Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse4_1_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->ic->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm_set1_ps(fr->ic->k_rf);
122     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
123     crf              = _mm_set1_ps(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
131     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
132     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
136     rcutoff_scalar   = fr->ic->rcoulomb;
137     rcutoff          = _mm_set1_ps(rcutoff_scalar);
138     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
139
140     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
141     rvdw             = _mm_set1_ps(fr->ic->rvdw);
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
175
176         fix0             = _mm_setzero_ps();
177         fiy0             = _mm_setzero_ps();
178         fiz0             = _mm_setzero_ps();
179         fix1             = _mm_setzero_ps();
180         fiy1             = _mm_setzero_ps();
181         fiz1             = _mm_setzero_ps();
182         fix2             = _mm_setzero_ps();
183         fiy2             = _mm_setzero_ps();
184         fiz2             = _mm_setzero_ps();
185         fix3             = _mm_setzero_ps();
186         fiy3             = _mm_setzero_ps();
187         fiz3             = _mm_setzero_ps();
188
189         /* Reset potential sums */
190         velecsum         = _mm_setzero_ps();
191         vvdwsum          = _mm_setzero_ps();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             jnrC             = jjnr[jidx+2];
201             jnrD             = jjnr[jidx+3];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206
207             /* load j atom coordinates */
208             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
209                                               x+j_coord_offsetC,x+j_coord_offsetD,
210                                               &jx0,&jy0,&jz0);
211
212             /* Calculate displacement vector */
213             dx00             = _mm_sub_ps(ix0,jx0);
214             dy00             = _mm_sub_ps(iy0,jy0);
215             dz00             = _mm_sub_ps(iz0,jz0);
216             dx10             = _mm_sub_ps(ix1,jx0);
217             dy10             = _mm_sub_ps(iy1,jy0);
218             dz10             = _mm_sub_ps(iz1,jz0);
219             dx20             = _mm_sub_ps(ix2,jx0);
220             dy20             = _mm_sub_ps(iy2,jy0);
221             dz20             = _mm_sub_ps(iz2,jz0);
222             dx30             = _mm_sub_ps(ix3,jx0);
223             dy30             = _mm_sub_ps(iy3,jy0);
224             dz30             = _mm_sub_ps(iz3,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
228             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
229             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
230             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
231
232             rinv10           = sse41_invsqrt_f(rsq10);
233             rinv20           = sse41_invsqrt_f(rsq20);
234             rinv30           = sse41_invsqrt_f(rsq30);
235
236             rinvsq00         = sse41_inv_f(rsq00);
237             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
238             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
239             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
240
241             /* Load parameters for j particles */
242             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
243                                                               charge+jnrC+0,charge+jnrD+0);
244             vdwjidx0A        = 2*vdwtype[jnrA+0];
245             vdwjidx0B        = 2*vdwtype[jnrB+0];
246             vdwjidx0C        = 2*vdwtype[jnrC+0];
247             vdwjidx0D        = 2*vdwtype[jnrD+0];
248
249             fjx0             = _mm_setzero_ps();
250             fjy0             = _mm_setzero_ps();
251             fjz0             = _mm_setzero_ps();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             if (gmx_mm_any_lt(rsq00,rcutoff2))
258             {
259
260             /* Compute parameters for interactions between i and j atoms */
261             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
262                                          vdwparam+vdwioffset0+vdwjidx0B,
263                                          vdwparam+vdwioffset0+vdwjidx0C,
264                                          vdwparam+vdwioffset0+vdwjidx0D,
265                                          &c6_00,&c12_00);
266
267             /* LENNARD-JONES DISPERSION/REPULSION */
268
269             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
270             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
271             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
272             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
273                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
274             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
275
276             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
280             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
281
282             fscal            = fvdw;
283
284             fscal            = _mm_and_ps(fscal,cutoff_mask);
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm_mul_ps(fscal,dx00);
