d308faee02abcfbd7e9500c59f6643549c0fb4f0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse4_1_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     krf              = _mm_set1_ps(fr->ic->k_rf);
108     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
109     crf              = _mm_set1_ps(fr->ic->c_rf);
110
111     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
112     rcutoff_scalar   = fr->rcoulomb;
113     rcutoff          = _mm_set1_ps(rcutoff_scalar);
114     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = jnrC = jnrD = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120     j_coord_offsetC = 0;
121     j_coord_offsetD = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     for(iidx=0;iidx<4*DIM;iidx++)
127     {
128         scratch[iidx] = 0.0;
129     }
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
147
148         fix0             = _mm_setzero_ps();
149         fiy0             = _mm_setzero_ps();
150         fiz0             = _mm_setzero_ps();
151
152         /* Load parameters for i particles */
153         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
154
155         /* Reset potential sums */
156         velecsum         = _mm_setzero_ps();
157
158         /* Start inner kernel loop */
159         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
160         {
161
162             /* Get j neighbor index, and coordinate index */
163             jnrA             = jjnr[jidx];
164             jnrB             = jjnr[jidx+1];
165             jnrC             = jjnr[jidx+2];
166             jnrD             = jjnr[jidx+3];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169             j_coord_offsetC  = DIM*jnrC;
170             j_coord_offsetD  = DIM*jnrD;
171
172             /* load j atom coordinates */
173             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
174                                               x+j_coord_offsetC,x+j_coord_offsetD,
175                                               &jx0,&jy0,&jz0);
176
177             /* Calculate displacement vector */
178             dx00             = _mm_sub_ps(ix0,jx0);
179             dy00             = _mm_sub_ps(iy0,jy0);
180             dz00             = _mm_sub_ps(iz0,jz0);
181
182             /* Calculate squared distance and things based on it */
183             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
184
185             rinv00           = gmx_mm_invsqrt_ps(rsq00);
186
187             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
188
189             /* Load parameters for j particles */
190             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
191                                                               charge+jnrC+0,charge+jnrD+0);
192
193             /**************************
194              * CALCULATE INTERACTIONS *
195              **************************/
196
197             if (gmx_mm_any_lt(rsq00,rcutoff2))
198             {
199
200             /* Compute parameters for interactions between i and j atoms */
201             qq00             = _mm_mul_ps(iq0,jq0);
202
203             /* REACTION-FIELD ELECTROSTATICS */
204             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
205             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
206
207             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
208
209             /* Update potential sum for this i atom from the interaction with this j atom. */
210             velec            = _mm_and_ps(velec,cutoff_mask);
211             velecsum         = _mm_add_ps(velecsum,velec);
212
213             fscal            = felec;
214
215             fscal            = _mm_and_ps(fscal,cutoff_mask);
216
217             /* Calculate temporary vectorial force */
218             tx               = _mm_mul_ps(fscal,dx00);
219             ty               = _mm_mul_ps(fscal,dy00);
220             tz               = _mm_mul_ps(fscal,dz00);
221
222             /* Update vectorial force */
223             fix0             = _mm_add_ps(fix0,tx);
224             fiy0             = _mm_add_ps(fiy0,ty);
225             fiz0             = _mm_add_ps(fiz0,tz);
226
227             fjptrA             = f+j_coord_offsetA;
228             fjptrB             = f+j_coord_offsetB;
229             fjptrC             = f+j_coord_offsetC;
230             fjptrD             = f+j_coord_offsetD;
231             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
232
233             }
234
235             /* Inner loop uses 36 flops */
236         }
237
238         if(jidx<j_index_end)
239         {
240
241             /* Get j neighbor index, and coordinate index */
242             jnrlistA         = jjnr[jidx];
243             jnrlistB         = jjnr[jidx+1];
244             jnrlistC         = jjnr[jidx+2];
245             jnrlistD         = jjnr[jidx+3];
246             /* Sign of each element will be negative for non-real atoms.
