Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwNone_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4P1_VF_sse4_1_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwNone_GeomW4P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm_set1_ps(fr->ic->k_rf);
116     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
117     crf              = _mm_set1_ps(fr->ic->c_rf);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
122     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
123     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
124
125     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
126     rcutoff_scalar   = fr->rcoulomb;
127     rcutoff          = _mm_set1_ps(rcutoff_scalar);
128     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
161                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
162
163         fix1             = _mm_setzero_ps();
164         fiy1             = _mm_setzero_ps();
165         fiz1             = _mm_setzero_ps();
166         fix2             = _mm_setzero_ps();
167         fiy2             = _mm_setzero_ps();
168         fiz2             = _mm_setzero_ps();
169         fix3             = _mm_setzero_ps();
170         fiy3             = _mm_setzero_ps();
171         fiz3             = _mm_setzero_ps();
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               x+j_coord_offsetC,x+j_coord_offsetD,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx10             = _mm_sub_ps(ix1,jx0);
197             dy10             = _mm_sub_ps(iy1,jy0);
198             dz10             = _mm_sub_ps(iz1,jz0);
199             dx20             = _mm_sub_ps(ix2,jx0);
200             dy20             = _mm_sub_ps(iy2,jy0);
201             dz20             = _mm_sub_ps(iz2,jz0);
202             dx30             = _mm_sub_ps(ix3,jx0);
203             dy30             = _mm_sub_ps(iy3,jy0);
204             dz30             = _mm_sub_ps(iz3,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
208             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
209             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
210
211             rinv10           = gmx_mm_invsqrt_ps(rsq10);
212             rinv20           = gmx_mm_invsqrt_ps(rsq20);
213             rinv30           = gmx_mm_invsqrt_ps(rsq30);
214
215             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
216             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
217             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221                                                               charge+jnrC+0,charge+jnrD+0);
222
223             fjx0             = _mm_setzero_ps();
224             fjy0             = _mm_setzero_ps();
225             fjz0             = _mm_setzero_ps();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             if (gmx_mm_any_lt(rsq10,rcutoff2))
232             {
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq10             = _mm_mul_ps(iq1,jq0);
236
237             /* REACTION-FIELD ELECTROSTATICS */
238             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
239             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
240
241             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             velec            = _mm_and_ps(velec,cutoff_mask);
245             velecsum         = _mm_add_ps(velecsum,velec);
246
247             fscal            = felec;
248
249             fscal            = _mm_and_ps(fscal,cutoff_mask);
250
251             /* Calculate temporary vectorial force */
252             tx               = _mm_mul_ps(fscal,dx10);
253             ty               = _mm_mul_ps(fscal,dy10);
254             tz               = _mm_mul_ps(fscal,dz10);
255
256             /* Update vectorial force */
257             fix1             = _mm_add_ps(fix1,tx);
258             fiy1             = _mm_add_ps(fiy1,ty);
259             fiz1             = _mm_add_ps(fiz1,tz);
260
261             fjx0             = _mm_add_ps(fjx0,tx);
262             fjy0             = _mm_add_ps(fjy0,ty);
263             fjz0             = _mm_add_ps(fjz0,tz);
264
265             }
266
267             /**************************
268              * CALCULATE INTERACTIONS *
269              **************************/
270
271             if (gmx_mm_any_lt(rsq20,rcutoff2))
272             {
273
274             /* Compute parameters for interactions between i and j atoms */
275             qq20             = _mm_mul_ps(iq2,jq0);
276
277             /* REACTION-FIELD ELECTROSTATICS */
278             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
279             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
280
281             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velec            = _mm_and_ps(velec,cutoff_mask);
285             velecsum         = _mm_add_ps(velecsum,velec);
286
287             fscal            = felec;
288
289             fscal            = _mm_and_ps(fscal,cutoff_mask);
290
291             /* Calculate temporary vectorial force */
292             tx               = _mm_mul_ps(fscal,dx20);
293             ty               = _mm_mul_ps(fscal,dy20);
294             tz               = _mm_mul_ps(fscal,dz20);
295