288             ty               = _mm_mul_ps(fscal,dy00);
289             tz               = _mm_mul_ps(fscal,dz00);
290
291             /* Update vectorial force */
292             fix0             = _mm_add_ps(fix0,tx);
293             fiy0             = _mm_add_ps(fiy0,ty);
294             fiz0             = _mm_add_ps(fiz0,tz);
295
296             fjx0             = _mm_add_ps(fjx0,tx);
297             fjy0             = _mm_add_ps(fjy0,ty);
298             fjz0             = _mm_add_ps(fjz0,tz);
299
300             }
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             if (gmx_mm_any_lt(rsq10,rcutoff2))
307             {
308
309             /* Compute parameters for interactions between i and j atoms */
310             qq10             = _mm_mul_ps(iq1,jq0);
311
312             /* REACTION-FIELD ELECTROSTATICS */
313             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
314             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
315
316             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velec            = _mm_and_ps(velec,cutoff_mask);
320             velecsum         = _mm_add_ps(velecsum,velec);
321
322             fscal            = felec;
323
324             fscal            = _mm_and_ps(fscal,cutoff_mask);
325
326             /* Calculate temporary vectorial force */
327             tx               = _mm_mul_ps(fscal,dx10);
328             ty               = _mm_mul_ps(fscal,dy10);
329             tz               = _mm_mul_ps(fscal,dz10);
330
331             /* Update vectorial force */
332             fix1             = _mm_add_ps(fix1,tx);
333             fiy1             = _mm_add_ps(fiy1,ty);
334             fiz1             = _mm_add_ps(fiz1,tz);
335
336             fjx0             = _mm_add_ps(fjx0,tx);
337             fjy0             = _mm_add_ps(fjy0,ty);
338             fjz0             = _mm_add_ps(fjz0,tz);
339
340             }
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             if (gmx_mm_any_lt(rsq20,rcutoff2))
347             {
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq20             = _mm_mul_ps(iq2,jq0);
351
352             /* REACTION-FIELD ELECTROSTATICS */
353             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
354             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
355
356             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velec            = _mm_and_ps(velec,cutoff_mask);
360             velecsum         = _mm_add_ps(velecsum,velec);
361
362             fscal            = felec;
363
364             fscal            = _mm_and_ps(fscal,cutoff_mask);
365
366             /* Calculate temporary vectorial force */
367             tx               = _mm_mul_ps(fscal,dx20);
368             ty               = _mm_mul_ps(fscal,dy20);
369             tz               = _mm_mul_ps(fscal,dz20);
370
371             /* Update vectorial force */
372             fix2             = _mm_add_ps(fix2,tx);
373             fiy2             = _mm_add_ps(fiy2,ty);
374             fiz2             = _mm_add_ps(fiz2,tz);
375
376             fjx0             = _mm_add_ps(fjx0,tx);
377             fjy0             = _mm_add_ps(fjy0,ty);
378             fjz0             = _mm_add_ps(fjz0,tz);
379
380             }
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             if (gmx_mm_any_lt(rsq30,rcutoff2))
387             {
388
389             /* Compute parameters for interactions between i and j atoms */
390             qq30             = _mm_mul_ps(iq3,jq0);
391
392             /* REACTION-FIELD ELECTROSTATICS */
393             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
394             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
395
396             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velec            = _mm_and_ps(velec,cutoff_mask);
400             velecsum         = _mm_add_ps(velecsum,velec);
401
402             fscal            = felec;
403
404             fscal            = _mm_and_ps(fscal,cutoff_mask);
405
406             /* Calculate temporary vectorial force */
407             tx               = _mm_mul_ps(fscal,dx30);
408             ty               = _mm_mul_ps(fscal,dy30);
409             tz               = _mm_mul_ps(fscal,dz30);
410
411             /* Update vectorial force */
412             fix3             = _mm_add_ps(fix3,tx);
413             fiy3             = _mm_add_ps(fiy3,ty);
414             fiz3             = _mm_add_ps(fiz3,tz);
415
416             fjx0             = _mm_add_ps(fjx0,tx);
417             fjy0             = _mm_add_ps(fjy0,ty);
418             fjz0             = _mm_add_ps(fjz0,tz);
419
420             }
421
422             fjptrA             = f+j_coord_offsetA;
423             fjptrB             = f+j_coord_offsetB;
424             fjptrC             = f+j_coord_offsetC;
425             fjptrD             = f+j_coord_offsetD;
426
427             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
428
429             /* Inner loop uses 149 flops */
430         }
431
432         if(jidx<j_index_end)
433         {
434
435             /* Get j neighbor index, and coordinate index */
436             jnrlistA         = jjnr[jidx];
437             jnrlistB         = jjnr[jidx+1];
438             jnrlistC         = jjnr[jidx+2];
439             jnrlistD         = jjnr[jidx+3];
440             /* Sign of each element will be negative for non-real atoms.
