ty               = _mm_mul_ps(fscal,dy30);
511             tz               = _mm_mul_ps(fscal,dz30);
512
513             /* Update vectorial force */
514             fix3             = _mm_add_ps(fix3,tx);
515             fiy3             = _mm_add_ps(fiy3,ty);
516             fiz3             = _mm_add_ps(fiz3,tz);
517
518             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
519             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
520             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
521             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
522             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
523
524             }
525
526             /* Inner loop uses 108 flops */
527         }
528
529         /* End of innermost loop */
530
531         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
532                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
533
534         ggid                        = gid[iidx];
535         /* Update potential energies */
536         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
537
538         /* Increment number of inner iterations */
539         inneriter                  += j_index_end - j_index_start;
540
541         /* Outer loop uses 19 flops */
542     }
543
544     /* Increment number of outer iterations */
545     outeriter        += nri;
546
547     /* Update outer/inner flops */
548
549     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*108);
550 }
551 /*
552  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4P1_F_sse4_1_single
553  * Electrostatics interaction: ReactionField
554  * VdW interaction:            None
555  * Geometry:                   Water4-Particle
556  * Calculate force/pot:        Force
557  */
558 void
559 nb_kernel_ElecRFCut_VdwNone_GeomW4P1_F_sse4_1_single
560                     (t_nblist * gmx_restrict                nlist,
561                      rvec * gmx_restrict                    xx,
562                      rvec * gmx_restrict                    ff,
563                      t_forcerec * gmx_restrict              fr,
564                      t_mdatoms * gmx_restrict               mdatoms,
565                      nb_kernel_data_t * gmx_restrict        kernel_data,
566                      t_nrnb * gmx_restrict                  nrnb)
567 {
568     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
569      * just 0 for non-waters.
570      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
571      * jnr indices corresponding to data put in the four positions in the SIMD register.
572      */
573     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
574     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
575     int              jnrA,jnrB,jnrC,jnrD;
576     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
577     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
578     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
579     real             rcutoff_scalar;
580     real             *shiftvec,*fshift,*x,*f;
581     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
582     real             scratch[4*DIM];
583     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
584     int              vdwioffset1;
585     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
586     int              vdwioffset2;
587     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
588     int              vdwioffset3;
589     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
590     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
591     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
592     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
593     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
594     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
595     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
596     real             *charge;
597     __m128           dummy_mask,cutoff_mask;
598     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
599     __m128           one     = _mm_set1_ps(1.0);
600     __m128           two     = _mm_set1_ps(2.0);
601     x                = xx[0];
602     f                = ff[0];
603
604     nri              = nlist->nri;
605     iinr             = nlist->iinr;
606     jindex           = nlist->jindex;
607     jjnr             = nlist->jjnr;
608     shiftidx         = nlist->shift;
609     gid              = nlist->gid;
610     shiftvec         = fr->shift_vec[0];
611     fshift           = fr->fshift[0];
612     facel            = _mm_set1_ps(fr->epsfac);
613     charge           = mdatoms->chargeA;
614     krf              = _mm_set1_ps(fr->ic->k_rf);
615     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
616     crf              = _mm_set1_ps(fr->ic->c_rf);
617
618     /* Setup water-specific parameters */
619     inr              = nlist->iinr[0];
620     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
621     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
622     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
623
624     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
625     rcutoff_scalar   = fr->rcoulomb;
626     rcutoff          = _mm_set1_ps(rcutoff_scalar);
627     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
628
629     /* Avoid stupid compiler warnings */