296             /* Update vectorial force */
297             fix2             = _mm_add_ps(fix2,tx);
298             fiy2             = _mm_add_ps(fiy2,ty);
299             fiz2             = _mm_add_ps(fiz2,tz);
300
301             fjx0             = _mm_add_ps(fjx0,tx);
302             fjy0             = _mm_add_ps(fjy0,ty);
303             fjz0             = _mm_add_ps(fjz0,tz);
304
305             }
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             if (gmx_mm_any_lt(rsq30,rcutoff2))
312             {
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq30             = _mm_mul_ps(iq3,jq0);
316
317             /* REACTION-FIELD ELECTROSTATICS */
318             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
319             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
320
321             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velec            = _mm_and_ps(velec,cutoff_mask);
325             velecsum         = _mm_add_ps(velecsum,velec);
326
327             fscal            = felec;
328
329             fscal            = _mm_and_ps(fscal,cutoff_mask);
330
331             /* Calculate temporary vectorial force */
332             tx               = _mm_mul_ps(fscal,dx30);
333             ty               = _mm_mul_ps(fscal,dy30);
334             tz               = _mm_mul_ps(fscal,dz30);
335
336             /* Update vectorial force */
337             fix3             = _mm_add_ps(fix3,tx);
338             fiy3             = _mm_add_ps(fiy3,ty);
339             fiz3             = _mm_add_ps(fiz3,tz);
340
341             fjx0             = _mm_add_ps(fjx0,tx);
342             fjy0             = _mm_add_ps(fjy0,ty);
343             fjz0             = _mm_add_ps(fjz0,tz);
344
345             }
346
347             fjptrA             = f+j_coord_offsetA;
348             fjptrB             = f+j_coord_offsetB;
349             fjptrC             = f+j_coord_offsetC;
350             fjptrD             = f+j_coord_offsetD;
351
352             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
353
354             /* Inner loop uses 108 flops */
355         }
356
357         if(jidx<j_index_end)
358         {
359
360             /* Get j neighbor index, and coordinate index */
361             jnrlistA         = jjnr[jidx];
362             jnrlistB         = jjnr[jidx+1];
363             jnrlistC         = jjnr[jidx+2];
364             jnrlistD         = jjnr[jidx+3];
365             /* Sign of each element will be negative for non-real atoms.
366              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
367              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
368              */
369             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
370             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
371             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
372             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
373             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
374             j_coord_offsetA  = DIM*jnrA;
375             j_coord_offsetB  = DIM*jnrB;
376             j_coord_offsetC  = DIM*jnrC;
377             j_coord_offsetD  = DIM*jnrD;
378
379             /* load j atom coordinates */
380             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
381                                               x+j_coord_offsetC,x+j_coord_offsetD,
382                                               &jx0,&jy0,&jz0);
383
384             /* Calculate displacement vector */
385             dx10             = _mm_sub_ps(ix1,jx0);
386             dy10             = _mm_sub_ps(iy1,jy0);
387             dz10             = _mm_sub_ps(iz1,jz0);
388             dx20             = _mm_sub_ps(ix2,jx0);
389             dy20             = _mm_sub_ps(iy2,jy0);
390             dz20             = _mm_sub_ps(iz2,jz0);
391             dx30             = _mm_sub_ps(ix3,jx0);
392             dy30             = _mm_sub_ps(iy3,jy0);
393             dz30             = _mm_sub_ps(iz3,jz0);
394
395             /* Calculate squared distance and things based on it */
396             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
397             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
398             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
399
400             rinv10           = gmx_mm_invsqrt_ps(rsq10);
401             rinv20           = gmx_mm_invsqrt_ps(rsq20);
402             rinv30           = gmx_mm_invsqrt_ps(rsq30);
403
404             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
405             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
406             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
407
408             /* Load parameters for j particles */
409             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
410                                                               charge+jnrC+0,charge+jnrD+0);
411
412             fjx0             = _mm_setzero_ps();
413             fjy0             = _mm_setzero_ps();
414             fjz0             = _mm_setzero_ps();
415
416             /**************************
417              * CALCULATE INTERACTIONS *
418              **************************/
419