441              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
442              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
443              */
444             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
445             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
446             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
447             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
448             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
449             j_coord_offsetA  = DIM*jnrA;
450             j_coord_offsetB  = DIM*jnrB;
451             j_coord_offsetC  = DIM*jnrC;
452             j_coord_offsetD  = DIM*jnrD;
453
454             /* load j atom coordinates */
455             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
456                                               x+j_coord_offsetC,x+j_coord_offsetD,
457                                               &jx0,&jy0,&jz0);
458
459             /* Calculate displacement vector */
460             dx00             = _mm_sub_ps(ix0,jx0);
461             dy00             = _mm_sub_ps(iy0,jy0);
462             dz00             = _mm_sub_ps(iz0,jz0);
463             dx10             = _mm_sub_ps(ix1,jx0);
464             dy10             = _mm_sub_ps(iy1,jy0);
465             dz10             = _mm_sub_ps(iz1,jz0);
466             dx20             = _mm_sub_ps(ix2,jx0);
467             dy20             = _mm_sub_ps(iy2,jy0);
468             dz20             = _mm_sub_ps(iz2,jz0);
469             dx30             = _mm_sub_ps(ix3,jx0);
470             dy30             = _mm_sub_ps(iy3,jy0);
471             dz30             = _mm_sub_ps(iz3,jz0);
472
473             /* Calculate squared distance and things based on it */
474             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
475             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
476             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
477             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
478
479             rinv10           = sse41_invsqrt_f(rsq10);
480             rinv20           = sse41_invsqrt_f(rsq20);
481             rinv30           = sse41_invsqrt_f(rsq30);
482
483             rinvsq00         = sse41_inv_f(rsq00);
484             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
485             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
486             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
487
488             /* Load parameters for j particles */
489             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
490                                                               charge+jnrC+0,charge+jnrD+0);
491             vdwjidx0A        = 2*vdwtype[jnrA+0];
492             vdwjidx0B        = 2*vdwtype[jnrB+0];
493             vdwjidx0C        = 2*vdwtype[jnrC+0];
494             vdwjidx0D        = 2*vdwtype[jnrD+0];
495
496             fjx0             = _mm_setzero_ps();
497             fjy0             = _mm_setzero_ps();
498             fjz0             = _mm_setzero_ps();
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             if (gmx_mm_any_lt(rsq00,rcutoff2))
505             {
506
507             /* Compute parameters for interactions between i and j atoms */
508             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
509                                          vdwparam+vdwioffset0+vdwjidx0B,
510                                          vdwparam+vdwioffset0+vdwjidx0C,
511                                          vdwparam+vdwioffset0+vdwjidx0D,
512                                          &c6_00,&c12_00);
513
514             /* LENNARD-JONES DISPERSION/REPULSION */
515
516             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
517             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
518             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
519             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
520                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
521             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
522
523             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
527             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
528             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
529
530             fscal            = fvdw;
531
532             fscal            = _mm_and_ps(fscal,cutoff_mask);
533
534             fscal            = _mm_andnot_ps(dummy_mask,fscal);
535
536             /* Calculate temporary vectorial force */
537             tx               = _mm_mul_ps(fscal,dx00);
538             ty               = _mm_mul_ps(fscal,dy00);
539             tz               = _mm_mul_ps(fscal,dz00);
540
541             /* Update vectorial force */
