Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse4_1_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
102     real             rswitch_scalar,d_scalar;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     krf              = _mm_set1_ps(fr->ic->k_rf);
121     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
122     crf              = _mm_set1_ps(fr->ic->c_rf);
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
130     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
131     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
132     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
133
134     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
135     rcutoff_scalar   = fr->ic->rcoulomb;
136     rcutoff          = _mm_set1_ps(rcutoff_scalar);
137     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
138
139     rswitch_scalar   = fr->ic->rvdw_switch;
140     rswitch          = _mm_set1_ps(rswitch_scalar);
141     /* Setup switch parameters */
142     d_scalar         = rcutoff_scalar-rswitch_scalar;
143     d                = _mm_set1_ps(d_scalar);
144     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
145     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
146     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
147     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
148     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
149     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
150
151     /* Avoid stupid compiler warnings */
152     jnrA = jnrB = jnrC = jnrD = 0;
153     j_coord_offsetA = 0;
154     j_coord_offsetB = 0;
155     j_coord_offsetC = 0;
156     j_coord_offsetD = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     for(iidx=0;iidx<4*DIM;iidx++)
162     {
163         scratch[iidx] = 0.0;
164     }
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
183
184         fix0             = _mm_setzero_ps();
185         fiy0             = _mm_setzero_ps();
186         fiz0             = _mm_setzero_ps();
187         fix1             = _mm_setzero_ps();
188         fiy1             = _mm_setzero_ps();
189         fiz1             = _mm_setzero_ps();
190         fix2             = _mm_setzero_ps();
191         fiy2             = _mm_setzero_ps();
192         fiz2             = _mm_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm_setzero_ps();
196         vvdwsum          = _mm_setzero_ps();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211
212             /* load j atom coordinates */
213             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                               x+j_coord_offsetC,x+j_coord_offsetD,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm_sub_ps(ix0,jx0);
219             dy00             = _mm_sub_ps(iy0,jy0);
220             dz00             = _mm_sub_ps(iz0,jz0);
221             dx10             = _mm_sub_ps(ix1,jx0);
222             dy10             = _mm_sub_ps(iy1,jy0);
223             dz10             = _mm_sub_ps(iz1,jz0);
224             dx20             = _mm_sub_ps(ix2,jx0);
225             dy20             = _mm_sub_ps(iy2,jy0);
226             dz20             = _mm_sub_ps(iz2,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
232
233             rinv00           = sse41_invsqrt_f(rsq00);
234             rinv10           = sse41_invsqrt_f(rsq10);
235             rinv20           = sse41_invsqrt_f(rsq20);
236
237             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
238             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
239             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
240
241             /* Load parameters for j particles */
242             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
243                                                               charge+jnrC+0,charge+jnrD+0);
244             vdwjidx0A        = 2*vdwtype[jnrA+0];
245             vdwjidx0B        = 2*vdwtype[jnrB+0];
246             vdwjidx0C        = 2*vdwtype[jnrC+0];
247             vdwjidx0D        = 2*vdwtype[jnrD+0];
248
249             fjx0             = _mm_setzero_ps();
250             fjy0             = _mm_setzero_ps();
251             fjz0             = _mm_setzero_ps();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             if (gmx_mm_any_lt(rsq00,rcutoff2))
258             {
259
260             r00              = _mm_mul_ps(rsq00,rinv00);
261
262             /* Compute parameters for interactions between i and j atoms */
263             qq00             = _mm_mul_ps(iq0,jq0);
264             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
265                                          vdwparam+vdwioffset0+vdwjidx0B,
266                                          vdwparam+vdwioffset0+vdwjidx0C,
267                                          vdwparam+vdwioffset0+vdwjidx0D,
268                                          &c6_00,&c12_00);
269
270             /* REACTION-FIELD ELECTROSTATICS */
271             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
272             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
273
274             /* LENNARD-JONES DISPERSION/REPULSION */
275
276             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
277             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