630     jnrA = jnrB = jnrC = jnrD = 0;
631     j_coord_offsetA = 0;
632     j_coord_offsetB = 0;
633     j_coord_offsetC = 0;
634     j_coord_offsetD = 0;
635
636     outeriter        = 0;
637     inneriter        = 0;
638
639     for(iidx=0;iidx<4*DIM;iidx++)
640     {
641         scratch[iidx] = 0.0;
642     }
643
644     /* Start outer loop over neighborlists */
645     for(iidx=0; iidx<nri; iidx++)
646     {
647         /* Load shift vector for this list */
648         i_shift_offset   = DIM*shiftidx[iidx];
649
650         /* Load limits for loop over neighbors */
651         j_index_start    = jindex[iidx];
652         j_index_end      = jindex[iidx+1];
653
654         /* Get outer coordinate index */
655         inr              = iinr[iidx];
656         i_coord_offset   = DIM*inr;
657
658         /* Load i particle coords and add shift vector */
659         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
660                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
661
662         fix1             = _mm_setzero_ps();
663         fiy1             = _mm_setzero_ps();
664         fiz1             = _mm_setzero_ps();
665         fix2             = _mm_setzero_ps();
666         fiy2             = _mm_setzero_ps();
667         fiz2             = _mm_setzero_ps();
668         fix3             = _mm_setzero_ps();
669         fiy3             = _mm_setzero_ps();
670         fiz3             = _mm_setzero_ps();
671
672         /* Start inner kernel loop */
673         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
674         {
675
676             /* Get j neighbor index, and coordinate index */
677             jnrA             = jjnr[jidx];
678             jnrB             = jjnr[jidx+1];
679             jnrC             = jjnr[jidx+2];
680             jnrD             = jjnr[jidx+3];
681             j_coord_offsetA  = DIM*jnrA;
682             j_coord_offsetB  = DIM*jnrB;
683             j_coord_offsetC  = DIM*jnrC;
684             j_coord_offsetD  = DIM*jnrD;
685
686             /* load j atom coordinates */
687             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
688                                               x+j_coord_offsetC,x+j_coord_offsetD,
689                                               &jx0,&jy0,&jz0);
690
691             /* Calculate displacement vector */
692             dx10             = _mm_sub_ps(ix1,jx0);
693             dy10             = _mm_sub_ps(iy1,jy0);
694             dz10             = _mm_sub_ps(iz1,jz0);
695             dx20             = _mm_sub_ps(ix2,jx0);
696             dy20             = _mm_sub_ps(iy2,jy0);
697             dz20             = _mm_sub_ps(iz2,jz0);
698             dx30             = _mm_sub_ps(ix3,jx0);
699             dy30             = _mm_sub_ps(iy3,jy0);
700             dz30             = _mm_sub_ps(iz3,jz0);
701
702             /* Calculate squared distance and things based on it */
703             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
704             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
705             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
706
707             rinv10           = gmx_mm_invsqrt_ps(rsq10);
708             rinv20           = gmx_mm_invsqrt_ps(rsq20);
709             rinv30           = gmx_mm_invsqrt_ps(rsq30);
710
711             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
712             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
713             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
714
715             /* Load parameters for j particles */
716             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
717                                                               charge+jnrC+0,charge+jnrD+0);
718
719             /**************************
720              * CALCULATE INTERACTIONS *
721              **************************/
722
723             if (gmx_mm_any_lt(rsq10,rcutoff2))
724             {
725
726             /* Compute parameters for interactions between i and j atoms */
727             qq10             = _mm_mul_ps(iq1,jq0);
728
729             /* REACTION-FIELD ELECTROSTATICS */
730             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
731
732             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
733
734             fscal            = felec;
735
736             fscal            = _mm_and_ps(fscal,cutoff_mask);
737
738             /* Calculate temporary vectorial force */
739             tx               = _mm_mul_ps(fscal,dx10);
740             ty               = _mm_mul_ps(fscal,dy10);
741             tz               = _mm_mul_ps(fscal,dz10);
742
743             /* Update vectorial force */
744             fix1             = _mm_add_ps(fix1,tx);
745             fiy1             = _mm_add_ps(fiy1,ty);
746             fiz1             = _mm_add_ps(fiz1,tz);
747
748             fjptrA             = f+j_coord_offsetA;
749             fjptrB             = f+j_coord_offsetB;
750             fjptrC             = f+j_coord_offsetC;
751             fjptrD             = f+j_coord_offsetD;
752             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
753
754             }
755
756             /**************************
757              * CALCULATE INTERACTIONS *
758              **************************/
759
760             if (gmx_mm_any_lt(rsq20,rcutoff2))