247              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
248              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
249              */
250             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
251             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
252             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
253             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
254             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
255             j_coord_offsetA  = DIM*jnrA;
256             j_coord_offsetB  = DIM*jnrB;
257             j_coord_offsetC  = DIM*jnrC;
258             j_coord_offsetD  = DIM*jnrD;
259
260             /* load j atom coordinates */
261             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
262                                               x+j_coord_offsetC,x+j_coord_offsetD,
263                                               &jx0,&jy0,&jz0);
264
265             /* Calculate displacement vector */
266             dx00             = _mm_sub_ps(ix0,jx0);
267             dy00             = _mm_sub_ps(iy0,jy0);
268             dz00             = _mm_sub_ps(iz0,jz0);
269
270             /* Calculate squared distance and things based on it */
271             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
272
273             rinv00           = gmx_mm_invsqrt_ps(rsq00);
274
275             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
276
277             /* Load parameters for j particles */
278             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
279                                                               charge+jnrC+0,charge+jnrD+0);
280
281             /**************************
282              * CALCULATE INTERACTIONS *
283              **************************/
284
285             if (gmx_mm_any_lt(rsq00,rcutoff2))
286             {
287
288             /* Compute parameters for interactions between i and j atoms */
289             qq00             = _mm_mul_ps(iq0,jq0);
290
291             /* REACTION-FIELD ELECTROSTATICS */
292             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
293             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
294
295             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velec            = _mm_and_ps(velec,cutoff_mask);
299             velec            = _mm_andnot_ps(dummy_mask,velec);
300             velecsum         = _mm_add_ps(velecsum,velec);
301
302             fscal            = felec;
303
304             fscal            = _mm_and_ps(fscal,cutoff_mask);
305
306             fscal            = _mm_andnot_ps(dummy_mask,fscal);
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm_mul_ps(fscal,dx00);
310             ty               = _mm_mul_ps(fscal,dy00);
311             tz               = _mm_mul_ps(fscal,dz00);
312
313             /* Update vectorial force */
314             fix0             = _mm_add_ps(fix0,tx);
315             fiy0             = _mm_add_ps(fiy0,ty);
316             fiz0             = _mm_add_ps(fiz0,tz);
317
318             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
319             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
320             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
321             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
322             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
323
324             }
325
326             /* Inner loop uses 36 flops */
327         }
328
329         /* End of innermost loop */
330
331         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
332                                               f+i_coord_offset,fshift+i_shift_offset);
333
334         ggid                        = gid[iidx];
335         /* Update potential energies */
336         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
337
338         /* Increment number of inner iterations */
339         inneriter                  += j_index_end - j_index_start;
340
341         /* Outer loop uses 8 flops */
342     }
343
344     /* Increment number of outer iterations */
345     outeriter        += nri;
346
347     /* Update outer/inner flops */
348
349     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*36);
350 }
351 /*
352  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse4_1_single
353  * Electrostatics interaction: ReactionField
354  * VdW interaction:            None
355  * Geometry:                   Particle-Particle
356  * Calculate force/pot:        Force
357  */
358 void
359 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse4_1_single
360                     (t_nblist                    * gmx_restrict       nlist,
361                      rvec                        * gmx_restrict          xx,
362                      rvec                        * gmx_restrict          ff,
363                      t_forcerec                  * gmx_restrict          fr,
364                      t_mdatoms                   * gmx_restrict     mdatoms,
365                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
366                      t_nrnb                      * gmx_restrict        nrnb)
367 {
368     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
369      * just 0 for non-waters.
370      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
371      * jnr indices corresponding to data put in the four positions in the SIMD register.
372      */
373     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
374     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
375     int              jnrA,jnrB,jnrC,jnrD;
376     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
377     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
378     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
379     real             rcutoff_scalar;
380     real             *shiftvec,*fshift,*x,*f;
381     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
382     real             scratch[4*DIM];
383     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
384     int              vdwioffset0;
385     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
386     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
387     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
388     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
389     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
390     real             *charge;
391     __m128           dummy_mask,cutoff_mask;
392     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
393     __m128           one     = _mm_set1_ps(1.0);
394     __m128           two     = _mm_set1_ps(2.0);
395     x                = xx[0];
396     f                = ff[0];
397
398     nri              = nlist->nri;
399     iinr             = nlist->iinr;
400     jindex           = nlist->jindex;
401     jjnr             = nlist->jjnr;
402     shiftidx         = nlist->shift;
403     gid              = nlist->gid;
404     shiftvec         = fr->shift_vec[0];
405     fshift           = fr->fshift[0];
406     facel            = _mm_set1_ps(fr->epsfac);
407     charge           = mdatoms->chargeA;
408     krf              = _mm_set1_ps(fr->ic->k_rf);
409     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
410     crf              = _mm_set1_ps(fr->ic->c_rf);
411
412     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
413     rcutoff_scalar   = fr->rcoulomb;
414     rcutoff          = _mm_set1_ps(rcutoff_scalar);
415     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
416
417     /* Avoid stupid compiler warnings */
418     jnrA = jnrB = jnrC = jnrD = 0;
419     j_coord_offsetA = 0;
420     j_coord_offsetB = 0;
421     j_coord_offsetC = 0;
422     j_coord_offsetD = 0;
423
424     outeriter        = 0;
425     inneriter        = 0;
426
427     for(iidx=0;iidx<4*DIM;iidx++)
428     {
429         scratch[iidx] = 0.0;
430     }
431
