Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_sse4_1_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse4_1_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
96     real             rswitch_scalar,d_scalar;
97     __m128           dummy_mask,cutoff_mask;
98     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
99     __m128           one     = _mm_set1_ps(1.0);
100     __m128           two     = _mm_set1_ps(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_ps(fr->ic->epsfac);
113     charge           = mdatoms->chargeA;
114     krf              = _mm_set1_ps(fr->ic->k_rf);
115     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
116     crf              = _mm_set1_ps(fr->ic->c_rf);
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->ic->rcoulomb;
123     rcutoff          = _mm_set1_ps(rcutoff_scalar);
124     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
125
126     rswitch_scalar   = fr->ic->rvdw_switch;
127     rswitch          = _mm_set1_ps(rswitch_scalar);
128     /* Setup switch parameters */
129     d_scalar         = rcutoff_scalar-rswitch_scalar;
130     d                = _mm_set1_ps(d_scalar);
131     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
132     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
135     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
169
170         fix0             = _mm_setzero_ps();
171         fiy0             = _mm_setzero_ps();
172         fiz0             = _mm_setzero_ps();
173
174         /* Load parameters for i particles */
175         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
176         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_ps();
180         vvdwsum          = _mm_setzero_ps();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               x+j_coord_offsetC,x+j_coord_offsetD,
199                                               &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm_sub_ps(ix0,jx0);
203             dy00             = _mm_sub_ps(iy0,jy0);
204             dz00             = _mm_sub_ps(iz0,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
208
209             rinv00           = sse41_invsqrt_f(rsq00);
210
211             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
215                                                               charge+jnrC+0,charge+jnrD+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218             vdwjidx0C        = 2*vdwtype[jnrC+0];
219             vdwjidx0D        = 2*vdwtype[jnrD+0];
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             if (gmx_mm_any_lt(rsq00,rcutoff2))
226             {
227
228             r00              = _mm_mul_ps(rsq00,rinv00);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq00             = _mm_mul_ps(iq0,jq0);
232             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
233                                          vdwparam+vdwioffset0+vdwjidx0B,
234                                          vdwparam+vdwioffset0+vdwjidx0C,
235                                          vdwparam+vdwioffset0+vdwjidx0D,
236                                          &c6_00,&c12_00);
237
238             /* REACTION-FIELD ELECTROSTATICS */
239             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
240             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
241
242             /* LENNARD-JONES DISPERSION/REPULSION */
243
244             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
245             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
246             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
247             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
248             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
249
250             d                = _mm_sub_ps(r00,rswitch);
251             d                = _mm_max_ps(d,_mm_setzero_ps());
252             d2               = _mm_mul_ps(d,d);
253             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
254
255             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
256
257             /* Evaluate switch function */
258             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
259             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
260             vvdw             = _mm_mul_ps(vvdw,sw);
261             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             velec            = _mm_and_ps(velec,cutoff_mask);
265             velecsum         = _mm_add_ps(velecsum,velec);
266             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
267             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
268
269             fscal            = _mm_add_ps(felec,fvdw);
270
271             fscal            = _mm_and_ps(fscal,cutoff_mask);
272
273             /* Calculate temporary vectorial force */
274             tx               = _mm_mul_ps(fscal,dx00);
275             ty               = _mm_mul_ps(fscal,dy00);
276             tz               = _mm_mul_ps(fscal,dz00);
277
278             /* Update vectorial force */
279             fix0             = _mm_add_ps(fix0,tx);
280             fiy0             = _mm_add_ps(fiy0,ty);
281             fiz0             = _mm_add_ps(fiz0,tz);
282
283             fjptrA             = f+j_coord_offsetA;
284             fjptrB             = f+j_coord_offsetB;
285             fjptrC             = f+j_coord_offsetC;
286             fjptrD             = f+j_coord_offsetD;
287             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
288
289             }
290
291             /* Inner loop uses 70 flops */
292         }
293
294         if(jidx<j_index_end)
295         {
296
297             /* Get j neighbor index, and coordinate index */
298             jnrlistA         = jjnr[jidx];
299             jnrlistB         = jjnr[jidx+1];
300             jnrlistC         = jjnr[jidx+2];
301             jnrlistD         = jjnr[jidx+3];
302             /* Sign of each element will be negative for non-real atoms.