278             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
279             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
280             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
281
282             d                = _mm_sub_ps(r00,rswitch);
283             d                = _mm_max_ps(d,_mm_setzero_ps());
284             d2               = _mm_mul_ps(d,d);
285             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
286
287             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
288
289             /* Evaluate switch function */
290             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
291             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
292             vvdw             = _mm_mul_ps(vvdw,sw);
293             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velec            = _mm_and_ps(velec,cutoff_mask);
297             velecsum         = _mm_add_ps(velecsum,velec);
298             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
299             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
300
301             fscal            = _mm_add_ps(felec,fvdw);
302
303             fscal            = _mm_and_ps(fscal,cutoff_mask);
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm_mul_ps(fscal,dx00);
307             ty               = _mm_mul_ps(fscal,dy00);
308             tz               = _mm_mul_ps(fscal,dz00);
309
310             /* Update vectorial force */
311             fix0             = _mm_add_ps(fix0,tx);
312             fiy0             = _mm_add_ps(fiy0,ty);
313             fiz0             = _mm_add_ps(fiz0,tz);
314
315             fjx0             = _mm_add_ps(fjx0,tx);
316             fjy0             = _mm_add_ps(fjy0,ty);
317             fjz0             = _mm_add_ps(fjz0,tz);
318
319             }
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             if (gmx_mm_any_lt(rsq10,rcutoff2))
326             {
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq10             = _mm_mul_ps(iq1,jq0);
330
331             /* REACTION-FIELD ELECTROSTATICS */
332             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
333             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
334
335             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velec            = _mm_and_ps(velec,cutoff_mask);
339             velecsum         = _mm_add_ps(velecsum,velec);
340
341             fscal            = felec;
342
343             fscal            = _mm_and_ps(fscal,cutoff_mask);
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm_mul_ps(fscal,dx10);
347             ty               = _mm_mul_ps(fscal,dy10);
348             tz               = _mm_mul_ps(fscal,dz10);
349
350             /* Update vectorial force */
351             fix1             = _mm_add_ps(fix1,tx);
352             fiy1             = _mm_add_ps(fiy1,ty);
353             fiz1             = _mm_add_ps(fiz1,tz);
354
355             fjx0             = _mm_add_ps(fjx0,tx);
356             fjy0             = _mm_add_ps(fjy0,ty);
357             fjz0             = _mm_add_ps(fjz0,tz);
358
359             }
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             if (gmx_mm_any_lt(rsq20,rcutoff2))
366             {
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq20             = _mm_mul_ps(iq2,jq0);
370
371             /* REACTION-FIELD ELECTROSTATICS */
372             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
373             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
374
375             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
376
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velec            = _mm_and_ps(velec,cutoff_mask);
379             velecsum         = _mm_add_ps(velecsum,velec);
380
381             fscal            = felec;
382
383             fscal            = _mm_and_ps(fscal,cutoff_mask);
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm_mul_ps(fscal,dx20);
387             ty               = _mm_mul_ps(fscal,dy20);
388             tz               = _mm_mul_ps(fscal,dz20);
389
390             /* Update vectorial force */
391             fix2             = _mm_add_ps(fix2,tx);
392             fiy2             = _mm_add_ps(fiy2,ty);
393             fiz2             = _mm_add_ps(fiz2,tz);
394
395             fjx0             = _mm_add_ps(fjx0,tx);
396             fjy0             = _mm_add_ps(fjy0,ty);
397             fjz0             = _mm_add_ps(fjz0,tz);
398
399             }
400
401             fjptrA             = f+j_coord_offsetA;
402             fjptrB             = f+j_coord_offsetB;
403             fjptrC             = f+j_coord_offsetC;
404             fjptrD             = f+j_coord_offsetD;
405
406             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
407
408             /* Inner loop uses 142 flops */
409         }
410
411         if(jidx<j_index_end)
412         {
413
414             /* Get j neighbor index, and coordinate index */
415             jnrlistA         = jjnr[jidx];
416             jnrlistB         = jjnr[jidx+1];
417             jnrlistC         = jjnr[jidx+2];
418             jnrlistD         = jjnr[jidx+3];
419             /* Sign of each element will be negative for non-real atoms.
