Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse4_1_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
97     real             rswitch_scalar,d_scalar;
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm_set1_ps(fr->ic->k_rf);
116     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
117     crf              = _mm_set1_ps(fr->ic->c_rf);
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->rcoulomb;
124     rcutoff          = _mm_set1_ps(rcutoff_scalar);
125     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
126
127     rswitch_scalar   = fr->rvdw_switch;
128     rswitch          = _mm_set1_ps(rswitch_scalar);
129     /* Setup switch parameters */
130     d_scalar         = rcutoff_scalar-rswitch_scalar;
131     d                = _mm_set1_ps(d_scalar);
132     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
133     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
134     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
135     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
136     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
137     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
170
171         fix0             = _mm_setzero_ps();
172         fiy0             = _mm_setzero_ps();
173         fiz0             = _mm_setzero_ps();
174
175         /* Load parameters for i particles */
176         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
177         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_ps();
181         vvdwsum          = _mm_setzero_ps();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               x+j_coord_offsetC,x+j_coord_offsetD,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_ps(ix0,jx0);
204             dy00             = _mm_sub_ps(iy0,jy0);
205             dz00             = _mm_sub_ps(iz0,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
209
210             rinv00           = gmx_mm_invsqrt_ps(rsq00);
211
212             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
216                                                               charge+jnrC+0,charge+jnrD+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219             vdwjidx0C        = 2*vdwtype[jnrC+0];
220             vdwjidx0D        = 2*vdwtype[jnrD+0];
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             if (gmx_mm_any_lt(rsq00,rcutoff2))
227             {
228
229             r00              = _mm_mul_ps(rsq00,rinv00);
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm_mul_ps(iq0,jq0);
233             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,
235                                          vdwparam+vdwioffset0+vdwjidx0C,
236                                          vdwparam+vdwioffset0+vdwjidx0D,
237                                          &c6_00,&c12_00);
238
239             /* REACTION-FIELD ELECTROSTATICS */
240             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
241             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
242
243             /* LENNARD-JONES DISPERSION/REPULSION */
244
245             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
246             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
247             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
248             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
249             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
250
251             d                = _mm_sub_ps(r00,rswitch);
252             d                = _mm_max_ps(d,_mm_setzero_ps());
253             d2               = _mm_mul_ps(d,d);
254             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
255
256             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
257
258             /* Evaluate switch function */
259             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
260             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
261             vvdw             = _mm_mul_ps(vvdw,sw);
262             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             velec            = _mm_and_ps(velec,cutoff_mask);
266             velecsum         = _mm_add_ps(velecsum,velec);
267             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
268             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
269
270             fscal            = _mm_add_ps(felec,fvdw);
271
272             fscal            = _mm_and_ps(fscal,cutoff_mask);
273
274             /* Calculate temporary vectorial force */
275             tx               = _mm_mul_ps(fscal,dx00);
276             ty               = _mm_mul_ps(fscal,dy00);
277             tz               = _mm_mul_ps(fscal,dz00);
278
279             /* Update vectorial force */
280             fix0             = _mm_add_ps(fix0,tx);
281             fiy0             = _mm_add_ps(fiy0,ty);
282             fiz0             = _mm_add_ps(fiz0,tz);
283
284             fjptrA             = f+j_coord_offsetA;
285             fjptrB             = f+j_coord_offsetB;
286             fjptrC             = f+j_coord_offsetC;
287             fjptrD             = f+j_coord_offsetD;
288             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
289
290             }
291
292             /* Inner loop uses 70 flops */
293         }
294
295         if(jidx<j_index_end)
296         {
297
298             /* Get j neighbor index, and coordinate index */
299             jnrlistA         = jjnr[jidx];
300             jnrlistB         = jjnr[jidx+1];
301             jnrlistC         = jjnr[jidx+2];
302             jnrlistD         = jjnr[jidx+3];
303             /* Sign of each element will be negative for non-real atoms.