542             fix0             = _mm_add_ps(fix0,tx);
543             fiy0             = _mm_add_ps(fiy0,ty);
544             fiz0             = _mm_add_ps(fiz0,tz);
545
546             fjx0             = _mm_add_ps(fjx0,tx);
547             fjy0             = _mm_add_ps(fjy0,ty);
548             fjz0             = _mm_add_ps(fjz0,tz);
549
550             }
551
552             /**************************
553              * CALCULATE INTERACTIONS *
554              **************************/
555
556             if (gmx_mm_any_lt(rsq10,rcutoff2))
557             {
558
559             /* Compute parameters for interactions between i and j atoms */
560             qq10             = _mm_mul_ps(iq1,jq0);
561
562             /* REACTION-FIELD ELECTROSTATICS */
563             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
564             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
565
566             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
567
568             /* Update potential sum for this i atom from the interaction with this j atom. */
569             velec            = _mm_and_ps(velec,cutoff_mask);
570             velec            = _mm_andnot_ps(dummy_mask,velec);
571             velecsum         = _mm_add_ps(velecsum,velec);
572
573             fscal            = felec;
574
575             fscal            = _mm_and_ps(fscal,cutoff_mask);
576
577             fscal            = _mm_andnot_ps(dummy_mask,fscal);
578
579             /* Calculate temporary vectorial force */
580             tx               = _mm_mul_ps(fscal,dx10);
581             ty               = _mm_mul_ps(fscal,dy10);
582             tz               = _mm_mul_ps(fscal,dz10);
583
584             /* Update vectorial force */
585             fix1             = _mm_add_ps(fix1,tx);
586             fiy1             = _mm_add_ps(fiy1,ty);
587             fiz1             = _mm_add_ps(fiz1,tz);
588
589             fjx0             = _mm_add_ps(fjx0,tx);
590             fjy0             = _mm_add_ps(fjy0,ty);
591             fjz0             = _mm_add_ps(fjz0,tz);
592
593             }
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             if (gmx_mm_any_lt(rsq20,rcutoff2))
600             {
601
602             /* Compute parameters for interactions between i and j atoms */
603             qq20             = _mm_mul_ps(iq2,jq0);
604
605             /* REACTION-FIELD ELECTROSTATICS */
606             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
607             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
608
609             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
610
611             /* Update potential sum for this i atom from the interaction with this j atom. */
612             velec            = _mm_and_ps(velec,cutoff_mask);
613             velec            = _mm_andnot_ps(dummy_mask,velec);
614             velecsum         = _mm_add_ps(velecsum,velec);
615
616             fscal            = felec;
617
618             fscal            = _mm_and_ps(fscal,cutoff_mask);
619
620             fscal            = _mm_andnot_ps(dummy_mask,fscal);
621
622             /* Calculate temporary vectorial force */
623             tx               = _mm_mul_ps(fscal,dx20);
624             ty               = _mm_mul_ps(fscal,dy20);
625             tz               = _mm_mul_ps(fscal,dz20);
626
627             /* Update vectorial force */
628             fix2             = _mm_add_ps(fix2,tx);
629             fiy2             = _mm_add_ps(fiy2,ty);
630             fiz2             = _mm_add_ps(fiz2,tz);
631
632             fjx0             = _mm_add_ps(fjx0,tx);
633             fjy0             = _mm_add_ps(fjy0,ty);
634             fjz0             = _mm_add_ps(fjz0,tz);
635
636             }
637
638             /**************************
639              * CALCULATE INTERACTIONS *
640              **************************/
641
642             if (gmx_mm_any_lt(rsq30,rcutoff2))
643             {
644
645             /* Compute parameters for interactions between i and j atoms */
646             qq30             = _mm_mul_ps(iq3,jq0);
647
648             /* REACTION-FIELD ELECTROSTATICS */
649             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
650             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
651
652             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
653
654             /* Update potential sum for this i atom from the interaction with this j atom. */
655             velec            = _mm_and_ps(velec,cutoff_mask);
656             velec            = _mm_andnot_ps(dummy_mask,velec);
657             velecsum         = _mm_add_ps(velecsum,velec);
658
659             fscal            = felec;
660
661             fscal            = _mm_and_ps(fscal,cutoff_mask);