761             {
762
763             /* Compute parameters for interactions between i and j atoms */
764             qq20             = _mm_mul_ps(iq2,jq0);
765
766             /* REACTION-FIELD ELECTROSTATICS */
767             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
768
769             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
770
771             fscal            = felec;
772
773             fscal            = _mm_and_ps(fscal,cutoff_mask);
774
775             /* Calculate temporary vectorial force */
776             tx               = _mm_mul_ps(fscal,dx20);
777             ty               = _mm_mul_ps(fscal,dy20);
778             tz               = _mm_mul_ps(fscal,dz20);
779
780             /* Update vectorial force */
781             fix2             = _mm_add_ps(fix2,tx);
782             fiy2             = _mm_add_ps(fiy2,ty);
783             fiz2             = _mm_add_ps(fiz2,tz);
784
785             fjptrA             = f+j_coord_offsetA;
786             fjptrB             = f+j_coord_offsetB;
787             fjptrC             = f+j_coord_offsetC;
788             fjptrD             = f+j_coord_offsetD;
789             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
790
791             }
792
793             /**************************
794              * CALCULATE INTERACTIONS *
795              **************************/
796
797             if (gmx_mm_any_lt(rsq30,rcutoff2))
798             {
799
800             /* Compute parameters for interactions between i and j atoms */
801             qq30             = _mm_mul_ps(iq3,jq0);
802
803             /* REACTION-FIELD ELECTROSTATICS */
804             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
805
806             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
807
808             fscal            = felec;
809
810             fscal            = _mm_and_ps(fscal,cutoff_mask);
811
812             /* Calculate temporary vectorial force */
813             tx               = _mm_mul_ps(fscal,dx30);
814             ty               = _mm_mul_ps(fscal,dy30);
815             tz               = _mm_mul_ps(fscal,dz30);
816
817             /* Update vectorial force */
818             fix3             = _mm_add_ps(fix3,tx);
819             fiy3             = _mm_add_ps(fiy3,ty);
820             fiz3             = _mm_add_ps(fiz3,tz);
821
822             fjptrA             = f+j_coord_offsetA;
823             fjptrB             = f+j_coord_offsetB;
824             fjptrC             = f+j_coord_offsetC;
825             fjptrD             = f+j_coord_offsetD;
826             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
827
828             }
829
830             /* Inner loop uses 90 flops */
831         }
832
833         if(jidx<j_index_end)
834         {
835
836             /* Get j neighbor index, and coordinate index */
837             jnrlistA         = jjnr[jidx];
838             jnrlistB         = jjnr[jidx+1];
839             jnrlistC         = jjnr[jidx+2];
840             jnrlistD         = jjnr[jidx+3];
841             /* Sign of each element will be negative for non-real atoms.
842              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
843              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
844              */
845             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
846             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
847             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
848             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
849             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
850             j_coord_offsetA  = DIM*jnrA;
851             j_coord_offsetB  = DIM*jnrB;
852             j_coord_offsetC  = DIM*jnrC;
853             j_coord_offsetD  = DIM*jnrD;
854
855             /* load j atom coordinates */
856             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
857                                               x+j_coord_offsetC,x+j_coord_offsetD,
858                                               &jx0,&jy0,&jz0);
859
860             /* Calculate displacement vector */
861             dx10             = _mm_sub_ps(ix1,jx0);
862             dy10             = _mm_sub_ps(iy1,jy0);
863             dz10             = _mm_sub_ps(iz1,jz0);
864             dx20             = _mm_sub_ps(ix2,jx0);
865             dy20             = _mm_sub_ps(iy2,jy0);
866             dz20             = _mm_sub_ps(iz2,jz0);
867             dx30             = _mm_sub_ps(ix3,jx0);
868             dy30             = _mm_sub_ps(iy3,jy0);
869             dz30             = _mm_sub_ps(iz3,jz0);
870
871             /* Calculate squared distance and things based on it */
872             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
873             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
874             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
875
876             rinv10           = gmx_mm_invsqrt_ps(rsq10);
877             rinv20           = gmx_mm_invsqrt_ps(rsq20);
878             rinv30           = gmx_mm_invsqrt_ps(rsq30);
879
880             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
881             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
882             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
883
884             /* Load parameters for j particles */