304              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
305              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
306              */
307             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
308             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
309             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
310             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
311             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
312             j_coord_offsetA  = DIM*jnrA;
313             j_coord_offsetB  = DIM*jnrB;
314             j_coord_offsetC  = DIM*jnrC;
315             j_coord_offsetD  = DIM*jnrD;
316
317             /* load j atom coordinates */
318             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
319                                               x+j_coord_offsetC,x+j_coord_offsetD,
320                                               &jx0,&jy0,&jz0);
321
322             /* Calculate displacement vector */
323             dx00             = _mm_sub_ps(ix0,jx0);
324             dy00             = _mm_sub_ps(iy0,jy0);
325             dz00             = _mm_sub_ps(iz0,jz0);
326
327             /* Calculate squared distance and things based on it */
328             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
329
330             rinv00           = gmx_mm_invsqrt_ps(rsq00);
331
332             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
333
334             /* Load parameters for j particles */
335             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
336                                                               charge+jnrC+0,charge+jnrD+0);
337             vdwjidx0A        = 2*vdwtype[jnrA+0];
338             vdwjidx0B        = 2*vdwtype[jnrB+0];
339             vdwjidx0C        = 2*vdwtype[jnrC+0];
340             vdwjidx0D        = 2*vdwtype[jnrD+0];
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             if (gmx_mm_any_lt(rsq00,rcutoff2))
347             {
348
349             r00              = _mm_mul_ps(rsq00,rinv00);
350             r00              = _mm_andnot_ps(dummy_mask,r00);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq00             = _mm_mul_ps(iq0,jq0);
354             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
355                                          vdwparam+vdwioffset0+vdwjidx0B,
356                                          vdwparam+vdwioffset0+vdwjidx0C,
357                                          vdwparam+vdwioffset0+vdwjidx0D,
358                                          &c6_00,&c12_00);
359
360             /* REACTION-FIELD ELECTROSTATICS */
361             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
362             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
363
364             /* LENNARD-JONES DISPERSION/REPULSION */
365
366             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
367             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
368             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
369             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
370             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
371
372             d                = _mm_sub_ps(r00,rswitch);
373             d                = _mm_max_ps(d,_mm_setzero_ps());
374             d2               = _mm_mul_ps(d,d);
375             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
376
377             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
378
379             /* Evaluate switch function */
380             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
381             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
382             vvdw             = _mm_mul_ps(vvdw,sw);
383             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
384
385             /* Update potential sum for this i atom from the interaction with this j atom. */
386             velec            = _mm_and_ps(velec,cutoff_mask);
387             velec            = _mm_andnot_ps(dummy_mask,velec);
388             velecsum         = _mm_add_ps(velecsum,velec);
389             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
390             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
391             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
392
393             fscal            = _mm_add_ps(felec,fvdw);
394
395             fscal            = _mm_and_ps(fscal,cutoff_mask);
396
397             fscal            = _mm_andnot_ps(dummy_mask,fscal);
398
399             /* Calculate temporary vectorial force */
400             tx               = _mm_mul_ps(fscal,dx00);
401             ty               = _mm_mul_ps(fscal,dy00);
402             tz               = _mm_mul_ps(fscal,dz00);
403
404             /* Update vectorial force */
405             fix0             = _mm_add_ps(fix0,tx);
406             fiy0             = _mm_add_ps(fiy0,ty);
407             fiz0             = _mm_add_ps(fiz0,tz);
408
409             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
410             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
411             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
412             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
413             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
414
415             }
416
417             /* Inner loop uses 71 flops */
418         }
419
420         /* End of innermost loop */
421
422         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
423                                               f+i_coord_offset,fshift+i_shift_offset);
424
425         ggid                        = gid[iidx];
426         /* Update potential energies */
427         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
428         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
429
430         /* Increment number of inner iterations */
431         inneriter                  += j_index_end - j_index_start;
432
433         /* Outer loop uses 9 flops */
434     }
435
436     /* Increment number of outer iterations */
437     outeriter        += nri;
438
439     /* Update outer/inner flops */
440
441     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
442 }
443 /*
444  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse4_1_single
445  * Electrostatics interaction: ReactionField
446  * VdW interaction:            LennardJones
447  * Geometry:                   Particle-Particle
448  * Calculate force/pot:        Force
449  */
450 void
451 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse4_1_single
452                     (t_nblist                    * gmx_restrict       nlist,
453                      rvec                        * gmx_restrict          xx,
454                      rvec                        * gmx_restrict          ff,
455                      t_forcerec                  * gmx_restrict          fr,
456                      t_mdatoms                   * gmx_restrict     mdatoms,
457                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
458                      t_nrnb                      * gmx_restrict        nrnb)
459 {
460     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
461      * just 0 for non-waters.