662
663             fscal            = _mm_andnot_ps(dummy_mask,fscal);
664
665             /* Calculate temporary vectorial force */
666             tx               = _mm_mul_ps(fscal,dx30);
667             ty               = _mm_mul_ps(fscal,dy30);
668             tz               = _mm_mul_ps(fscal,dz30);
669
670             /* Update vectorial force */
671             fix3             = _mm_add_ps(fix3,tx);
672             fiy3             = _mm_add_ps(fiy3,ty);
673             fiz3             = _mm_add_ps(fiz3,tz);
674
675             fjx0             = _mm_add_ps(fjx0,tx);
676             fjy0             = _mm_add_ps(fjy0,ty);
677             fjz0             = _mm_add_ps(fjz0,tz);
678
679             }
680
681             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
682             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
683             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
684             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
685
686             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
687
688             /* Inner loop uses 149 flops */
689         }
690
691         /* End of innermost loop */
692
693         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
694                                               f+i_coord_offset,fshift+i_shift_offset);
695
696         ggid                        = gid[iidx];
697         /* Update potential energies */
698         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
699         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
700
701         /* Increment number of inner iterations */
702         inneriter                  += j_index_end - j_index_start;
703
704         /* Outer loop uses 26 flops */
705     }
706
707     /* Increment number of outer iterations */
708     outeriter        += nri;
709
710     /* Update outer/inner flops */
711
712     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*149);
713 }
714 /*
715  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse4_1_single
716  * Electrostatics interaction: ReactionField
717  * VdW interaction:            LennardJones
718  * Geometry:                   Water4-Particle
719  * Calculate force/pot:        Force
720  */
721 void
722 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse4_1_single
723                     (t_nblist                    * gmx_restrict       nlist,
724                      rvec                        * gmx_restrict          xx,
725                      rvec                        * gmx_restrict          ff,
726                      struct t_forcerec           * gmx_restrict          fr,
727                      t_mdatoms                   * gmx_restrict     mdatoms,
728                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
729                      t_nrnb                      * gmx_restrict        nrnb)
730 {
731     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
732      * just 0 for non-waters.
733      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
734      * jnr indices corresponding to data put in the four positions in the SIMD register.
735      */
736     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
737     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
738     int              jnrA,jnrB,jnrC,jnrD;
739     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
740     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
741     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
742     real             rcutoff_scalar;
743     real             *shiftvec,*fshift,*x,*f;
744     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
745     real             scratch[4*DIM];
746     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
747     int              vdwioffset0;
748     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
749     int              vdwioffset1;
750     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
751     int              vdwioffset2;
752     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
753     int              vdwioffset3;
754     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
755     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
756     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
757     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
758     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
759     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
760     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
761     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
762     real             *charge;
763     int              nvdwtype;
764     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
765     int              *vdwtype;
766     real             *vdwparam;