420             if (gmx_mm_any_lt(rsq10,rcutoff2))
421             {
422
423             /* Compute parameters for interactions between i and j atoms */
424             qq10             = _mm_mul_ps(iq1,jq0);
425
426             /* REACTION-FIELD ELECTROSTATICS */
427             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
428             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
429
430             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
431
432             /* Update potential sum for this i atom from the interaction with this j atom. */
433             velec            = _mm_and_ps(velec,cutoff_mask);
434             velec            = _mm_andnot_ps(dummy_mask,velec);
435             velecsum         = _mm_add_ps(velecsum,velec);
436
437             fscal            = felec;
438
439             fscal            = _mm_and_ps(fscal,cutoff_mask);
440
441             fscal            = _mm_andnot_ps(dummy_mask,fscal);
442
443             /* Calculate temporary vectorial force */
444             tx               = _mm_mul_ps(fscal,dx10);
445             ty               = _mm_mul_ps(fscal,dy10);
446             tz               = _mm_mul_ps(fscal,dz10);
447
448             /* Update vectorial force */
449             fix1             = _mm_add_ps(fix1,tx);
450             fiy1             = _mm_add_ps(fiy1,ty);
451             fiz1             = _mm_add_ps(fiz1,tz);
452
453             fjx0             = _mm_add_ps(fjx0,tx);
454             fjy0             = _mm_add_ps(fjy0,ty);
455             fjz0             = _mm_add_ps(fjz0,tz);
456
457             }
458
459             /**************************
460              * CALCULATE INTERACTIONS *
461              **************************/
462
463             if (gmx_mm_any_lt(rsq20,rcutoff2))
464             {
465
466             /* Compute parameters for interactions between i and j atoms */
467             qq20             = _mm_mul_ps(iq2,jq0);
468
469             /* REACTION-FIELD ELECTROSTATICS */
470             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
471             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
472
473             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
474
475             /* Update potential sum for this i atom from the interaction with this j atom. */
476             velec            = _mm_and_ps(velec,cutoff_mask);
477             velec            = _mm_andnot_ps(dummy_mask,velec);
478             velecsum         = _mm_add_ps(velecsum,velec);
479
480             fscal            = felec;
481
482             fscal            = _mm_and_ps(fscal,cutoff_mask);
483
484             fscal            = _mm_andnot_ps(dummy_mask,fscal);
485
486             /* Calculate temporary vectorial force */
487             tx               = _mm_mul_ps(fscal,dx20);
488             ty               = _mm_mul_ps(fscal,dy20);
489             tz               = _mm_mul_ps(fscal,dz20);
490
491             /* Update vectorial force */
492             fix2             = _mm_add_ps(fix2,tx);
493             fiy2             = _mm_add_ps(fiy2,ty);
494             fiz2             = _mm_add_ps(fiz2,tz);
495
496             fjx0             = _mm_add_ps(fjx0,tx);
497             fjy0             = _mm_add_ps(fjy0,ty);
498             fjz0             = _mm_add_ps(fjz0,tz);
499
500             }
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             if (gmx_mm_any_lt(rsq30,rcutoff2))
507             {
508
509             /* Compute parameters for interactions between i and j atoms */
510             qq30             = _mm_mul_ps(iq3,jq0);
511
512             /* REACTION-FIELD ELECTROSTATICS */
513             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
514             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
515
516             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _mm_and_ps(velec,cutoff_mask);
520             velec            = _mm_andnot_ps(dummy_mask,velec);
521             velecsum         = _mm_add_ps(velecsum,velec);
522
523             fscal            = felec;
524
525             fscal            = _mm_and_ps(fscal,cutoff_mask);
526
527             fscal            = _mm_andnot_ps(dummy_mask,fscal);
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_ps(fscal,dx30);
531             ty               = _mm_mul_ps(fscal,dy30);
532             tz               = _mm_mul_ps(fscal,dz30);
533
534             /* Update vectorial force */
535             fix3             = _mm_add_ps(fix3,tx);
536             fiy3             = _mm_add_ps(fiy3,ty);
537             fiz3             = _mm_add_ps(fiz3,tz);
538
539             fjx0             = _mm_add_ps(fjx0,tx);
540             fjy0             = _mm_add_ps(fjy0,ty);
541             fjz0             = _mm_add_ps(fjz0,tz);
542
543             }
544
545             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
546             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
547             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
548             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
549
550             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
551
552             /* Inner loop uses 108 flops */