462      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
463      * jnr indices corresponding to data put in the four positions in the SIMD register.
464      */
465     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
466     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
467     int              jnrA,jnrB,jnrC,jnrD;
468     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
469     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
470     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
471     real             rcutoff_scalar;
472     real             *shiftvec,*fshift,*x,*f;
473     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
474     real             scratch[4*DIM];
475     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
476     int              vdwioffset0;
477     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
478     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
479     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
480     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
481     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
482     real             *charge;
483     int              nvdwtype;
484     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
485     int              *vdwtype;
486     real             *vdwparam;
487     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
488     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
489     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
490     real             rswitch_scalar,d_scalar;
491     __m128           dummy_mask,cutoff_mask;
492     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
493     __m128           one     = _mm_set1_ps(1.0);
494     __m128           two     = _mm_set1_ps(2.0);
495     x                = xx[0];
496     f                = ff[0];
497
498     nri              = nlist->nri;
499     iinr             = nlist->iinr;
500     jindex           = nlist->jindex;
501     jjnr             = nlist->jjnr;
502     shiftidx         = nlist->shift;
503     gid              = nlist->gid;
504     shiftvec         = fr->shift_vec[0];
505     fshift           = fr->fshift[0];
506     facel            = _mm_set1_ps(fr->epsfac);
507     charge           = mdatoms->chargeA;
508     krf              = _mm_set1_ps(fr->ic->k_rf);
509     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
510     crf              = _mm_set1_ps(fr->ic->c_rf);
511     nvdwtype         = fr->ntype;
512     vdwparam         = fr->nbfp;
513     vdwtype          = mdatoms->typeA;
514
515     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
516     rcutoff_scalar   = fr->rcoulomb;
517     rcutoff          = _mm_set1_ps(rcutoff_scalar);
518     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
519
520     rswitch_scalar   = fr->rvdw_switch;
521     rswitch          = _mm_set1_ps(rswitch_scalar);
522     /* Setup switch parameters */
523     d_scalar         = rcutoff_scalar-rswitch_scalar;
524     d                = _mm_set1_ps(d_scalar);
525     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
526     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
527     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
528     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
529     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
530     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
531
532     /* Avoid stupid compiler warnings */
533     jnrA = jnrB = jnrC = jnrD = 0;
534     j_coord_offsetA = 0;
535     j_coord_offsetB = 0;
536     j_coord_offsetC = 0;
537     j_coord_offsetD = 0;
538
539     outeriter        = 0;
540     inneriter        = 0;
541
542     for(iidx=0;iidx<4*DIM;iidx++)
543     {
544         scratch[iidx] = 0.0;
545     }
546
547     /* Start outer loop over neighborlists */
548     for(iidx=0; iidx<nri; iidx++)
549     {
550         /* Load shift vector for this list */
551         i_shift_offset   = DIM*shiftidx[iidx];
552
553         /* Load limits for loop over neighbors */
554         j_index_start    = jindex[iidx];
555         j_index_end      = jindex[iidx+1];
556
557         /* Get outer coordinate index */
558         inr              = iinr[iidx];
559         i_coord_offset   = DIM*inr;
560
561         /* Load i particle coords and add shift vector */
562         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
563
564         fix0             = _mm_setzero_ps();
565         fiy0             = _mm_setzero_ps();
566         fiz0             = _mm_setzero_ps();
567
568         /* Load parameters for i particles */
569         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
570         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
571
572         /* Start inner kernel loop */
573         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
574         {