767     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
768     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
769     __m128           dummy_mask,cutoff_mask;
770     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
771     __m128           one     = _mm_set1_ps(1.0);
772     __m128           two     = _mm_set1_ps(2.0);
773     x                = xx[0];
774     f                = ff[0];
775
776     nri              = nlist->nri;
777     iinr             = nlist->iinr;
778     jindex           = nlist->jindex;
779     jjnr             = nlist->jjnr;
780     shiftidx         = nlist->shift;
781     gid              = nlist->gid;
782     shiftvec         = fr->shift_vec[0];
783     fshift           = fr->fshift[0];
784     facel            = _mm_set1_ps(fr->ic->epsfac);
785     charge           = mdatoms->chargeA;
786     krf              = _mm_set1_ps(fr->ic->k_rf);
787     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
788     crf              = _mm_set1_ps(fr->ic->c_rf);
789     nvdwtype         = fr->ntype;
790     vdwparam         = fr->nbfp;
791     vdwtype          = mdatoms->typeA;
792
793     /* Setup water-specific parameters */
794     inr              = nlist->iinr[0];
795     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
796     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
797     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
798     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
799
800     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
801     rcutoff_scalar   = fr->ic->rcoulomb;
802     rcutoff          = _mm_set1_ps(rcutoff_scalar);
803     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
804
805     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
806     rvdw             = _mm_set1_ps(fr->ic->rvdw);
807
808     /* Avoid stupid compiler warnings */
809     jnrA = jnrB = jnrC = jnrD = 0;
810     j_coord_offsetA = 0;
811     j_coord_offsetB = 0;
812     j_coord_offsetC = 0;
813     j_coord_offsetD = 0;
814
815     outeriter        = 0;
816     inneriter        = 0;
817
818     for(iidx=0;iidx<4*DIM;iidx++)
819     {
820         scratch[iidx] = 0.0;
821     }
822
823     /* Start outer loop over neighborlists */
824     for(iidx=0; iidx<nri; iidx++)
825     {
826         /* Load shift vector for this list */
827         i_shift_offset   = DIM*shiftidx[iidx];
828
829         /* Load limits for loop over neighbors */
830         j_index_start    = jindex[iidx];
831         j_index_end      = jindex[iidx+1];
832
833         /* Get outer coordinate index */
834         inr              = iinr[iidx];
835         i_coord_offset   = DIM*inr;
836
837         /* Load i particle coords and add shift vector */
838         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
839                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
840
841         fix0             = _mm_setzero_ps();
842         fiy0             = _mm_setzero_ps();
843         fiz0             = _mm_setzero_ps();
844         fix1             = _mm_setzero_ps();
845         fiy1             = _mm_setzero_ps();
846         fiz1             = _mm_setzero_ps();
847         fix2             = _mm_setzero_ps();
848         fiy2             = _mm_setzero_ps();
849         fiz2             = _mm_setzero_ps();
850         fix3             = _mm_setzero_ps();
851         fiy3             = _mm_setzero_ps();
852         fiz3             = _mm_setzero_ps();
853
854         /* Start inner kernel loop */
855         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
856         {
857
858             /* Get j neighbor index, and coordinate index */
859             jnrA             = jjnr[jidx];
860             jnrB             = jjnr[jidx+1];
861             jnrC             = jjnr[jidx+2];
862             jnrD             = jjnr[jidx+3];
863             j_coord_offsetA  = DIM*jnrA;
864             j_coord_offsetB  = DIM*jnrB;
865             j_coord_offsetC  = DIM*jnrC;
866             j_coord_offsetD  = DIM*jnrD;
867
868             /* load j atom coordinates */
869             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
870                                               x+j_coord_offsetC,x+j_coord_offsetD,
871                                               &jx0,&jy0,&jz0);
872
873             /* Calculate displacement vector */
874             dx00             = _mm_sub_ps(ix0,jx0);
875             dy00             = _mm_sub_ps(iy0,jy0);
876             dz00             = _mm_sub_ps(iz0,jz0);
877             dx10             = _mm_sub_ps(ix1,jx0);
878             dy10             = _mm_sub_ps(iy1,jy0);
879             dz10             = _mm_sub_ps(iz1,jz0);
880             dx20             = _mm_sub_ps(ix2,jx0);
881             dy20             = _mm_sub_ps(iy2,jy0);