420              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
421              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
422              */
423             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
424             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
425             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
426             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
427             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
428             j_coord_offsetA  = DIM*jnrA;
429             j_coord_offsetB  = DIM*jnrB;
430             j_coord_offsetC  = DIM*jnrC;
431             j_coord_offsetD  = DIM*jnrD;
432
433             /* load j atom coordinates */
434             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
435                                               x+j_coord_offsetC,x+j_coord_offsetD,
436                                               &jx0,&jy0,&jz0);
437
438             /* Calculate displacement vector */
439             dx00             = _mm_sub_ps(ix0,jx0);
440             dy00             = _mm_sub_ps(iy0,jy0);
441             dz00             = _mm_sub_ps(iz0,jz0);
442             dx10             = _mm_sub_ps(ix1,jx0);
443             dy10             = _mm_sub_ps(iy1,jy0);
444             dz10             = _mm_sub_ps(iz1,jz0);
445             dx20             = _mm_sub_ps(ix2,jx0);
446             dy20             = _mm_sub_ps(iy2,jy0);
447             dz20             = _mm_sub_ps(iz2,jz0);
448
449             /* Calculate squared distance and things based on it */
450             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
451             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
452             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
453
454             rinv00           = sse41_invsqrt_f(rsq00);
455             rinv10           = sse41_invsqrt_f(rsq10);
456             rinv20           = sse41_invsqrt_f(rsq20);
457
458             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
459             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
460             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
461
462             /* Load parameters for j particles */
463             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
464                                                               charge+jnrC+0,charge+jnrD+0);
465             vdwjidx0A        = 2*vdwtype[jnrA+0];
466             vdwjidx0B        = 2*vdwtype[jnrB+0];
467             vdwjidx0C        = 2*vdwtype[jnrC+0];
468             vdwjidx0D        = 2*vdwtype[jnrD+0];
469
470             fjx0             = _mm_setzero_ps();
471             fjy0             = _mm_setzero_ps();
472             fjz0             = _mm_setzero_ps();
473
474             /**************************
475              * CALCULATE INTERACTIONS *
476              **************************/
477
478             if (gmx_mm_any_lt(rsq00,rcutoff2))
479             {
480
481             r00              = _mm_mul_ps(rsq00,rinv00);
482             r00              = _mm_andnot_ps(dummy_mask,r00);
483
484             /* Compute parameters for interactions between i and j atoms */
485             qq00             = _mm_mul_ps(iq0,jq0);
486             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
487                                          vdwparam+vdwioffset0+vdwjidx0B,
488                                          vdwparam+vdwioffset0+vdwjidx0C,
489                                          vdwparam+vdwioffset0+vdwjidx0D,
490                                          &c6_00,&c12_00);
491
492             /* REACTION-FIELD ELECTROSTATICS */
493             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
494             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
495
496             /* LENNARD-JONES DISPERSION/REPULSION */
497
498             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
499             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
500             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
501             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
502             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
503
504             d                = _mm_sub_ps(r00,rswitch);
505             d                = _mm_max_ps(d,_mm_setzero_ps());
506             d2               = _mm_mul_ps(d,d);
507             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
508
509             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
510
511             /* Evaluate switch function */
512             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
513             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
514             vvdw             = _mm_mul_ps(vvdw,sw);
515             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
516
517             /* Update potential sum for this i atom from the interaction with this j atom. */
518             velec            = _mm_and_ps(velec,cutoff_mask);
519             velec            = _mm_andnot_ps(dummy_mask,velec);
520             velecsum         = _mm_add_ps(velecsum,velec);
521             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
522             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
523             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
524
525             fscal            = _mm_add_ps(felec,fvdw);
526
527             fscal            = _mm_and_ps(fscal,cutoff_mask);
528
529             fscal            = _mm_andnot_ps(dummy_mask,fscal);
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_ps(fscal,dx00);
533             ty               = _mm_mul_ps(fscal,dy00);
534             tz               = _mm_mul_ps(fscal,dz00);
535
536             /* Update vectorial force */
537             fix0             = _mm_add_ps(fix0,tx);
538             fiy0             = _mm_add_ps(fiy0,ty);
539             fiz0             = _mm_add_ps(fiz0,tz);
