Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse4_1_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128           dummy_mask,cutoff_mask;
93     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94     __m128           one     = _mm_set1_ps(1.0);
95     __m128           two     = _mm_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm_set1_ps(fr->ic->k_rf);
110     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
111     crf              = _mm_set1_ps(fr->ic->c_rf);
112
113     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
114     rcutoff_scalar   = fr->rcoulomb;
115     rcutoff          = _mm_set1_ps(rcutoff_scalar);
116     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = jnrC = jnrD = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122     j_coord_offsetC = 0;
123     j_coord_offsetD = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     for(iidx=0;iidx<4*DIM;iidx++)
129     {
130         scratch[iidx] = 0.0;
131     }
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149
150         fix0             = _mm_setzero_ps();
151         fiy0             = _mm_setzero_ps();
152         fiz0             = _mm_setzero_ps();
153
154         /* Load parameters for i particles */
155         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
156
157         /* Reset potential sums */
158         velecsum         = _mm_setzero_ps();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             jnrC             = jjnr[jidx+2];
168             jnrD             = jjnr[jidx+3];
169             j_coord_offsetA  = DIM*jnrA;
170             j_coord_offsetB  = DIM*jnrB;
171             j_coord_offsetC  = DIM*jnrC;
172             j_coord_offsetD  = DIM*jnrD;
173
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               x+j_coord_offsetC,x+j_coord_offsetD,
177                                               &jx0,&jy0,&jz0);
178
179             /* Calculate displacement vector */
180             dx00             = _mm_sub_ps(ix0,jx0);
181             dy00             = _mm_sub_ps(iy0,jy0);
182             dz00             = _mm_sub_ps(iz0,jz0);
183
184             /* Calculate squared distance and things based on it */
185             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
186
187             rinv00           = gmx_mm_invsqrt_ps(rsq00);
188
189             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
190
191             /* Load parameters for j particles */
192             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
193                                                               charge+jnrC+0,charge+jnrD+0);
194
195             /**************************
196              * CALCULATE INTERACTIONS *
197              **************************/
198
199             if (gmx_mm_any_lt(rsq00,rcutoff2))
200             {
201
202             /* Compute parameters for interactions between i and j atoms */
203             qq00             = _mm_mul_ps(iq0,jq0);
204
205             /* REACTION-FIELD ELECTROSTATICS */
206             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
207             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
208
209             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
210
211             /* Update potential sum for this i atom from the interaction with this j atom. */
212             velec            = _mm_and_ps(velec,cutoff_mask);
213             velecsum         = _mm_add_ps(velecsum,velec);
214
215             fscal            = felec;
216
217             fscal            = _mm_and_ps(fscal,cutoff_mask);
218
219             /* Calculate temporary vectorial force */
220             tx               = _mm_mul_ps(fscal,dx00);
221             ty               = _mm_mul_ps(fscal,dy00);
222             tz               = _mm_mul_ps(fscal,dz00);
223
224             /* Update vectorial force */
225             fix0             = _mm_add_ps(fix0,tx);
226             fiy0             = _mm_add_ps(fiy0,ty);
227             fiz0             = _mm_add_ps(fiz0,tz);
228
229             fjptrA             = f+j_coord_offsetA;
230             fjptrB             = f+j_coord_offsetB;
231             fjptrC             = f+j_coord_offsetC;
232             fjptrD             = f+j_coord_offsetD;
233             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
234
235             }
236
237             /* Inner loop uses 36 flops */
238         }
239
240         if(jidx<j_index_end)
241         {
242
243             /* Get j neighbor index, and coordinate index */
244             jnrlistA         = jjnr[jidx];
245             jnrlistB         = jjnr[jidx+1];
246             jnrlistC         = jjnr[jidx+2];
247             jnrlistD         = jjnr[jidx+3];
248             /* Sign of each element will be negative for non-real atoms.
