Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse4_1_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128           dummy_mask,cutoff_mask;
90     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
91     __m128           one     = _mm_set1_ps(1.0);
92     __m128           two     = _mm_set1_ps(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_ps(fr->ic->epsfac);
105     charge           = mdatoms->chargeA;
106     krf              = _mm_set1_ps(fr->ic->k_rf);
107     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
108     crf              = _mm_set1_ps(fr->ic->c_rf);
109
110     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
111     rcutoff_scalar   = fr->ic->rcoulomb;
112     rcutoff          = _mm_set1_ps(rcutoff_scalar);
113     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = jnrC = jnrD = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119     j_coord_offsetC = 0;
120     j_coord_offsetD = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     for(iidx=0;iidx<4*DIM;iidx++)
126     {
127         scratch[iidx] = 0.0;
128     }
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _mm_setzero_ps();
148         fiy0             = _mm_setzero_ps();
149         fiz0             = _mm_setzero_ps();
150
151         /* Load parameters for i particles */
152         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
153
154         /* Reset potential sums */
155         velecsum         = _mm_setzero_ps();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             jnrC             = jjnr[jidx+2];
165             jnrD             = jjnr[jidx+3];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168             j_coord_offsetC  = DIM*jnrC;
169             j_coord_offsetD  = DIM*jnrD;
170
171             /* load j atom coordinates */
172             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
173                                               x+j_coord_offsetC,x+j_coord_offsetD,
174                                               &jx0,&jy0,&jz0);
175
176             /* Calculate displacement vector */
177             dx00             = _mm_sub_ps(ix0,jx0);
178             dy00             = _mm_sub_ps(iy0,jy0);
179             dz00             = _mm_sub_ps(iz0,jz0);
180
181             /* Calculate squared distance and things based on it */
182             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
183
184             rinv00           = sse41_invsqrt_f(rsq00);
185
186             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
187
188             /* Load parameters for j particles */
189             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
190                                                               charge+jnrC+0,charge+jnrD+0);
191
192             /**************************
193              * CALCULATE INTERACTIONS *
194              **************************/
195
196             if (gmx_mm_any_lt(rsq00,rcutoff2))
197             {
198
199             /* Compute parameters for interactions between i and j atoms */
200             qq00             = _mm_mul_ps(iq0,jq0);
201
202             /* REACTION-FIELD ELECTROSTATICS */
203             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
204             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
205
206             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
207
208             /* Update potential sum for this i atom from the interaction with this j atom. */
209             velec            = _mm_and_ps(velec,cutoff_mask);
210             velecsum         = _mm_add_ps(velecsum,velec);
211
212             fscal            = felec;
213
214             fscal            = _mm_and_ps(fscal,cutoff_mask);
215
216             /* Calculate temporary vectorial force */
217             tx               = _mm_mul_ps(fscal,dx00);
218             ty               = _mm_mul_ps(fscal,dy00);
219             tz               = _mm_mul_ps(fscal,dz00);
220
221             /* Update vectorial force */
222             fix0             = _mm_add_ps(fix0,tx);
223             fiy0             = _mm_add_ps(fiy0,ty);
224             fiz0             = _mm_add_ps(fiz0,tz);
225
226             fjptrA             = f+j_coord_offsetA;
227             fjptrB             = f+j_coord_offsetB;
228             fjptrC             = f+j_coord_offsetC;
229             fjptrD             = f+j_coord_offsetD;
230             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
231
232             }
233
234             /* Inner loop uses 36 flops */
235         }
236
237         if(jidx<j_index_end)
238         {
239
240             /* Get j neighbor index, and coordinate index */
241             jnrlistA         = jjnr[jidx];
242             jnrlistB         = jjnr[jidx+1];
243             jnrlistC         = jjnr[jidx+2];
244             jnrlistD         = jjnr[jidx+3];
245             /* Sign of each element will be negative for non-real atoms.