540
541             fjx0             = _mm_add_ps(fjx0,tx);
542             fjy0             = _mm_add_ps(fjy0,ty);
543             fjz0             = _mm_add_ps(fjz0,tz);
544
545             }
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             if (gmx_mm_any_lt(rsq10,rcutoff2))
552             {
553
554             /* Compute parameters for interactions between i and j atoms */
555             qq10             = _mm_mul_ps(iq1,jq0);
556
557             /* REACTION-FIELD ELECTROSTATICS */
558             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
559             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
560
561             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
562
563             /* Update potential sum for this i atom from the interaction with this j atom. */
564             velec            = _mm_and_ps(velec,cutoff_mask);
565             velec            = _mm_andnot_ps(dummy_mask,velec);
566             velecsum         = _mm_add_ps(velecsum,velec);
567
568             fscal            = felec;
569
570             fscal            = _mm_and_ps(fscal,cutoff_mask);
571
572             fscal            = _mm_andnot_ps(dummy_mask,fscal);
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm_mul_ps(fscal,dx10);
576             ty               = _mm_mul_ps(fscal,dy10);
577             tz               = _mm_mul_ps(fscal,dz10);
578
579             /* Update vectorial force */
580             fix1             = _mm_add_ps(fix1,tx);
581             fiy1             = _mm_add_ps(fiy1,ty);
582             fiz1             = _mm_add_ps(fiz1,tz);
583
584             fjx0             = _mm_add_ps(fjx0,tx);
585             fjy0             = _mm_add_ps(fjy0,ty);
586             fjz0             = _mm_add_ps(fjz0,tz);
587
588             }
589
590             /**************************
591              * CALCULATE INTERACTIONS *
592              **************************/
593
594             if (gmx_mm_any_lt(rsq20,rcutoff2))
595             {
596
597             /* Compute parameters for interactions between i and j atoms */
598             qq20             = _mm_mul_ps(iq2,jq0);
599
600             /* REACTION-FIELD ELECTROSTATICS */
601             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
602             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
603
604             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
605
606             /* Update potential sum for this i atom from the interaction with this j atom. */
607             velec            = _mm_and_ps(velec,cutoff_mask);
608             velec            = _mm_andnot_ps(dummy_mask,velec);
609             velecsum         = _mm_add_ps(velecsum,velec);
610
611             fscal            = felec;
612
613             fscal            = _mm_and_ps(fscal,cutoff_mask);
614
615             fscal            = _mm_andnot_ps(dummy_mask,fscal);
616
617             /* Calculate temporary vectorial force */
618             tx               = _mm_mul_ps(fscal,dx20);
619             ty               = _mm_mul_ps(fscal,dy20);
620             tz               = _mm_mul_ps(fscal,dz20);
621
622             /* Update vectorial force */
623             fix2             = _mm_add_ps(fix2,tx);
624             fiy2             = _mm_add_ps(fiy2,ty);
625             fiz2             = _mm_add_ps(fiz2,tz);
626
627             fjx0             = _mm_add_ps(fjx0,tx);
628             fjy0             = _mm_add_ps(fjy0,ty);
629             fjz0             = _mm_add_ps(fjz0,tz);
630
631             }
632
633             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
634             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
635             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
636             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
637
638             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
639
640             /* Inner loop uses 143 flops */
641         }
642
643         /* End of innermost loop */
644
645         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
646                                               f+i_coord_offset,fshift+i_shift_offset);
647
648         ggid                        = gid[iidx];
649         /* Update potential energies */
650         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
651         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
652
653         /* Increment number of inner iterations */
654         inneriter                  += j_index_end - j_index_start;
655
656         /* Outer loop uses 20 flops */
657     }
658
659     /* Increment number of outer iterations */
660     outeriter        += nri;
661
662     /* Update outer/inner flops */
663
664     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*143);
665 }
666 /*
667  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse4_1_single
668  * Electrostatics interaction: ReactionField
669  * VdW interaction:            LennardJones
670  * Geometry:                   Water3-Particle
671  * Calculate force/pot:        Force
672  */
673 void
674 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse4_1_single
675                     (t_nblist                    * gmx_restrict       nlist,
676                      rvec                        * gmx_restrict          xx,
677                      rvec                        * gmx_restrict          ff,
678                      struct t_forcerec           * gmx_restrict          fr,
679                      t_mdatoms                   * gmx_restrict     mdatoms,
680                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
681                      t_nrnb                      * gmx_restrict        nrnb)
682 {
683     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
684      * just 0 for non-waters.
685      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
686      * jnr indices corresponding to data put in the four positions in the SIMD register.