249              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
250              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
251              */
252             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
253             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
254             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
255             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
256             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
257             j_coord_offsetA  = DIM*jnrA;
258             j_coord_offsetB  = DIM*jnrB;
259             j_coord_offsetC  = DIM*jnrC;
260             j_coord_offsetD  = DIM*jnrD;
261
262             /* load j atom coordinates */
263             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
264                                               x+j_coord_offsetC,x+j_coord_offsetD,
265                                               &jx0,&jy0,&jz0);
266
267             /* Calculate displacement vector */
268             dx00             = _mm_sub_ps(ix0,jx0);
269             dy00             = _mm_sub_ps(iy0,jy0);
270             dz00             = _mm_sub_ps(iz0,jz0);
271
272             /* Calculate squared distance and things based on it */
273             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
274
275             rinv00           = gmx_mm_invsqrt_ps(rsq00);
276
277             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
278
279             /* Load parameters for j particles */
280             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
281                                                               charge+jnrC+0,charge+jnrD+0);
282
283             /**************************
284              * CALCULATE INTERACTIONS *
285              **************************/
286
287             if (gmx_mm_any_lt(rsq00,rcutoff2))
288             {
289
290             /* Compute parameters for interactions between i and j atoms */
291             qq00             = _mm_mul_ps(iq0,jq0);
292
293             /* REACTION-FIELD ELECTROSTATICS */
294             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
295             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
296
297             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velec            = _mm_and_ps(velec,cutoff_mask);
301             velec            = _mm_andnot_ps(dummy_mask,velec);
302             velecsum         = _mm_add_ps(velecsum,velec);
303
304             fscal            = felec;
305
306             fscal            = _mm_and_ps(fscal,cutoff_mask);
307
308             fscal            = _mm_andnot_ps(dummy_mask,fscal);
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm_mul_ps(fscal,dx00);
312             ty               = _mm_mul_ps(fscal,dy00);
313             tz               = _mm_mul_ps(fscal,dz00);
314
315             /* Update vectorial force */
316             fix0             = _mm_add_ps(fix0,tx);
317             fiy0             = _mm_add_ps(fiy0,ty);
318             fiz0             = _mm_add_ps(fiz0,tz);
319
320             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
321             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
322             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
323             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
324             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
325
326             }
327
328             /* Inner loop uses 36 flops */
329         }
330
331         /* End of innermost loop */
332
333         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
334                                               f+i_coord_offset,fshift+i_shift_offset);
335
336         ggid                        = gid[iidx];
337         /* Update potential energies */
338         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
339
340         /* Increment number of inner iterations */
341         inneriter                  += j_index_end - j_index_start;
342
343         /* Outer loop uses 8 flops */
344     }
345
346     /* Increment number of outer iterations */
347     outeriter        += nri;
348
349     /* Update outer/inner flops */
350
351     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*36);
352 }
353 /*
354  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse4_1_single
355  * Electrostatics interaction: ReactionField
356  * VdW interaction:            None
357  * Geometry:                   Particle-Particle
358  * Calculate force/pot:        Force
359  */
360 void
361 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse4_1_single
362                     (t_nblist                    * gmx_restrict       nlist,
363                      rvec                        * gmx_restrict          xx,
364                      rvec                        * gmx_restrict          ff,
365                      t_forcerec                  * gmx_restrict          fr,
366                      t_mdatoms                   * gmx_restrict     mdatoms,
367                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
368                      t_nrnb                      * gmx_restrict        nrnb)
369 {
370     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
371      * just 0 for non-waters.
372      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
373      * jnr indices corresponding to data put in the four positions in the SIMD register.
374      */
375     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
376     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
377     int              jnrA,jnrB,jnrC,jnrD;
378     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
379     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
380     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
381     real             rcutoff_scalar;
382     real             *shiftvec,*fshift,*x,*f;
383     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
384     real             scratch[4*DIM];
385     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
386     int              vdwioffset0;
387     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
388     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
389     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
390     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
391     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
392     real             *charge;
393     __m128           dummy_mask,cutoff_mask;
394     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
395     __m128           one     = _mm_set1_ps(1.0);
396     __m128           two     = _mm_set1_ps(2.0);
397     x                = xx[0];
398     f                = ff[0];
399
400     nri              = nlist->nri;
401     iinr             = nlist->iinr;
402     jindex           = nlist->jindex;
403     jjnr             = nlist->jjnr;
404     shiftidx         = nlist->shift;
405     gid              = nlist->gid;
406     shiftvec         = fr->shift_vec[0];
407     fshift           = fr->fshift[0];
408     facel            = _mm_set1_ps(fr->epsfac);
409     charge           = mdatoms->chargeA;
410     krf              = _mm_set1_ps(fr->ic->k_rf);
411     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
412     crf              = _mm_set1_ps(fr->ic->c_rf);
413
414     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
415     rcutoff_scalar   = fr->rcoulomb;
416     rcutoff          = _mm_set1_ps(rcutoff_scalar);
417     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
418
419     /* Avoid stupid compiler warnings */
420     jnrA = jnrB = jnrC = jnrD = 0;
421     j_coord_offsetA = 0;
422     j_coord_offsetB = 0;
423     j_coord_offsetC = 0;
424     j_coord_offsetD = 0;
425
426     outeriter        = 0;
427     inneriter        = 0;
428
429     for(iidx=0;iidx<4*DIM;iidx++)
430     {
431         scratch[iidx] = 0.0;
432     }
433
434     /* Start outer loop over neighborlists */