575
576             /* Get j neighbor index, and coordinate index */
577             jnrA             = jjnr[jidx];
578             jnrB             = jjnr[jidx+1];
579             jnrC             = jjnr[jidx+2];
580             jnrD             = jjnr[jidx+3];
581             j_coord_offsetA  = DIM*jnrA;
582             j_coord_offsetB  = DIM*jnrB;
583             j_coord_offsetC  = DIM*jnrC;
584             j_coord_offsetD  = DIM*jnrD;
585
586             /* load j atom coordinates */
587             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
588                                               x+j_coord_offsetC,x+j_coord_offsetD,
589                                               &jx0,&jy0,&jz0);
590
591             /* Calculate displacement vector */
592             dx00             = _mm_sub_ps(ix0,jx0);
593             dy00             = _mm_sub_ps(iy0,jy0);
594             dz00             = _mm_sub_ps(iz0,jz0);
595
596             /* Calculate squared distance and things based on it */
597             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
598
599             rinv00           = gmx_mm_invsqrt_ps(rsq00);
600
601             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
602
603             /* Load parameters for j particles */
604             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
605                                                               charge+jnrC+0,charge+jnrD+0);
606             vdwjidx0A        = 2*vdwtype[jnrA+0];
607             vdwjidx0B        = 2*vdwtype[jnrB+0];
608             vdwjidx0C        = 2*vdwtype[jnrC+0];
609             vdwjidx0D        = 2*vdwtype[jnrD+0];
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             if (gmx_mm_any_lt(rsq00,rcutoff2))
616             {
617
618             r00              = _mm_mul_ps(rsq00,rinv00);
619
620             /* Compute parameters for interactions between i and j atoms */
621             qq00             = _mm_mul_ps(iq0,jq0);
622             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
623                                          vdwparam+vdwioffset0+vdwjidx0B,
624                                          vdwparam+vdwioffset0+vdwjidx0C,
625                                          vdwparam+vdwioffset0+vdwjidx0D,
626                                          &c6_00,&c12_00);
627
628             /* REACTION-FIELD ELECTROSTATICS */
629             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
630
631             /* LENNARD-JONES DISPERSION/REPULSION */
632
633             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
634             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
635             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
636             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
637             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
638
639             d                = _mm_sub_ps(r00,rswitch);
640             d                = _mm_max_ps(d,_mm_setzero_ps());
641             d2               = _mm_mul_ps(d,d);
642             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
643
644             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
645
646             /* Evaluate switch function */
647             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
648             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
649             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
650
651             fscal            = _mm_add_ps(felec,fvdw);
652
653             fscal            = _mm_and_ps(fscal,cutoff_mask);
654
655             /* Calculate temporary vectorial force */
656             tx               = _mm_mul_ps(fscal,dx00);
657             ty               = _mm_mul_ps(fscal,dy00);
658             tz               = _mm_mul_ps(fscal,dz00);
659
660             /* Update vectorial force */
661             fix0             = _mm_add_ps(fix0,tx);
662             fiy0             = _mm_add_ps(fiy0,ty);
663             fiz0             = _mm_add_ps(fiz0,tz);
664
665             fjptrA             = f+j_coord_offsetA;
666             fjptrB             = f+j_coord_offsetB;
667             fjptrC             = f+j_coord_offsetC;
668             fjptrD             = f+j_coord_offsetD;
669             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
670
671             }
672
673             /* Inner loop uses 61 flops */
674         }
675
676         if(jidx<j_index_end)
677         {
678
679             /* Get j neighbor index, and coordinate index */
680             jnrlistA         = jjnr[jidx];
681             jnrlistB         = jjnr[jidx+1];
682             jnrlistC         = jjnr[jidx+2];
683             jnrlistD         = jjnr[jidx+3];
684             /* Sign of each element will be negative for non-real atoms.