687      */
688     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
689     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
690     int              jnrA,jnrB,jnrC,jnrD;
691     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
692     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
693     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
694     real             rcutoff_scalar;
695     real             *shiftvec,*fshift,*x,*f;
696     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
697     real             scratch[4*DIM];
698     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
699     int              vdwioffset0;
700     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
701     int              vdwioffset1;
702     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
703     int              vdwioffset2;
704     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
705     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
706     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
707     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
708     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
709     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
710     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
711     real             *charge;
712     int              nvdwtype;
713     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
714     int              *vdwtype;
715     real             *vdwparam;
716     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
717     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
718     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
719     real             rswitch_scalar,d_scalar;
720     __m128           dummy_mask,cutoff_mask;
721     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
722     __m128           one     = _mm_set1_ps(1.0);
723     __m128           two     = _mm_set1_ps(2.0);
724     x                = xx[0];
725     f                = ff[0];
726
727     nri              = nlist->nri;
728     iinr             = nlist->iinr;
729     jindex           = nlist->jindex;
730     jjnr             = nlist->jjnr;
731     shiftidx         = nlist->shift;
732     gid              = nlist->gid;
733     shiftvec         = fr->shift_vec[0];
734     fshift           = fr->fshift[0];
735     facel            = _mm_set1_ps(fr->ic->epsfac);
736     charge           = mdatoms->chargeA;
737     krf              = _mm_set1_ps(fr->ic->k_rf);
738     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
739     crf              = _mm_set1_ps(fr->ic->c_rf);
740     nvdwtype         = fr->ntype;
741     vdwparam         = fr->nbfp;
742     vdwtype          = mdatoms->typeA;
743
744     /* Setup water-specific parameters */
745     inr              = nlist->iinr[0];
746     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
747     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
748     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
749     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
750
751     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
752     rcutoff_scalar   = fr->ic->rcoulomb;
753     rcutoff          = _mm_set1_ps(rcutoff_scalar);
754     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
755
756     rswitch_scalar   = fr->ic->rvdw_switch;
757     rswitch          = _mm_set1_ps(rswitch_scalar);
758     /* Setup switch parameters */
759     d_scalar         = rcutoff_scalar-rswitch_scalar;
760     d                = _mm_set1_ps(d_scalar);
761     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
762     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
763     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
764     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
765     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
766     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
767
768     /* Avoid stupid compiler warnings */
769     jnrA = jnrB = jnrC = jnrD = 0;
770     j_coord_offsetA = 0;
771     j_coord_offsetB = 0;
772     j_coord_offsetC = 0;
773     j_coord_offsetD = 0;
774
775     outeriter        = 0;
776     inneriter        = 0;
777
778     for(iidx=0;iidx<4*DIM;iidx++)
779     {
780         scratch[iidx] = 0.0;
781     }
782
783     /* Start outer loop over neighborlists */
784     for(iidx=0; iidx<nri; iidx++)
785     {
786         /* Load shift vector for this list */
787         i_shift_offset   = DIM*shiftidx[iidx];
788
789         /* Load limits for loop over neighbors */
790         j_index_start    = jindex[iidx];
791         j_index_end      = jindex[iidx+1];
792
793         /* Get outer coordinate index */
794         inr              = iinr[iidx];
795         i_coord_offset   = DIM*inr;
796
797         /* Load i particle coords and add shift vector */
798         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
799                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
800
801         fix0             = _mm_setzero_ps();
802         fiy0             = _mm_setzero_ps();
803         fiz0             = _mm_setzero_ps();
804         fix1             = _mm_setzero_ps();
805         fiy1             = _mm_setzero_ps();
806         fiz1             = _mm_setzero_ps();
807         fix2             = _mm_setzero_ps();
808         fiy2             = _mm_setzero_ps();
809         fiz2             = _mm_setzero_ps();
810
811         /* Start inner kernel loop */
812         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
813         {
814
815             /* Get j neighbor index, and coordinate index */
816             jnrA             = jjnr[jidx];
817             jnrB             = jjnr[jidx+1];
818             jnrC             = jjnr[jidx+2];
819             jnrD             = jjnr[jidx+3];
820             j_coord_offsetA  = DIM*jnrA;
821             j_coord_offsetB  = DIM*jnrB;
822             j_coord_offsetC  = DIM*jnrC;