435     for(iidx=0; iidx<nri; iidx++)
436     {
437         /* Load shift vector for this list */
438         i_shift_offset   = DIM*shiftidx[iidx];
439
440         /* Load limits for loop over neighbors */
441         j_index_start    = jindex[iidx];
442         j_index_end      = jindex[iidx+1];
443
444         /* Get outer coordinate index */
445         inr              = iinr[iidx];
446         i_coord_offset   = DIM*inr;
447
448         /* Load i particle coords and add shift vector */
449         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
450
451         fix0             = _mm_setzero_ps();
452         fiy0             = _mm_setzero_ps();
453         fiz0             = _mm_setzero_ps();
454
455         /* Load parameters for i particles */
456         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
457
458         /* Start inner kernel loop */
459         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
460         {
461
462             /* Get j neighbor index, and coordinate index */
463             jnrA             = jjnr[jidx];
464             jnrB             = jjnr[jidx+1];
465             jnrC             = jjnr[jidx+2];
466             jnrD             = jjnr[jidx+3];
467             j_coord_offsetA  = DIM*jnrA;
468             j_coord_offsetB  = DIM*jnrB;
469             j_coord_offsetC  = DIM*jnrC;
470             j_coord_offsetD  = DIM*jnrD;
471
472             /* load j atom coordinates */
473             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
474                                               x+j_coord_offsetC,x+j_coord_offsetD,
475                                               &jx0,&jy0,&jz0);
476
477             /* Calculate displacement vector */
478             dx00             = _mm_sub_ps(ix0,jx0);
479             dy00             = _mm_sub_ps(iy0,jy0);
480             dz00             = _mm_sub_ps(iz0,jz0);
481
482             /* Calculate squared distance and things based on it */
483             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
484
485             rinv00           = gmx_mm_invsqrt_ps(rsq00);
486
487             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
488
489             /* Load parameters for j particles */
490             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
491                                                               charge+jnrC+0,charge+jnrD+0);
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             if (gmx_mm_any_lt(rsq00,rcutoff2))
498             {
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq00             = _mm_mul_ps(iq0,jq0);
502
503             /* REACTION-FIELD ELECTROSTATICS */
504             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
505
506             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
507
508             fscal            = felec;
509
510             fscal            = _mm_and_ps(fscal,cutoff_mask);
511
512             /* Calculate temporary vectorial force */
513             tx               = _mm_mul_ps(fscal,dx00);
514             ty               = _mm_mul_ps(fscal,dy00);
515             tz               = _mm_mul_ps(fscal,dz00);
516
517             /* Update vectorial force */
518             fix0             = _mm_add_ps(fix0,tx);
519             fiy0             = _mm_add_ps(fiy0,ty);
520             fiz0             = _mm_add_ps(fiz0,tz);
521
522             fjptrA             = f+j_coord_offsetA;
523             fjptrB             = f+j_coord_offsetB;
524             fjptrC             = f+j_coord_offsetC;
525             fjptrD             = f+j_coord_offsetD;
526             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
527
528             }
529
530             /* Inner loop uses 30 flops */
531         }
532
533         if(jidx<j_index_end)
534         {
535
536             /* Get j neighbor index, and coordinate index */
537             jnrlistA         = jjnr[jidx];
538             jnrlistB         = jjnr[jidx+1];
539             jnrlistC         = jjnr[jidx+2];
540             jnrlistD         = jjnr[jidx+3];
541             /* Sign of each element will be negative for non-real atoms.
542              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
543              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
544              */
545             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
546             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
547             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
548             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
549             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
550             j_coord_offsetA  = DIM*jnrA;
551             j_coord_offsetB  = DIM*jnrB;
552             j_coord_offsetC  = DIM*jnrC;
553             j_coord_offsetD  = DIM*jnrD;
554
555             /* load j atom coordinates */
556             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
557                                               x+j_coord_offsetC,x+j_coord_offsetD,
558                                               &jx0,&jy0,&jz0);
559
560             /* Calculate displacement vector */
561             dx00             = _mm_sub_ps(ix0,jx0);
562             dy00             = _mm_sub_ps(iy0,jy0);
563             dz00             = _mm_sub_ps(iz0,jz0);
564
565             /* Calculate squared distance and things based on it */
566             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
567
568             rinv00           = gmx_mm_invsqrt_ps(rsq00);
569
570             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
571
572             /* Load parameters for j particles */
573             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
574                                                               charge+jnrC+0,charge+jnrD+0);
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             if (gmx_mm_any_lt(rsq00,rcutoff2))
581             {
582
583             /* Compute parameters for interactions between i and j atoms */
584             qq00             = _mm_mul_ps(iq0,jq0);
585
586             /* REACTION-FIELD ELECTROSTATICS */
587             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
588
589             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
590
591             fscal            = felec;
592
593             fscal            = _mm_and_ps(fscal,cutoff_mask);
594
595             fscal            = _mm_andnot_ps(dummy_mask,fscal);
596
597             /* Calculate temporary vectorial force */
598             tx               = _mm_mul_ps(fscal,dx00);
599             ty               = _mm_mul_ps(fscal,dy00);
600             tz               = _mm_mul_ps(fscal,dz00);
601
602             /* Update vectorial force */
603             fix0             = _mm_add_ps(fix0,tx);
604             fiy0             = _mm_add_ps(fiy0,ty);
605             fiz0             = _mm_add_ps(fiz0,tz);
606
607             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
608             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
609             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
610             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
611             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
612
613             }
614
615             /* Inner loop uses 30 flops */
616         }
617
618         /* End of innermost loop */
619
620         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
621                                               f+i_coord_offset,fshift+i_shift_offset);
622
623         /* Increment number of inner iterations */
624         inneriter                  += j_index_end - j_index_start;
625
626         /* Outer loop uses 7 flops */
627     }
628
629     /* Increment number of outer iterations */
630     outeriter        += nri;
631
632     /* Update outer/inner flops */
633
634     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30);
635 }