685              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
686              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
687              */
688             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
689             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
690             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
691             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
692             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
693             j_coord_offsetA  = DIM*jnrA;
694             j_coord_offsetB  = DIM*jnrB;
695             j_coord_offsetC  = DIM*jnrC;
696             j_coord_offsetD  = DIM*jnrD;
697
698             /* load j atom coordinates */
699             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
700                                               x+j_coord_offsetC,x+j_coord_offsetD,
701                                               &jx0,&jy0,&jz0);
702
703             /* Calculate displacement vector */
704             dx00             = _mm_sub_ps(ix0,jx0);
705             dy00             = _mm_sub_ps(iy0,jy0);
706             dz00             = _mm_sub_ps(iz0,jz0);
707
708             /* Calculate squared distance and things based on it */
709             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
710
711             rinv00           = gmx_mm_invsqrt_ps(rsq00);
712
713             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
714
715             /* Load parameters for j particles */
716             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
717                                                               charge+jnrC+0,charge+jnrD+0);
718             vdwjidx0A        = 2*vdwtype[jnrA+0];
719             vdwjidx0B        = 2*vdwtype[jnrB+0];
720             vdwjidx0C        = 2*vdwtype[jnrC+0];
721             vdwjidx0D        = 2*vdwtype[jnrD+0];
722
723             /**************************
724              * CALCULATE INTERACTIONS *
725              **************************/
726
727             if (gmx_mm_any_lt(rsq00,rcutoff2))
728             {
729
730             r00              = _mm_mul_ps(rsq00,rinv00);
731             r00              = _mm_andnot_ps(dummy_mask,r00);
732
733             /* Compute parameters for interactions between i and j atoms */
734             qq00             = _mm_mul_ps(iq0,jq0);
735             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
736                                          vdwparam+vdwioffset0+vdwjidx0B,
737                                          vdwparam+vdwioffset0+vdwjidx0C,
738                                          vdwparam+vdwioffset0+vdwjidx0D,
739                                          &c6_00,&c12_00);
740
741             /* REACTION-FIELD ELECTROSTATICS */
742             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
743
744             /* LENNARD-JONES DISPERSION/REPULSION */
745
746             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
747             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
748             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
749             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
750             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
751
752             d                = _mm_sub_ps(r00,rswitch);
753             d                = _mm_max_ps(d,_mm_setzero_ps());
754             d2               = _mm_mul_ps(d,d);
755             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
756
757             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
758
759             /* Evaluate switch function */
760             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
761             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
762             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
763
764             fscal            = _mm_add_ps(felec,fvdw);
765
766             fscal            = _mm_and_ps(fscal,cutoff_mask);
767
768             fscal            = _mm_andnot_ps(dummy_mask,fscal);
769
770             /* Calculate temporary vectorial force */
771             tx               = _mm_mul_ps(fscal,dx00);
772             ty               = _mm_mul_ps(fscal,dy00);
773             tz               = _mm_mul_ps(fscal,dz00);
774
775             /* Update vectorial force */
776             fix0             = _mm_add_ps(fix0,tx);
777             fiy0             = _mm_add_ps(fiy0,ty);
778             fiz0             = _mm_add_ps(fiz0,tz);
779
780             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
781             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
782             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
783             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
784             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
785
786             }
787
788             /* Inner loop uses 62 flops */
789         }
790
791         /* End of innermost loop */
792
793         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
794                                               f+i_coord_offset,fshift+i_shift_offset);
795
796         /* Increment number of inner iterations */
797         inneriter                  += j_index_end - j_index_start;
798
799         /* Outer loop uses 7 flops */
800     }
801
802     /* Increment number of outer iterations */
803     outeriter        += nri;
804
805     /* Update outer/inner flops */
806
807     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
808 }