553         }
554
555         /* End of innermost loop */
556
557         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
558                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
559
560         ggid                        = gid[iidx];
561         /* Update potential energies */
562         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
563
564         /* Increment number of inner iterations */
565         inneriter                  += j_index_end - j_index_start;
566
567         /* Outer loop uses 19 flops */
568     }
569
570     /* Increment number of outer iterations */
571     outeriter        += nri;
572
573     /* Update outer/inner flops */
574
575     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*108);
576 }
577 /*
578  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4P1_F_sse4_1_single
579  * Electrostatics interaction: ReactionField
580  * VdW interaction:            None
581  * Geometry:                   Water4-Particle
582  * Calculate force/pot:        Force
583  */
584 void
585 nb_kernel_ElecRFCut_VdwNone_GeomW4P1_F_sse4_1_single
586                     (t_nblist                    * gmx_restrict       nlist,
587                      rvec                        * gmx_restrict          xx,
588                      rvec                        * gmx_restrict          ff,
589                      t_forcerec                  * gmx_restrict          fr,
590                      t_mdatoms                   * gmx_restrict     mdatoms,
591                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
592                      t_nrnb                      * gmx_restrict        nrnb)
593 {
594     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
595      * just 0 for non-waters.
596      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
597      * jnr indices corresponding to data put in the four positions in the SIMD register.
598      */
599     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
600     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
601     int              jnrA,jnrB,jnrC,jnrD;
602     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
603     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
604     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
605     real             rcutoff_scalar;
606     real             *shiftvec,*fshift,*x,*f;
607     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
608     real             scratch[4*DIM];
609     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
610     int              vdwioffset1;
611     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
612     int              vdwioffset2;
613     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
614     int              vdwioffset3;
615     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
616     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
617     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
618     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
619     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
620     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
621     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
622     real             *charge;
623     __m128           dummy_mask,cutoff_mask;
624     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
625     __m128           one     = _mm_set1_ps(1.0);
626     __m128           two     = _mm_set1_ps(2.0);
627     x                = xx[0];
628     f                = ff[0];
629
630     nri              = nlist->nri;
631     iinr             = nlist->iinr;
632     jindex           = nlist->jindex;
633     jjnr             = nlist->jjnr;
634     shiftidx         = nlist->shift;
635     gid              = nlist->gid;
636     shiftvec         = fr->shift_vec[0];
637     fshift           = fr->fshift[0];
638     facel            = _mm_set1_ps(fr->epsfac);
639     charge           = mdatoms->chargeA;
640     krf              = _mm_set1_ps(fr->ic->k_rf);
641     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
642     crf              = _mm_set1_ps(fr->ic->c_rf);
643
644     /* Setup water-specific parameters */
645     inr              = nlist->iinr[0];
646     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
647     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
648     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
649
650     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
651     rcutoff_scalar   = fr->rcoulomb;
652     rcutoff          = _mm_set1_ps(rcutoff_scalar);
653     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
654
655     /* Avoid stupid compiler warnings */
656     jnrA = jnrB = jnrC = jnrD = 0;
657     j_coord_offsetA = 0;
658     j_coord_offsetB = 0;
659     j_coord_offsetC = 0;
660     j_coord_offsetD = 0;
661
662     outeriter        = 0;
663     inneriter        = 0;
664
665     for(iidx=0;iidx<4*DIM;iidx++)
666     {
667         scratch[iidx] = 0.0;
668     }
669
670     /* Start outer loop over neighborlists */
671     for(iidx=0; iidx<nri; iidx++)
672     {
673         /* Load shift vector for this list */
674         i_shift_offset   = DIM*shiftidx[iidx];
675
676         /* Load limits for loop over neighbors */