303              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
304              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
305              */
306             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
307             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
308             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
309             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
310             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
311             j_coord_offsetA  = DIM*jnrA;
312             j_coord_offsetB  = DIM*jnrB;
313             j_coord_offsetC  = DIM*jnrC;
314             j_coord_offsetD  = DIM*jnrD;
315
316             /* load j atom coordinates */
317             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
318                                               x+j_coord_offsetC,x+j_coord_offsetD,
319                                               &jx0,&jy0,&jz0);
320
321             /* Calculate displacement vector */
322             dx00             = _mm_sub_ps(ix0,jx0);
323             dy00             = _mm_sub_ps(iy0,jy0);
324             dz00             = _mm_sub_ps(iz0,jz0);
325
326             /* Calculate squared distance and things based on it */
327             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
328
329             rinv00           = sse41_invsqrt_f(rsq00);
330
331             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
332
333             /* Load parameters for j particles */
334             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
335                                                               charge+jnrC+0,charge+jnrD+0);
336             vdwjidx0A        = 2*vdwtype[jnrA+0];
337             vdwjidx0B        = 2*vdwtype[jnrB+0];
338             vdwjidx0C        = 2*vdwtype[jnrC+0];
339             vdwjidx0D        = 2*vdwtype[jnrD+0];
340
341             /**************************
342              * CALCULATE INTERACTIONS *
343              **************************/
344
345             if (gmx_mm_any_lt(rsq00,rcutoff2))
346             {
347
348             r00              = _mm_mul_ps(rsq00,rinv00);
349             r00              = _mm_andnot_ps(dummy_mask,r00);
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq00             = _mm_mul_ps(iq0,jq0);
353             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
354                                          vdwparam+vdwioffset0+vdwjidx0B,
355                                          vdwparam+vdwioffset0+vdwjidx0C,
356                                          vdwparam+vdwioffset0+vdwjidx0D,
357                                          &c6_00,&c12_00);
358
359             /* REACTION-FIELD ELECTROSTATICS */
360             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
361             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
362
363             /* LENNARD-JONES DISPERSION/REPULSION */
364
365             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
366             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
367             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
368             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
369             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
370
371             d                = _mm_sub_ps(r00,rswitch);
372             d                = _mm_max_ps(d,_mm_setzero_ps());
373             d2               = _mm_mul_ps(d,d);
374             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
375
376             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
377
378             /* Evaluate switch function */
379             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
380             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
381             vvdw             = _mm_mul_ps(vvdw,sw);
382             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
383
384             /* Update potential sum for this i atom from the interaction with this j atom. */
385             velec            = _mm_and_ps(velec,cutoff_mask);
386             velec            = _mm_andnot_ps(dummy_mask,velec);
387             velecsum         = _mm_add_ps(velecsum,velec);
388             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
389             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
390             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
391
392             fscal            = _mm_add_ps(felec,fvdw);
393
394             fscal            = _mm_and_ps(fscal,cutoff_mask);
395
396             fscal            = _mm_andnot_ps(dummy_mask,fscal);
397
398             /* Calculate temporary vectorial force */
399             tx               = _mm_mul_ps(fscal,dx00);
400             ty               = _mm_mul_ps(fscal,dy00);
401             tz               = _mm_mul_ps(fscal,dz00);
402
403             /* Update vectorial force */
404             fix0             = _mm_add_ps(fix0,tx);
405             fiy0             = _mm_add_ps(fiy0,ty);
406             fiz0             = _mm_add_ps(fiz0,tz);
407
408             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
409             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
410             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
411             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
412             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
413
414             }
415
416             /* Inner loop uses 71 flops */
417         }
418
419         /* End of innermost loop */
420
421         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
422                                               f+i_coord_offset,fshift+i_shift_offset);
423
424         ggid                        = gid[iidx];
425         /* Update potential energies */
426         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
427         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
428
429         /* Increment number of inner iterations */
430         inneriter                  += j_index_end - j_index_start;
431
432         /* Outer loop uses 9 flops */
433     }
434
435     /* Increment number of outer iterations */
436     outeriter        += nri;
437
438     /* Update outer/inner flops */
439
440     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
441 }
442 /*
443  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse4_1_single
444  * Electrostatics interaction: ReactionField
445  * VdW interaction:            LennardJones
446  * Geometry:                   Particle-Particle
447  * Calculate force/pot:        Force
448  */
449 void
450 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse4_1_single
451                     (t_nblist                    * gmx_restrict       nlist,
452                      rvec                        * gmx_restrict          xx,
453                      rvec                        * gmx_restrict          ff,
454                      struct t_forcerec           * gmx_restrict          fr,
455                      t_mdatoms                   * gmx_restrict     mdatoms,
456                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
457                      t_nrnb                      * gmx_restrict        nrnb)
458 {
459     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
460      * just 0 for non-waters.