885             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
886                                                               charge+jnrC+0,charge+jnrD+0);
887
888             /**************************
889              * CALCULATE INTERACTIONS *
890              **************************/
891
892             if (gmx_mm_any_lt(rsq10,rcutoff2))
893             {
894
895             /* Compute parameters for interactions between i and j atoms */
896             qq10             = _mm_mul_ps(iq1,jq0);
897
898             /* REACTION-FIELD ELECTROSTATICS */
899             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
900
901             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
902
903             fscal            = felec;
904
905             fscal            = _mm_and_ps(fscal,cutoff_mask);
906
907             fscal            = _mm_andnot_ps(dummy_mask,fscal);
908
909             /* Calculate temporary vectorial force */
910             tx               = _mm_mul_ps(fscal,dx10);
911             ty               = _mm_mul_ps(fscal,dy10);
912             tz               = _mm_mul_ps(fscal,dz10);
913
914             /* Update vectorial force */
915             fix1             = _mm_add_ps(fix1,tx);
916             fiy1             = _mm_add_ps(fiy1,ty);
917             fiz1             = _mm_add_ps(fiz1,tz);
918
919             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
920             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
921             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
922             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
923             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
924
925             }
926
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             if (gmx_mm_any_lt(rsq20,rcutoff2))
932             {
933
934             /* Compute parameters for interactions between i and j atoms */
935             qq20             = _mm_mul_ps(iq2,jq0);
936
937             /* REACTION-FIELD ELECTROSTATICS */
938             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
939
940             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
941
942             fscal            = felec;
943
944             fscal            = _mm_and_ps(fscal,cutoff_mask);
945
946             fscal            = _mm_andnot_ps(dummy_mask,fscal);
947
948             /* Calculate temporary vectorial force */
949             tx               = _mm_mul_ps(fscal,dx20);
950             ty               = _mm_mul_ps(fscal,dy20);
951             tz               = _mm_mul_ps(fscal,dz20);
952
953             /* Update vectorial force */
954             fix2             = _mm_add_ps(fix2,tx);
955             fiy2             = _mm_add_ps(fiy2,ty);
956             fiz2             = _mm_add_ps(fiz2,tz);
957
958             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
959             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
960             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
961             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
962             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
963
964             }
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             if (gmx_mm_any_lt(rsq30,rcutoff2))
971             {
972
973             /* Compute parameters for interactions between i and j atoms */
974             qq30             = _mm_mul_ps(iq3,jq0);
975
976             /* REACTION-FIELD ELECTROSTATICS */
977             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
978
979             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
980
981             fscal            = felec;
982
983             fscal            = _mm_and_ps(fscal,cutoff_mask);
984
985             fscal            = _mm_andnot_ps(dummy_mask,fscal);
986
987             /* Calculate temporary vectorial force */
988             tx               = _mm_mul_ps(fscal,dx30);
989             ty               = _mm_mul_ps(fscal,dy30);
990             tz               = _mm_mul_ps(fscal,dz30);
991
992             /* Update vectorial force */
993             fix3             = _mm_add_ps(fix3,tx);
994             fiy3             = _mm_add_ps(fiy3,ty);
995             fiz3             = _mm_add_ps(fiz3,tz);
996
997             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
998             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
999             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1000             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1001             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1002
1003             }
1004
1005             /* Inner loop uses 90 flops */
1006         }
1007
1008         /* End of innermost loop */
1009
1010         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1011                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1012
1013         /* Increment number of inner iterations */
1014         inneriter                  += j_index_end - j_index_start;
1015
1016         /* Outer loop uses 18 flops */
1017     }
1018
1019     /* Increment number of outer iterations */
1020     outeriter        += nri;
1021
1022     /* Update outer/inner flops */
1023
1024     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*90);
1025 }