823             j_coord_offsetD  = DIM*jnrD;
824
825             /* load j atom coordinates */
826             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
827                                               x+j_coord_offsetC,x+j_coord_offsetD,
828                                               &jx0,&jy0,&jz0);
829
830             /* Calculate displacement vector */
831             dx00             = _mm_sub_ps(ix0,jx0);
832             dy00             = _mm_sub_ps(iy0,jy0);
833             dz00             = _mm_sub_ps(iz0,jz0);
834             dx10             = _mm_sub_ps(ix1,jx0);
835             dy10             = _mm_sub_ps(iy1,jy0);
836             dz10             = _mm_sub_ps(iz1,jz0);
837             dx20             = _mm_sub_ps(ix2,jx0);
838             dy20             = _mm_sub_ps(iy2,jy0);
839             dz20             = _mm_sub_ps(iz2,jz0);
840
841             /* Calculate squared distance and things based on it */
842             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
843             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
844             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
845
846             rinv00           = sse41_invsqrt_f(rsq00);
847             rinv10           = sse41_invsqrt_f(rsq10);
848             rinv20           = sse41_invsqrt_f(rsq20);
849
850             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
851             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
852             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
853
854             /* Load parameters for j particles */
855             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
856                                                               charge+jnrC+0,charge+jnrD+0);
857             vdwjidx0A        = 2*vdwtype[jnrA+0];
858             vdwjidx0B        = 2*vdwtype[jnrB+0];
859             vdwjidx0C        = 2*vdwtype[jnrC+0];
860             vdwjidx0D        = 2*vdwtype[jnrD+0];
861
862             fjx0             = _mm_setzero_ps();
863             fjy0             = _mm_setzero_ps();
864             fjz0             = _mm_setzero_ps();
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             if (gmx_mm_any_lt(rsq00,rcutoff2))
871             {
872
873             r00              = _mm_mul_ps(rsq00,rinv00);
874
875             /* Compute parameters for interactions between i and j atoms */
876             qq00             = _mm_mul_ps(iq0,jq0);
877             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
878                                          vdwparam+vdwioffset0+vdwjidx0B,
879                                          vdwparam+vdwioffset0+vdwjidx0C,
880                                          vdwparam+vdwioffset0+vdwjidx0D,
881                                          &c6_00,&c12_00);
882
883             /* REACTION-FIELD ELECTROSTATICS */
884             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
885
886             /* LENNARD-JONES DISPERSION/REPULSION */
887
888             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
889             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
890             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
891             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
892             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
893
894             d                = _mm_sub_ps(r00,rswitch);
895             d                = _mm_max_ps(d,_mm_setzero_ps());
896             d2               = _mm_mul_ps(d,d);
897             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
898
899             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
900
901             /* Evaluate switch function */
902             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
903             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
904             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
905
906             fscal            = _mm_add_ps(felec,fvdw);
907
908             fscal            = _mm_and_ps(fscal,cutoff_mask);
909
910             /* Calculate temporary vectorial force */
911             tx               = _mm_mul_ps(fscal,dx00);
912             ty               = _mm_mul_ps(fscal,dy00);
913             tz               = _mm_mul_ps(fscal,dz00);
914
915             /* Update vectorial force */
916             fix0             = _mm_add_ps(fix0,tx);
917             fiy0             = _mm_add_ps(fiy0,ty);
918             fiz0             = _mm_add_ps(fiz0,tz);
919
920             fjx0             = _mm_add_ps(fjx0,tx);
921             fjy0             = _mm_add_ps(fjy0,ty);
922             fjz0             = _mm_add_ps(fjz0,tz);
923
924             }
925
926             /**************************
927              * CALCULATE INTERACTIONS *
928              **************************/
929
930             if (gmx_mm_any_lt(rsq10,rcutoff2))
931             {
932
933             /* Compute parameters for interactions between i and j atoms */
934             qq10             = _mm_mul_ps(iq1,jq0);
935
936             /* REACTION-FIELD ELECTROSTATICS */
937             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
938
939             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
940
941             fscal            = felec;
942
943             fscal            = _mm_and_ps(fscal,cutoff_mask);
944
945             /* Calculate temporary vectorial force */
946             tx               = _mm_mul_ps(fscal,dx10);
947             ty               = _mm_mul_ps(fscal,dy10);
948             tz               = _mm_mul_ps(fscal,dz10);
949
950             /* Update vectorial force */
951             fix1             = _mm_add_ps(fix1,tx);
952             fiy1             = _mm_add_ps(fiy1,ty);
953             fiz1             = _mm_add_ps(fiz1,tz);
954