461      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
462      * jnr indices corresponding to data put in the four positions in the SIMD register.
463      */
464     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
465     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
466     int              jnrA,jnrB,jnrC,jnrD;
467     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
468     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
469     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
470     real             rcutoff_scalar;
471     real             *shiftvec,*fshift,*x,*f;
472     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
473     real             scratch[4*DIM];
474     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
475     int              vdwioffset0;
476     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
477     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
478     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
479     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
480     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
481     real             *charge;
482     int              nvdwtype;
483     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
484     int              *vdwtype;
485     real             *vdwparam;
486     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
487     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
488     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
489     real             rswitch_scalar,d_scalar;
490     __m128           dummy_mask,cutoff_mask;
491     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
492     __m128           one     = _mm_set1_ps(1.0);
493     __m128           two     = _mm_set1_ps(2.0);
494     x                = xx[0];
495     f                = ff[0];
496
497     nri              = nlist->nri;
498     iinr             = nlist->iinr;
499     jindex           = nlist->jindex;
500     jjnr             = nlist->jjnr;
501     shiftidx         = nlist->shift;
502     gid              = nlist->gid;
503     shiftvec         = fr->shift_vec[0];
504     fshift           = fr->fshift[0];
505     facel            = _mm_set1_ps(fr->ic->epsfac);
506     charge           = mdatoms->chargeA;
507     krf              = _mm_set1_ps(fr->ic->k_rf);
508     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
509     crf              = _mm_set1_ps(fr->ic->c_rf);
510     nvdwtype         = fr->ntype;
511     vdwparam         = fr->nbfp;
512     vdwtype          = mdatoms->typeA;
513
514     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
515     rcutoff_scalar   = fr->ic->rcoulomb;
516     rcutoff          = _mm_set1_ps(rcutoff_scalar);
517     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
518
519     rswitch_scalar   = fr->ic->rvdw_switch;
520     rswitch          = _mm_set1_ps(rswitch_scalar);
521     /* Setup switch parameters */
522     d_scalar         = rcutoff_scalar-rswitch_scalar;
523     d                = _mm_set1_ps(d_scalar);
524     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
525     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
526     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
527     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
528     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
529     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
530
531     /* Avoid stupid compiler warnings */
532     jnrA = jnrB = jnrC = jnrD = 0;
533     j_coord_offsetA = 0;
534     j_coord_offsetB = 0;
535     j_coord_offsetC = 0;
536     j_coord_offsetD = 0;
537
538     outeriter        = 0;
539     inneriter        = 0;
540
541     for(iidx=0;iidx<4*DIM;iidx++)
542     {
543         scratch[iidx] = 0.0;
544     }
545
546     /* Start outer loop over neighborlists */
547     for(iidx=0; iidx<nri; iidx++)
548     {
549         /* Load shift vector for this list */
550         i_shift_offset   = DIM*shiftidx[iidx];
551
552         /* Load limits for loop over neighbors */
553         j_index_start    = jindex[iidx];
554         j_index_end      = jindex[iidx+1];
555
556         /* Get outer coordinate index */
557         inr              = iinr[iidx];
558         i_coord_offset   = DIM*inr;
559
560         /* Load i particle coords and add shift vector */
561         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
562
563         fix0             = _mm_setzero_ps();
564         fiy0             = _mm_setzero_ps();
565         fiz0             = _mm_setzero_ps();
566
567         /* Load parameters for i particles */
568         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
569         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
570
571         /* Start inner kernel loop */
572         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