677         j_index_start    = jindex[iidx];
678         j_index_end      = jindex[iidx+1];
679
680         /* Get outer coordinate index */
681         inr              = iinr[iidx];
682         i_coord_offset   = DIM*inr;
683
684         /* Load i particle coords and add shift vector */
685         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
686                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
687
688         fix1             = _mm_setzero_ps();
689         fiy1             = _mm_setzero_ps();
690         fiz1             = _mm_setzero_ps();
691         fix2             = _mm_setzero_ps();
692         fiy2             = _mm_setzero_ps();
693         fiz2             = _mm_setzero_ps();
694         fix3             = _mm_setzero_ps();
695         fiy3             = _mm_setzero_ps();
696         fiz3             = _mm_setzero_ps();
697
698         /* Start inner kernel loop */
699         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
700         {
701
702             /* Get j neighbor index, and coordinate index */
703             jnrA             = jjnr[jidx];
704             jnrB             = jjnr[jidx+1];
705             jnrC             = jjnr[jidx+2];
706             jnrD             = jjnr[jidx+3];
707             j_coord_offsetA  = DIM*jnrA;
708             j_coord_offsetB  = DIM*jnrB;
709             j_coord_offsetC  = DIM*jnrC;
710             j_coord_offsetD  = DIM*jnrD;
711
712             /* load j atom coordinates */
713             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
714                                               x+j_coord_offsetC,x+j_coord_offsetD,
715                                               &jx0,&jy0,&jz0);
716
717             /* Calculate displacement vector */
718             dx10             = _mm_sub_ps(ix1,jx0);
719             dy10             = _mm_sub_ps(iy1,jy0);
720             dz10             = _mm_sub_ps(iz1,jz0);
721             dx20             = _mm_sub_ps(ix2,jx0);
722             dy20             = _mm_sub_ps(iy2,jy0);
723             dz20             = _mm_sub_ps(iz2,jz0);
724             dx30             = _mm_sub_ps(ix3,jx0);
725             dy30             = _mm_sub_ps(iy3,jy0);
726             dz30             = _mm_sub_ps(iz3,jz0);
727
728             /* Calculate squared distance and things based on it */
729             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
730             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
731             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
732
733             rinv10           = gmx_mm_invsqrt_ps(rsq10);
734             rinv20           = gmx_mm_invsqrt_ps(rsq20);
735             rinv30           = gmx_mm_invsqrt_ps(rsq30);
736
737             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
738             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
739             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
740
741             /* Load parameters for j particles */
742             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
743                                                               charge+jnrC+0,charge+jnrD+0);
744
745             fjx0             = _mm_setzero_ps();
746             fjy0             = _mm_setzero_ps();
747             fjz0             = _mm_setzero_ps();
748
749             /**************************
750              * CALCULATE INTERACTIONS *
751              **************************/
752
753             if (gmx_mm_any_lt(rsq10,rcutoff2))
754             {
755
756             /* Compute parameters for interactions between i and j atoms */
757             qq10             = _mm_mul_ps(iq1,jq0);
758
759             /* REACTION-FIELD ELECTROSTATICS */
760             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
761
762             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
763
764             fscal            = felec;
765
766             fscal            = _mm_and_ps(fscal,cutoff_mask);
767
768             /* Calculate temporary vectorial force */
769             tx               = _mm_mul_ps(fscal,dx10);
770             ty               = _mm_mul_ps(fscal,dy10);
771             tz               = _mm_mul_ps(fscal,dz10);
772
773             /* Update vectorial force */
774             fix1             = _mm_add_ps(fix1,tx);
775             fiy1             = _mm_add_ps(fiy1,ty);
776             fiz1             = _mm_add_ps(fiz1,tz);
777
778             fjx0             = _mm_add_ps(fjx0,tx);
779             fjy0             = _mm_add_ps(fjy0,ty);
780             fjz0             = _mm_add_ps(fjz0,tz);
781
782             }
783
784             /**************************
785              * CALCULATE INTERACTIONS *
786              **************************/
787
788             if (gmx_mm_any_lt(rsq20,rcutoff2))
789             {
790
791             /* Compute parameters for interactions between i and j atoms */
792             qq20             = _mm_mul_ps(iq2,jq0);
793
794             /* REACTION-FIELD ELECTROSTATICS */
795             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
796
797             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
798
799             fscal            = felec;