246              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
247              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
248              */
249             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
250             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
251             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
252             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
253             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
254             j_coord_offsetA  = DIM*jnrA;
255             j_coord_offsetB  = DIM*jnrB;
256             j_coord_offsetC  = DIM*jnrC;
257             j_coord_offsetD  = DIM*jnrD;
258
259             /* load j atom coordinates */
260             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
261                                               x+j_coord_offsetC,x+j_coord_offsetD,
262                                               &jx0,&jy0,&jz0);
263
264             /* Calculate displacement vector */
265             dx00             = _mm_sub_ps(ix0,jx0);
266             dy00             = _mm_sub_ps(iy0,jy0);
267             dz00             = _mm_sub_ps(iz0,jz0);
268
269             /* Calculate squared distance and things based on it */
270             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
271
272             rinv00           = sse41_invsqrt_f(rsq00);
273
274             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
275
276             /* Load parameters for j particles */
277             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
278                                                               charge+jnrC+0,charge+jnrD+0);
279
280             /**************************
281              * CALCULATE INTERACTIONS *
282              **************************/
283
284             if (gmx_mm_any_lt(rsq00,rcutoff2))
285             {
286
287             /* Compute parameters for interactions between i and j atoms */
288             qq00             = _mm_mul_ps(iq0,jq0);
289
290             /* REACTION-FIELD ELECTROSTATICS */
291             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
292             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
293
294             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velec            = _mm_and_ps(velec,cutoff_mask);
298             velec            = _mm_andnot_ps(dummy_mask,velec);
299             velecsum         = _mm_add_ps(velecsum,velec);
300
301             fscal            = felec;
302
303             fscal            = _mm_and_ps(fscal,cutoff_mask);
304
305             fscal            = _mm_andnot_ps(dummy_mask,fscal);
306
307             /* Calculate temporary vectorial force */
308             tx               = _mm_mul_ps(fscal,dx00);
309             ty               = _mm_mul_ps(fscal,dy00);
310             tz               = _mm_mul_ps(fscal,dz00);
311
312             /* Update vectorial force */
313             fix0             = _mm_add_ps(fix0,tx);
314             fiy0             = _mm_add_ps(fiy0,ty);
315             fiz0             = _mm_add_ps(fiz0,tz);
316
317             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
318             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
319             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
320             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
321             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
322
323             }
324
325             /* Inner loop uses 36 flops */
326         }
327
328         /* End of innermost loop */
329
330         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
331                                               f+i_coord_offset,fshift+i_shift_offset);
332
333         ggid                        = gid[iidx];
334         /* Update potential energies */
335         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
336
337         /* Increment number of inner iterations */
338         inneriter                  += j_index_end - j_index_start;
339
340         /* Outer loop uses 8 flops */
341     }
342
343     /* Increment number of outer iterations */
344     outeriter        += nri;
345
346     /* Update outer/inner flops */
347
348     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*36);
349 }
350 /*
351  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse4_1_single
352  * Electrostatics interaction: ReactionField
353  * VdW interaction:            None
354  * Geometry:                   Particle-Particle
355  * Calculate force/pot:        Force
356  */
357 void
358 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_sse4_1_single
359                     (t_nblist                    * gmx_restrict       nlist,
360                      rvec                        * gmx_restrict          xx,
361                      rvec                        * gmx_restrict          ff,
362                      struct t_forcerec           * gmx_restrict          fr,
363                      t_mdatoms                   * gmx_restrict     mdatoms,
364                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
365                      t_nrnb                      * gmx_restrict        nrnb)
366 {
367     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
368      * just 0 for non-waters.
369      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
370      * jnr indices corresponding to data put in the four positions in the SIMD register.