573         {
574
575             /* Get j neighbor index, and coordinate index */
576             jnrA             = jjnr[jidx];
577             jnrB             = jjnr[jidx+1];
578             jnrC             = jjnr[jidx+2];
579             jnrD             = jjnr[jidx+3];
580             j_coord_offsetA  = DIM*jnrA;
581             j_coord_offsetB  = DIM*jnrB;
582             j_coord_offsetC  = DIM*jnrC;
583             j_coord_offsetD  = DIM*jnrD;
584
585             /* load j atom coordinates */
586             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
587                                               x+j_coord_offsetC,x+j_coord_offsetD,
588                                               &jx0,&jy0,&jz0);
589
590             /* Calculate displacement vector */
591             dx00             = _mm_sub_ps(ix0,jx0);
592             dy00             = _mm_sub_ps(iy0,jy0);
593             dz00             = _mm_sub_ps(iz0,jz0);
594
595             /* Calculate squared distance and things based on it */
596             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
597
598             rinv00           = sse41_invsqrt_f(rsq00);
599
600             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
601
602             /* Load parameters for j particles */
603             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
604                                                               charge+jnrC+0,charge+jnrD+0);
605             vdwjidx0A        = 2*vdwtype[jnrA+0];
606             vdwjidx0B        = 2*vdwtype[jnrB+0];
607             vdwjidx0C        = 2*vdwtype[jnrC+0];
608             vdwjidx0D        = 2*vdwtype[jnrD+0];
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             if (gmx_mm_any_lt(rsq00,rcutoff2))
615             {
616
617             r00              = _mm_mul_ps(rsq00,rinv00);
618
619             /* Compute parameters for interactions between i and j atoms */
620             qq00             = _mm_mul_ps(iq0,jq0);
621             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
622                                          vdwparam+vdwioffset0+vdwjidx0B,
623                                          vdwparam+vdwioffset0+vdwjidx0C,
624                                          vdwparam+vdwioffset0+vdwjidx0D,
625                                          &c6_00,&c12_00);
626
627             /* REACTION-FIELD ELECTROSTATICS */
628             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
629
630             /* LENNARD-JONES DISPERSION/REPULSION */
631
632             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
633             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
634             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
635             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
636             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
637
638             d                = _mm_sub_ps(r00,rswitch);
639             d                = _mm_max_ps(d,_mm_setzero_ps());
640             d2               = _mm_mul_ps(d,d);
641             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
642
643             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
644
645             /* Evaluate switch function */
646             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
647             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
648             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
649
650             fscal            = _mm_add_ps(felec,fvdw);
651
652             fscal            = _mm_and_ps(fscal,cutoff_mask);
653
654             /* Calculate temporary vectorial force */
655             tx               = _mm_mul_ps(fscal,dx00);
656             ty               = _mm_mul_ps(fscal,dy00);
657             tz               = _mm_mul_ps(fscal,dz00);
658
659             /* Update vectorial force */
660             fix0             = _mm_add_ps(fix0,tx);
661             fiy0             = _mm_add_ps(fiy0,ty);
662             fiz0             = _mm_add_ps(fiz0,tz);
663
664             fjptrA             = f+j_coord_offsetA;
665             fjptrB             = f+j_coord_offsetB;
666             fjptrC             = f+j_coord_offsetC;
667             fjptrD             = f+j_coord_offsetD;
668             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
669
670             }
671
672             /* Inner loop uses 61 flops */
673         }
674
675         if(jidx<j_index_end)
676         {
677
678             /* Get j neighbor index, and coordinate index */
679             jnrlistA         = jjnr[jidx];
680             jnrlistB         = jjnr[jidx+1];
681             jnrlistC         = jjnr[jidx+2];
682             jnrlistD         = jjnr[jidx+3];
683             /* Sign of each element will be negative for non-real atoms.