955             fjx0             = _mm_add_ps(fjx0,tx);
956             fjy0             = _mm_add_ps(fjy0,ty);
957             fjz0             = _mm_add_ps(fjz0,tz);
958
959             }
960
961             /**************************
962              * CALCULATE INTERACTIONS *
963              **************************/
964
965             if (gmx_mm_any_lt(rsq20,rcutoff2))
966             {
967
968             /* Compute parameters for interactions between i and j atoms */
969             qq20             = _mm_mul_ps(iq2,jq0);
970
971             /* REACTION-FIELD ELECTROSTATICS */
972             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
973
974             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
975
976             fscal            = felec;
977
978             fscal            = _mm_and_ps(fscal,cutoff_mask);
979
980             /* Calculate temporary vectorial force */
981             tx               = _mm_mul_ps(fscal,dx20);
982             ty               = _mm_mul_ps(fscal,dy20);
983             tz               = _mm_mul_ps(fscal,dz20);
984
985             /* Update vectorial force */
986             fix2             = _mm_add_ps(fix2,tx);
987             fiy2             = _mm_add_ps(fiy2,ty);
988             fiz2             = _mm_add_ps(fiz2,tz);
989
990             fjx0             = _mm_add_ps(fjx0,tx);
991             fjy0             = _mm_add_ps(fjy0,ty);
992             fjz0             = _mm_add_ps(fjz0,tz);
993
994             }
995
996             fjptrA             = f+j_coord_offsetA;
997             fjptrB             = f+j_coord_offsetB;
998             fjptrC             = f+j_coord_offsetC;
999             fjptrD             = f+j_coord_offsetD;
1000
1001             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1002
1003             /* Inner loop uses 121 flops */
1004         }
1005
1006         if(jidx<j_index_end)
1007         {
1008
1009             /* Get j neighbor index, and coordinate index */
1010             jnrlistA         = jjnr[jidx];
1011             jnrlistB         = jjnr[jidx+1];
1012             jnrlistC         = jjnr[jidx+2];
1013             jnrlistD         = jjnr[jidx+3];
1014             /* Sign of each element will be negative for non-real atoms.
1015              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1016              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1017              */
1018             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1019             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1020             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1021             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1022             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1023             j_coord_offsetA  = DIM*jnrA;
1024             j_coord_offsetB  = DIM*jnrB;
1025             j_coord_offsetC  = DIM*jnrC;
1026             j_coord_offsetD  = DIM*jnrD;
1027
1028             /* load j atom coordinates */
1029             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1030                                               x+j_coord_offsetC,x+j_coord_offsetD,
1031                                               &jx0,&jy0,&jz0);
1032
1033             /* Calculate displacement vector */
1034             dx00             = _mm_sub_ps(ix0,jx0);
1035             dy00             = _mm_sub_ps(iy0,jy0);
1036             dz00             = _mm_sub_ps(iz0,jz0);
1037             dx10             = _mm_sub_ps(ix1,jx0);
1038             dy10             = _mm_sub_ps(iy1,jy0);
1039             dz10             = _mm_sub_ps(iz1,jz0);
1040             dx20             = _mm_sub_ps(ix2,jx0);
1041             dy20             = _mm_sub_ps(iy2,jy0);
1042             dz20             = _mm_sub_ps(iz2,jz0);
1043
1044             /* Calculate squared distance and things based on it */
1045             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1046             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1047             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1048
1049             rinv00           = sse41_invsqrt_f(rsq00);
1050             rinv10           = sse41_invsqrt_f(rsq10);
1051             rinv20           = sse41_invsqrt_f(rsq20);
1052
1053             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1054             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1055             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1056
1057             /* Load parameters for j particles */
1058             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1059                                                               charge+jnrC+0,charge+jnrD+0);
1060             vdwjidx0A        = 2*vdwtype[jnrA+0];
1061             vdwjidx0B        = 2*vdwtype[jnrB+0];
1062             vdwjidx0C        = 2*vdwtype[jnrC+0];
1063             vdwjidx0D        = 2*vdwtype[jnrD+0];
1064
1065             fjx0             = _mm_setzero_ps();
1066             fjy0             = _mm_setzero_ps();
1067             fjz0             = _mm_setzero_ps();
1068
1069             /**************************
1070              * CALCULATE INTERACTIONS *
1071              **************************/
1072
1073             if (gmx_mm_any_lt(rsq00,rcutoff2))
1074             {
1075
1076             r00              = _mm_mul_ps(rsq00,rinv00);
1077             r00              = _mm_andnot_ps(dummy_mask,r00);
1078
1079             /* Compute parameters for interactions between i and j atoms */
1080             qq00             = _mm_mul_ps(iq0,jq0);
1081             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1082                                          vdwparam+vdwioffset0+vdwjidx0B,
1083                                          vdwparam+vdwioffset0+vdwjidx0C,
1084                                          vdwparam+vdwioffset0+vdwjidx0D,
1085                                          &c6_00,&c12_00);