371      */
372     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
373     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
374     int              jnrA,jnrB,jnrC,jnrD;
375     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
376     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
377     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
378     real             rcutoff_scalar;
379     real             *shiftvec,*fshift,*x,*f;
380     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
381     real             scratch[4*DIM];
382     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
383     int              vdwioffset0;
384     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
385     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
386     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
387     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
388     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
389     real             *charge;
390     __m128           dummy_mask,cutoff_mask;
391     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
392     __m128           one     = _mm_set1_ps(1.0);
393     __m128           two     = _mm_set1_ps(2.0);
394     x                = xx[0];
395     f                = ff[0];
396
397     nri              = nlist->nri;
398     iinr             = nlist->iinr;
399     jindex           = nlist->jindex;
400     jjnr             = nlist->jjnr;
401     shiftidx         = nlist->shift;
402     gid              = nlist->gid;
403     shiftvec         = fr->shift_vec[0];
404     fshift           = fr->fshift[0];
405     facel            = _mm_set1_ps(fr->ic->epsfac);
406     charge           = mdatoms->chargeA;
407     krf              = _mm_set1_ps(fr->ic->k_rf);
408     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
409     crf              = _mm_set1_ps(fr->ic->c_rf);
410
411     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
412     rcutoff_scalar   = fr->ic->rcoulomb;
413     rcutoff          = _mm_set1_ps(rcutoff_scalar);
414     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
415
416     /* Avoid stupid compiler warnings */
417     jnrA = jnrB = jnrC = jnrD = 0;
418     j_coord_offsetA = 0;
419     j_coord_offsetB = 0;
420     j_coord_offsetC = 0;
421     j_coord_offsetD = 0;
422
423     outeriter        = 0;
424     inneriter        = 0;
425
426     for(iidx=0;iidx<4*DIM;iidx++)
427     {
428         scratch[iidx] = 0.0;
429     }
430
431     /* Start outer loop over neighborlists */
432     for(iidx=0; iidx<nri; iidx++)
433     {
434         /* Load shift vector for this list */
435         i_shift_offset   = DIM*shiftidx[iidx];
436
437         /* Load limits for loop over neighbors */
438         j_index_start    = jindex[iidx];
439         j_index_end      = jindex[iidx+1];
440
441         /* Get outer coordinate index */
442         inr              = iinr[iidx];
443         i_coord_offset   = DIM*inr;
444
445         /* Load i particle coords and add shift vector */
446         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
447
448         fix0             = _mm_setzero_ps();
449         fiy0             = _mm_setzero_ps();
450         fiz0             = _mm_setzero_ps();
451
452         /* Load parameters for i particles */
453         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
454
455         /* Start inner kernel loop */
456         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
457         {
458
459             /* Get j neighbor index, and coordinate index */
460             jnrA             = jjnr[jidx];
461             jnrB             = jjnr[jidx+1];
462             jnrC             = jjnr[jidx+2];
463             jnrD             = jjnr[jidx+3];
464             j_coord_offsetA  = DIM*jnrA;
465             j_coord_offsetB  = DIM*jnrB;
466             j_coord_offsetC  = DIM*jnrC;
467             j_coord_offsetD  = DIM*jnrD;
468
469             /* load j atom coordinates */
470             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
471                                               x+j_coord_offsetC,x+j_coord_offsetD,
472                                               &jx0,&jy0,&jz0);
473
474             /* Calculate displacement vector */
475             dx00             = _mm_sub_ps(ix0,jx0);
476             dy00             = _mm_sub_ps(iy0,jy0);
477             dz00             = _mm_sub_ps(iz0,jz0);
478
479             /* Calculate squared distance and things based on it */
480             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
481
482             rinv00           = sse41_invsqrt_f(rsq00);
483
484             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
485
486             /* Load parameters for j particles */
487             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
488                                                               charge+jnrC+0,charge+jnrD+0);
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             if (gmx_mm_any_lt(rsq00,rcutoff2))
495             {
496
497             /* Compute parameters for interactions between i and j atoms */
498             qq00             = _mm_mul_ps(iq0,jq0);
499
500             /* REACTION-FIELD ELECTROSTATICS */