800
801             fscal            = _mm_and_ps(fscal,cutoff_mask);
802
803             /* Calculate temporary vectorial force */
804             tx               = _mm_mul_ps(fscal,dx20);
805             ty               = _mm_mul_ps(fscal,dy20);
806             tz               = _mm_mul_ps(fscal,dz20);
807
808             /* Update vectorial force */
809             fix2             = _mm_add_ps(fix2,tx);
810             fiy2             = _mm_add_ps(fiy2,ty);
811             fiz2             = _mm_add_ps(fiz2,tz);
812
813             fjx0             = _mm_add_ps(fjx0,tx);
814             fjy0             = _mm_add_ps(fjy0,ty);
815             fjz0             = _mm_add_ps(fjz0,tz);
816
817             }
818
819             /**************************
820              * CALCULATE INTERACTIONS *
821              **************************/
822
823             if (gmx_mm_any_lt(rsq30,rcutoff2))
824             {
825
826             /* Compute parameters for interactions between i and j atoms */
827             qq30             = _mm_mul_ps(iq3,jq0);
828
829             /* REACTION-FIELD ELECTROSTATICS */
830             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
831
832             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
833
834             fscal            = felec;
835
836             fscal            = _mm_and_ps(fscal,cutoff_mask);
837
838             /* Calculate temporary vectorial force */
839             tx               = _mm_mul_ps(fscal,dx30);
840             ty               = _mm_mul_ps(fscal,dy30);
841             tz               = _mm_mul_ps(fscal,dz30);
842
843             /* Update vectorial force */
844             fix3             = _mm_add_ps(fix3,tx);
845             fiy3             = _mm_add_ps(fiy3,ty);
846             fiz3             = _mm_add_ps(fiz3,tz);
847
848             fjx0             = _mm_add_ps(fjx0,tx);
849             fjy0             = _mm_add_ps(fjy0,ty);
850             fjz0             = _mm_add_ps(fjz0,tz);
851
852             }
853
854             fjptrA             = f+j_coord_offsetA;
855             fjptrB             = f+j_coord_offsetB;
856             fjptrC             = f+j_coord_offsetC;
857             fjptrD             = f+j_coord_offsetD;
858
859             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
860
861             /* Inner loop uses 90 flops */
862         }
863
864         if(jidx<j_index_end)
865         {
866
867             /* Get j neighbor index, and coordinate index */
868             jnrlistA         = jjnr[jidx];
869             jnrlistB         = jjnr[jidx+1];
870             jnrlistC         = jjnr[jidx+2];
871             jnrlistD         = jjnr[jidx+3];
872             /* Sign of each element will be negative for non-real atoms.
873              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
874              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
875              */
876             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
877             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
878             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
879             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
880             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
881             j_coord_offsetA  = DIM*jnrA;
882             j_coord_offsetB  = DIM*jnrB;
883             j_coord_offsetC  = DIM*jnrC;
884             j_coord_offsetD  = DIM*jnrD;
885
886             /* load j atom coordinates */
887             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
888                                               x+j_coord_offsetC,x+j_coord_offsetD,
889                                               &jx0,&jy0,&jz0);
890
891             /* Calculate displacement vector */
892             dx10             = _mm_sub_ps(ix1,jx0);
893             dy10             = _mm_sub_ps(iy1,jy0);
894             dz10             = _mm_sub_ps(iz1,jz0);
895             dx20             = _mm_sub_ps(ix2,jx0);
896             dy20             = _mm_sub_ps(iy2,jy0);
897             dz20             = _mm_sub_ps(iz2,jz0);
898             dx30             = _mm_sub_ps(ix3,jx0);
899             dy30             = _mm_sub_ps(iy3,jy0);
900             dz30             = _mm_sub_ps(iz3,jz0);
901
902             /* Calculate squared distance and things based on it */
903             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
904             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
905             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
906
907             rinv10           = gmx_mm_invsqrt_ps(rsq10);
908             rinv20           = gmx_mm_invsqrt_ps(rsq20);
909             rinv30           = gmx_mm_invsqrt_ps(rsq30);
910
911             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
912             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
913             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
914
915             /* Load parameters for j particles */
916             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
917                                                               charge+jnrC+0,charge+jnrD+0);
918
919             fjx0             = _mm_setzero_ps();