882             dz20             = _mm_sub_ps(iz2,jz0);
883             dx30             = _mm_sub_ps(ix3,jx0);
884             dy30             = _mm_sub_ps(iy3,jy0);
885             dz30             = _mm_sub_ps(iz3,jz0);
886
887             /* Calculate squared distance and things based on it */
888             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
889             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
890             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
891             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
892
893             rinv10           = sse41_invsqrt_f(rsq10);
894             rinv20           = sse41_invsqrt_f(rsq20);
895             rinv30           = sse41_invsqrt_f(rsq30);
896
897             rinvsq00         = sse41_inv_f(rsq00);
898             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
899             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
900             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
901
902             /* Load parameters for j particles */
903             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
904                                                               charge+jnrC+0,charge+jnrD+0);
905             vdwjidx0A        = 2*vdwtype[jnrA+0];
906             vdwjidx0B        = 2*vdwtype[jnrB+0];
907             vdwjidx0C        = 2*vdwtype[jnrC+0];
908             vdwjidx0D        = 2*vdwtype[jnrD+0];
909
910             fjx0             = _mm_setzero_ps();
911             fjy0             = _mm_setzero_ps();
912             fjz0             = _mm_setzero_ps();
913
914             /**************************
915              * CALCULATE INTERACTIONS *
916              **************************/
917
918             if (gmx_mm_any_lt(rsq00,rcutoff2))
919             {
920
921             /* Compute parameters for interactions between i and j atoms */
922             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
923                                          vdwparam+vdwioffset0+vdwjidx0B,
924                                          vdwparam+vdwioffset0+vdwjidx0C,
925                                          vdwparam+vdwioffset0+vdwjidx0D,
926                                          &c6_00,&c12_00);
927
928             /* LENNARD-JONES DISPERSION/REPULSION */
929
930             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
931             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
932
933             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
934
935             fscal            = fvdw;
936
937             fscal            = _mm_and_ps(fscal,cutoff_mask);
938
939             /* Calculate temporary vectorial force */
940             tx               = _mm_mul_ps(fscal,dx00);
941             ty               = _mm_mul_ps(fscal,dy00);
942             tz               = _mm_mul_ps(fscal,dz00);
943
944             /* Update vectorial force */
945             fix0             = _mm_add_ps(fix0,tx);
946             fiy0             = _mm_add_ps(fiy0,ty);
947             fiz0             = _mm_add_ps(fiz0,tz);
948
949             fjx0             = _mm_add_ps(fjx0,tx);
950             fjy0             = _mm_add_ps(fjy0,ty);
951             fjz0             = _mm_add_ps(fjz0,tz);
952
953             }
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             if (gmx_mm_any_lt(rsq10,rcutoff2))
960             {
961
962             /* Compute parameters for interactions between i and j atoms */
963             qq10             = _mm_mul_ps(iq1,jq0);
964
965             /* REACTION-FIELD ELECTROSTATICS */
966             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
967
968             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
969
970             fscal            = felec;
971
972             fscal            = _mm_and_ps(fscal,cutoff_mask);
973
974             /* Calculate temporary vectorial force */
975             tx               = _mm_mul_ps(fscal,dx10);
976             ty               = _mm_mul_ps(fscal,dy10);
977             tz               = _mm_mul_ps(fscal,dz10);
978
979             /* Update vectorial force */
980             fix1             = _mm_add_ps(fix1,tx);
981             fiy1             = _mm_add_ps(fiy1,ty);
982             fiz1             = _mm_add_ps(fiz1,tz);
983
984             fjx0             = _mm_add_ps(fjx0,tx);
985             fjy0             = _mm_add_ps(fjy0,ty);
986             fjz0             = _mm_add_ps(fjz0,tz);
987
988             }
989
990             /**************************
991              * CALCULATE INTERACTIONS *
992              **************************/
993
994             if (gmx_mm_any_lt(rsq20,rcutoff2))
995             {
996
997             /* Compute parameters for interactions between i and j atoms */