1086
1087             /* REACTION-FIELD ELECTROSTATICS */
1088             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1089
1090             /* LENNARD-JONES DISPERSION/REPULSION */
1091
1092             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1093             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1094             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1095             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1096             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1097
1098             d                = _mm_sub_ps(r00,rswitch);
1099             d                = _mm_max_ps(d,_mm_setzero_ps());
1100             d2               = _mm_mul_ps(d,d);
1101             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1102
1103             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1104
1105             /* Evaluate switch function */
1106             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1107             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1108             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1109
1110             fscal            = _mm_add_ps(felec,fvdw);
1111
1112             fscal            = _mm_and_ps(fscal,cutoff_mask);
1113
1114             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1115
1116             /* Calculate temporary vectorial force */
1117             tx               = _mm_mul_ps(fscal,dx00);
1118             ty               = _mm_mul_ps(fscal,dy00);
1119             tz               = _mm_mul_ps(fscal,dz00);
1120
1121             /* Update vectorial force */
1122             fix0             = _mm_add_ps(fix0,tx);
1123             fiy0             = _mm_add_ps(fiy0,ty);
1124             fiz0             = _mm_add_ps(fiz0,tz);
1125
1126             fjx0             = _mm_add_ps(fjx0,tx);
1127             fjy0             = _mm_add_ps(fjy0,ty);
1128             fjz0             = _mm_add_ps(fjz0,tz);
1129
1130             }
1131
1132             /**************************
1133              * CALCULATE INTERACTIONS *
1134              **************************/
1135
1136             if (gmx_mm_any_lt(rsq10,rcutoff2))
1137             {
1138
1139             /* Compute parameters for interactions between i and j atoms */
1140             qq10             = _mm_mul_ps(iq1,jq0);
1141
1142             /* REACTION-FIELD ELECTROSTATICS */
1143             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1144
1145             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1146
1147             fscal            = felec;
1148
1149             fscal            = _mm_and_ps(fscal,cutoff_mask);
1150
1151             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1152
1153             /* Calculate temporary vectorial force */
1154             tx               = _mm_mul_ps(fscal,dx10);
1155             ty               = _mm_mul_ps(fscal,dy10);
1156             tz               = _mm_mul_ps(fscal,dz10);
1157
1158             /* Update vectorial force */
1159             fix1             = _mm_add_ps(fix1,tx);
1160             fiy1             = _mm_add_ps(fiy1,ty);
1161             fiz1             = _mm_add_ps(fiz1,tz);
1162
1163             fjx0             = _mm_add_ps(fjx0,tx);
1164             fjy0             = _mm_add_ps(fjy0,ty);
1165             fjz0             = _mm_add_ps(fjz0,tz);
1166
1167             }
1168
1169             /**************************
1170              * CALCULATE INTERACTIONS *
1171              **************************/
1172
1173             if (gmx_mm_any_lt(rsq20,rcutoff2))
1174             {
1175
1176             /* Compute parameters for interactions between i and j atoms */
1177             qq20             = _mm_mul_ps(iq2,jq0);
1178
1179             /* REACTION-FIELD ELECTROSTATICS */
1180             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1181
1182             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1183
1184             fscal            = felec;
1185
1186             fscal            = _mm_and_ps(fscal,cutoff_mask);
1187
1188             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1189
1190             /* Calculate temporary vectorial force */
1191             tx               = _mm_mul_ps(fscal,dx20);
1192             ty               = _mm_mul_ps(fscal,dy20);
1193             tz               = _mm_mul_ps(fscal,dz20);
1194
1195             /* Update vectorial force */
1196             fix2             = _mm_add_ps(fix2,tx);
1197             fiy2             = _mm_add_ps(fiy2,ty);
1198             fiz2             = _mm_add_ps(fiz2,tz);
1199
1200             fjx0             = _mm_add_ps(fjx0,tx);
1201             fjy0             = _mm_add_ps(fjy0,ty);
1202             fjz0             = _mm_add_ps(fjz0,tz);
1203
1204             }
1205
1206             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1207             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1208             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1209             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1210
1211             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1212
1213             /* Inner loop uses 122 flops */
1214         }
1215
1216         /* End of innermost loop */
1217
1218         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1219                                               f+i_coord_offset,fshift+i_shift_offset);
1220
1221         /* Increment number of inner iterations */
1222         inneriter                  += j_index_end - j_index_start;
1223
1224         /* Outer loop uses 18 flops */
1225     }
1226
1227     /* Increment number of outer iterations */
1228     outeriter        += nri;
1229
1230     /* Update outer/inner flops */
1231
1232     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*122);
1233 }