920             fjy0             = _mm_setzero_ps();
921             fjz0             = _mm_setzero_ps();
922
923             /**************************
924              * CALCULATE INTERACTIONS *
925              **************************/
926
927             if (gmx_mm_any_lt(rsq10,rcutoff2))
928             {
929
930             /* Compute parameters for interactions between i and j atoms */
931             qq10             = _mm_mul_ps(iq1,jq0);
932
933             /* REACTION-FIELD ELECTROSTATICS */
934             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
935
936             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
937
938             fscal            = felec;
939
940             fscal            = _mm_and_ps(fscal,cutoff_mask);
941
942             fscal            = _mm_andnot_ps(dummy_mask,fscal);
943
944             /* Calculate temporary vectorial force */
945             tx               = _mm_mul_ps(fscal,dx10);
946             ty               = _mm_mul_ps(fscal,dy10);
947             tz               = _mm_mul_ps(fscal,dz10);
948
949             /* Update vectorial force */
950             fix1             = _mm_add_ps(fix1,tx);
951             fiy1             = _mm_add_ps(fiy1,ty);
952             fiz1             = _mm_add_ps(fiz1,tz);
953
954             fjx0             = _mm_add_ps(fjx0,tx);
955             fjy0             = _mm_add_ps(fjy0,ty);
956             fjz0             = _mm_add_ps(fjz0,tz);
957
958             }
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             if (gmx_mm_any_lt(rsq20,rcutoff2))
965             {
966
967             /* Compute parameters for interactions between i and j atoms */
968             qq20             = _mm_mul_ps(iq2,jq0);
969
970             /* REACTION-FIELD ELECTROSTATICS */
971             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
972
973             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
974
975             fscal            = felec;
976
977             fscal            = _mm_and_ps(fscal,cutoff_mask);
978
979             fscal            = _mm_andnot_ps(dummy_mask,fscal);
980
981             /* Calculate temporary vectorial force */
982             tx               = _mm_mul_ps(fscal,dx20);
983             ty               = _mm_mul_ps(fscal,dy20);
984             tz               = _mm_mul_ps(fscal,dz20);
985
986             /* Update vectorial force */
987             fix2             = _mm_add_ps(fix2,tx);
988             fiy2             = _mm_add_ps(fiy2,ty);
989             fiz2             = _mm_add_ps(fiz2,tz);
990
991             fjx0             = _mm_add_ps(fjx0,tx);
992             fjy0             = _mm_add_ps(fjy0,ty);
993             fjz0             = _mm_add_ps(fjz0,tz);
994
995             }
996
997             /**************************
998              * CALCULATE INTERACTIONS *
999              **************************/
1000
1001             if (gmx_mm_any_lt(rsq30,rcutoff2))
1002             {
1003
1004             /* Compute parameters for interactions between i and j atoms */
1005             qq30             = _mm_mul_ps(iq3,jq0);
1006
1007             /* REACTION-FIELD ELECTROSTATICS */
1008             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1009
1010             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1011
1012             fscal            = felec;
1013
1014             fscal            = _mm_and_ps(fscal,cutoff_mask);
1015
1016             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1017
1018             /* Calculate temporary vectorial force */
1019             tx               = _mm_mul_ps(fscal,dx30);
1020             ty               = _mm_mul_ps(fscal,dy30);
1021             tz               = _mm_mul_ps(fscal,dz30);
1022
1023             /* Update vectorial force */
1024             fix3             = _mm_add_ps(fix3,tx);
1025             fiy3             = _mm_add_ps(fiy3,ty);
1026             fiz3             = _mm_add_ps(fiz3,tz);
1027
1028             fjx0             = _mm_add_ps(fjx0,tx);
1029             fjy0             = _mm_add_ps(fjy0,ty);
1030             fjz0             = _mm_add_ps(fjz0,tz);
1031
1032             }
1033
1034             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1035             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1036             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1037             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1038
1039             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1040
1041             /* Inner loop uses 90 flops */
1042         }
1043
1044         /* End of innermost loop */
1045
1046         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1047                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1048
1049         /* Increment number of inner iterations */
1050         inneriter                  += j_index_end - j_index_start;
1051
1052         /* Outer loop uses 18 flops */
1053     }
1054
1055     /* Increment number of outer iterations */
1056     outeriter        += nri;
1057
1058     /* Update outer/inner flops */
1059
1060     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*90);
1061 }