432     /* Start outer loop over neighborlists */
433     for(iidx=0; iidx<nri; iidx++)
434     {
435         /* Load shift vector for this list */
436         i_shift_offset   = DIM*shiftidx[iidx];
437
438         /* Load limits for loop over neighbors */
439         j_index_start    = jindex[iidx];
440         j_index_end      = jindex[iidx+1];
441
442         /* Get outer coordinate index */
443         inr              = iinr[iidx];
444         i_coord_offset   = DIM*inr;
445
446         /* Load i particle coords and add shift vector */
447         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
448
449         fix0             = _mm_setzero_ps();
450         fiy0             = _mm_setzero_ps();
451         fiz0             = _mm_setzero_ps();
452
453         /* Load parameters for i particles */
454         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
455
456         /* Start inner kernel loop */
457         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
458         {
459
460             /* Get j neighbor index, and coordinate index */
461             jnrA             = jjnr[jidx];
462             jnrB             = jjnr[jidx+1];
463             jnrC             = jjnr[jidx+2];
464             jnrD             = jjnr[jidx+3];
465             j_coord_offsetA  = DIM*jnrA;
466             j_coord_offsetB  = DIM*jnrB;
467             j_coord_offsetC  = DIM*jnrC;
468             j_coord_offsetD  = DIM*jnrD;
469
470             /* load j atom coordinates */
471             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
472                                               x+j_coord_offsetC,x+j_coord_offsetD,
473                                               &jx0,&jy0,&jz0);
474
475             /* Calculate displacement vector */
476             dx00             = _mm_sub_ps(ix0,jx0);
477             dy00             = _mm_sub_ps(iy0,jy0);
478             dz00             = _mm_sub_ps(iz0,jz0);
479
480             /* Calculate squared distance and things based on it */
481             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
482
483             rinv00           = gmx_mm_invsqrt_ps(rsq00);
484
485             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
486
487             /* Load parameters for j particles */
488             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
489                                                               charge+jnrC+0,charge+jnrD+0);
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             if (gmx_mm_any_lt(rsq00,rcutoff2))
496             {
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq00             = _mm_mul_ps(iq0,jq0);
500
501             /* REACTION-FIELD ELECTROSTATICS */
502             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
503
504             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
505
506             fscal            = felec;
507
508             fscal            = _mm_and_ps(fscal,cutoff_mask);
509
510             /* Calculate temporary vectorial force */
511             tx               = _mm_mul_ps(fscal,dx00);
512             ty               = _mm_mul_ps(fscal,dy00);
513             tz               = _mm_mul_ps(fscal,dz00);
514
515             /* Update vectorial force */
516             fix0             = _mm_add_ps(fix0,tx);
517             fiy0             = _mm_add_ps(fiy0,ty);
518             fiz0             = _mm_add_ps(fiz0,tz);
519
520             fjptrA             = f+j_coord_offsetA;
521             fjptrB             = f+j_coord_offsetB;
522             fjptrC             = f+j_coord_offsetC;
523             fjptrD             = f+j_coord_offsetD;
524             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
525
526             }
527
528             /* Inner loop uses 30 flops */
529         }
530
531         if(jidx<j_index_end)
532         {
533
534             /* Get j neighbor index, and coordinate index */
535             jnrlistA         = jjnr[jidx];
536             jnrlistB         = jjnr[jidx+1];
537             jnrlistC         = jjnr[jidx+2];
538             jnrlistD         = jjnr[jidx+3];
539             /* Sign of each element will be negative for non-real atoms.
540              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
541              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
542              */
543             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
544             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
545             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
546             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
547             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
548             j_coord_offsetA  = DIM*jnrA;
549             j_coord_offsetB  = DIM*jnrB;
550             j_coord_offsetC  = DIM*jnrC;
551             j_coord_offsetD  = DIM*jnrD;
552
553             /* load j atom coordinates */
554             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
555                                               x+j_coord_offsetC,x+j_coord_offsetD,
556                                               &jx0,&jy0,&jz0);
557
558             /* Calculate displacement vector */
559             dx00             = _mm_sub_ps(ix0,jx0);
560             dy00             = _mm_sub_ps(iy0,jy0);
561             dz00             = _mm_sub_ps(iz0,jz0);
562
563             /* Calculate squared distance and things based on it */
564             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
565
566             rinv00           = gmx_mm_invsqrt_ps(rsq00);
567
568             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
569
570             /* Load parameters for j particles */
571             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
572                                                               charge+jnrC+0,charge+jnrD+0);
573
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             if (gmx_mm_any_lt(rsq00,rcutoff2))
579             {
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq00             = _mm_mul_ps(iq0,jq0);
583
584             /* REACTION-FIELD ELECTROSTATICS */
585             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
586
587             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
588
589             fscal            = felec;
590
591             fscal            = _mm_and_ps(fscal,cutoff_mask);
592
593             fscal            = _mm_andnot_ps(dummy_mask,fscal);
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm_mul_ps(fscal,dx00);
597             ty               = _mm_mul_ps(fscal,dy00);
598             tz               = _mm_mul_ps(fscal,dz00);
599
600             /* Update vectorial force */
601             fix0             = _mm_add_ps(fix0,tx);
602             fiy0             = _mm_add_ps(fiy0,ty);
603             fiz0             = _mm_add_ps(fiz0,tz);
604
605             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
606             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
607             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
608             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
609             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
610
611             }
612
613             /* Inner loop uses 30 flops */
614         }
615
616         /* End of innermost loop */
617
618         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
619                                               f+i_coord_offset,fshift+i_shift_offset);
620
621         /* Increment number of inner iterations */
622         inneriter                  += j_index_end - j_index_start;
623
624         /* Outer loop uses 7 flops */
625     }
626
627     /* Increment number of outer iterations */
628     outeriter        += nri;
629
630     /* Update outer/inner flops */
631
632     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30);
633 }