501             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
502
503             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
504
505             fscal            = felec;
506
507             fscal            = _mm_and_ps(fscal,cutoff_mask);
508
509             /* Calculate temporary vectorial force */
510             tx               = _mm_mul_ps(fscal,dx00);
511             ty               = _mm_mul_ps(fscal,dy00);
512             tz               = _mm_mul_ps(fscal,dz00);
513
514             /* Update vectorial force */
515             fix0             = _mm_add_ps(fix0,tx);
516             fiy0             = _mm_add_ps(fiy0,ty);
517             fiz0             = _mm_add_ps(fiz0,tz);
518
519             fjptrA             = f+j_coord_offsetA;
520             fjptrB             = f+j_coord_offsetB;
521             fjptrC             = f+j_coord_offsetC;
522             fjptrD             = f+j_coord_offsetD;
523             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
524
525             }
526
527             /* Inner loop uses 30 flops */
528         }
529
530         if(jidx<j_index_end)
531         {
532
533             /* Get j neighbor index, and coordinate index */
534             jnrlistA         = jjnr[jidx];
535             jnrlistB         = jjnr[jidx+1];
536             jnrlistC         = jjnr[jidx+2];
537             jnrlistD         = jjnr[jidx+3];
538             /* Sign of each element will be negative for non-real atoms.
539              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
540              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
541              */
542             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
543             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
544             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
545             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
546             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
547             j_coord_offsetA  = DIM*jnrA;
548             j_coord_offsetB  = DIM*jnrB;
549             j_coord_offsetC  = DIM*jnrC;
550             j_coord_offsetD  = DIM*jnrD;
551
552             /* load j atom coordinates */
553             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
554                                               x+j_coord_offsetC,x+j_coord_offsetD,
555                                               &jx0,&jy0,&jz0);
556
557             /* Calculate displacement vector */
558             dx00             = _mm_sub_ps(ix0,jx0);
559             dy00             = _mm_sub_ps(iy0,jy0);
560             dz00             = _mm_sub_ps(iz0,jz0);
561
562             /* Calculate squared distance and things based on it */
563             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
564
565             rinv00           = sse41_invsqrt_f(rsq00);
566
567             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
568
569             /* Load parameters for j particles */
570             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
571                                                               charge+jnrC+0,charge+jnrD+0);
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             if (gmx_mm_any_lt(rsq00,rcutoff2))
578             {
579
580             /* Compute parameters for interactions between i and j atoms */
581             qq00             = _mm_mul_ps(iq0,jq0);
582
583             /* REACTION-FIELD ELECTROSTATICS */
584             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
585
586             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
587
588             fscal            = felec;
589
590             fscal            = _mm_and_ps(fscal,cutoff_mask);
591
592             fscal            = _mm_andnot_ps(dummy_mask,fscal);
593
594             /* Calculate temporary vectorial force */
595             tx               = _mm_mul_ps(fscal,dx00);
596             ty               = _mm_mul_ps(fscal,dy00);
597             tz               = _mm_mul_ps(fscal,dz00);
598
599             /* Update vectorial force */
600             fix0             = _mm_add_ps(fix0,tx);
601             fiy0             = _mm_add_ps(fiy0,ty);
602             fiz0             = _mm_add_ps(fiz0,tz);
603
604             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
605             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
606             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
607             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
608             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
609
610             }
611
612             /* Inner loop uses 30 flops */
613         }
614
615         /* End of innermost loop */
616
617         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
618                                               f+i_coord_offset,fshift+i_shift_offset);
619
620         /* Increment number of inner iterations */
621         inneriter                  += j_index_end - j_index_start;
622
623         /* Outer loop uses 7 flops */
624     }
625
626     /* Increment number of outer iterations */
627     outeriter        += nri;
628
629     /* Update outer/inner flops */
630
631     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30);
632 }