684              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
685              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
686              */
687             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
688             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
689             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
690             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
691             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
692             j_coord_offsetA  = DIM*jnrA;
693             j_coord_offsetB  = DIM*jnrB;
694             j_coord_offsetC  = DIM*jnrC;
695             j_coord_offsetD  = DIM*jnrD;
696
697             /* load j atom coordinates */
698             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
699                                               x+j_coord_offsetC,x+j_coord_offsetD,
700                                               &jx0,&jy0,&jz0);
701
702             /* Calculate displacement vector */
703             dx00             = _mm_sub_ps(ix0,jx0);
704             dy00             = _mm_sub_ps(iy0,jy0);
705             dz00             = _mm_sub_ps(iz0,jz0);
706
707             /* Calculate squared distance and things based on it */
708             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
709
710             rinv00           = sse41_invsqrt_f(rsq00);
711
712             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
713
714             /* Load parameters for j particles */
715             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
716                                                               charge+jnrC+0,charge+jnrD+0);
717             vdwjidx0A        = 2*vdwtype[jnrA+0];
718             vdwjidx0B        = 2*vdwtype[jnrB+0];
719             vdwjidx0C        = 2*vdwtype[jnrC+0];
720             vdwjidx0D        = 2*vdwtype[jnrD+0];
721
722             /**************************
723              * CALCULATE INTERACTIONS *
724              **************************/
725
726             if (gmx_mm_any_lt(rsq00,rcutoff2))
727             {
728
729             r00              = _mm_mul_ps(rsq00,rinv00);
730             r00              = _mm_andnot_ps(dummy_mask,r00);
731
732             /* Compute parameters for interactions between i and j atoms */
733             qq00             = _mm_mul_ps(iq0,jq0);
734             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
735                                          vdwparam+vdwioffset0+vdwjidx0B,
736                                          vdwparam+vdwioffset0+vdwjidx0C,
737                                          vdwparam+vdwioffset0+vdwjidx0D,
738                                          &c6_00,&c12_00);
739
740             /* REACTION-FIELD ELECTROSTATICS */
741             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
742
743             /* LENNARD-JONES DISPERSION/REPULSION */
744
745             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
746             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
747             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
748             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
749             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
750
751             d                = _mm_sub_ps(r00,rswitch);
752             d                = _mm_max_ps(d,_mm_setzero_ps());
753             d2               = _mm_mul_ps(d,d);
754             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
755
756             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
757
758             /* Evaluate switch function */
759             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
760             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
761             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
762
763             fscal            = _mm_add_ps(felec,fvdw);
764
765             fscal            = _mm_and_ps(fscal,cutoff_mask);
766
767             fscal            = _mm_andnot_ps(dummy_mask,fscal);
768
769             /* Calculate temporary vectorial force */
770             tx               = _mm_mul_ps(fscal,dx00);
771             ty               = _mm_mul_ps(fscal,dy00);
772             tz               = _mm_mul_ps(fscal,dz00);
773
774             /* Update vectorial force */
775             fix0             = _mm_add_ps(fix0,tx);
776             fiy0             = _mm_add_ps(fiy0,ty);
777             fiz0             = _mm_add_ps(fiz0,tz);
778
779             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
780             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
781             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
782             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
783             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
784
785             }
786
787             /* Inner loop uses 62 flops */
788         }
789
790         /* End of innermost loop */
791
792         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
793                                               f+i_coord_offset,fshift+i_shift_offset);
794
795         /* Increment number of inner iterations */
796         inneriter                  += j_index_end - j_index_start;
797
798         /* Outer loop uses 7 flops */
799     }
800
801     /* Increment number of outer iterations */
802     outeriter        += nri;
803
804     /* Update outer/inner flops */
805
806     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
807 }