998             qq20             = _mm_mul_ps(iq2,jq0);
999
1000             /* REACTION-FIELD ELECTROSTATICS */
1001             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1002
1003             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1004
1005             fscal            = felec;
1006
1007             fscal            = _mm_and_ps(fscal,cutoff_mask);
1008
1009             /* Calculate temporary vectorial force */
1010             tx               = _mm_mul_ps(fscal,dx20);
1011             ty               = _mm_mul_ps(fscal,dy20);
1012             tz               = _mm_mul_ps(fscal,dz20);
1013
1014             /* Update vectorial force */
1015             fix2             = _mm_add_ps(fix2,tx);
1016             fiy2             = _mm_add_ps(fiy2,ty);
1017             fiz2             = _mm_add_ps(fiz2,tz);
1018
1019             fjx0             = _mm_add_ps(fjx0,tx);
1020             fjy0             = _mm_add_ps(fjy0,ty);
1021             fjz0             = _mm_add_ps(fjz0,tz);
1022
1023             }
1024
1025             /**************************
1026              * CALCULATE INTERACTIONS *
1027              **************************/
1028
1029             if (gmx_mm_any_lt(rsq30,rcutoff2))
1030             {
1031
1032             /* Compute parameters for interactions between i and j atoms */
1033             qq30             = _mm_mul_ps(iq3,jq0);
1034
1035             /* REACTION-FIELD ELECTROSTATICS */
1036             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1037
1038             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1039
1040             fscal            = felec;
1041
1042             fscal            = _mm_and_ps(fscal,cutoff_mask);
1043
1044             /* Calculate temporary vectorial force */
1045             tx               = _mm_mul_ps(fscal,dx30);
1046             ty               = _mm_mul_ps(fscal,dy30);
1047             tz               = _mm_mul_ps(fscal,dz30);
1048
1049             /* Update vectorial force */
1050             fix3             = _mm_add_ps(fix3,tx);
1051             fiy3             = _mm_add_ps(fiy3,ty);
1052             fiz3             = _mm_add_ps(fiz3,tz);
1053
1054             fjx0             = _mm_add_ps(fjx0,tx);
1055             fjy0             = _mm_add_ps(fjy0,ty);
1056             fjz0             = _mm_add_ps(fjz0,tz);
1057
1058             }
1059
1060             fjptrA             = f+j_coord_offsetA;
1061             fjptrB             = f+j_coord_offsetB;
1062             fjptrC             = f+j_coord_offsetC;
1063             fjptrD             = f+j_coord_offsetD;
1064
1065             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1066
1067             /* Inner loop uses 120 flops */
1068         }
1069
1070         if(jidx<j_index_end)
1071         {
1072
1073             /* Get j neighbor index, and coordinate index */
1074             jnrlistA         = jjnr[jidx];
1075             jnrlistB         = jjnr[jidx+1];
1076             jnrlistC         = jjnr[jidx+2];
1077             jnrlistD         = jjnr[jidx+3];
1078             /* Sign of each element will be negative for non-real atoms.
1079              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1080              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1081              */
1082             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1083             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1084             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1085             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1086             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1087             j_coord_offsetA  = DIM*jnrA;
1088             j_coord_offsetB  = DIM*jnrB;
1089             j_coord_offsetC  = DIM*jnrC;
1090             j_coord_offsetD  = DIM*jnrD;
1091
1092             /* load j atom coordinates */
1093             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1094                                               x+j_coord_offsetC,x+j_coord_offsetD,
1095                                               &jx0,&jy0,&jz0);
1096
1097             /* Calculate displacement vector */
1098             dx00             = _mm_sub_ps(ix0,jx0);
1099             dy00             = _mm_sub_ps(iy0,jy0);
1100             dz00             = _mm_sub_ps(iz0,jz0);
1101             dx10             = _mm_sub_ps(ix1,jx0);
1102             dy10             = _mm_sub_ps(iy1,jy0);
1103             dz10             = _mm_sub_ps(iz1,jz0);
1104             dx20             = _mm_sub_ps(ix2,jx0);
1105             dy20             = _mm_sub_ps(iy2,jy0);
1106             dz20             = _mm_sub_ps(iz2,jz0);
1107             dx30             = _mm_sub_ps(ix3,jx0);
1108             dy30             = _mm_sub_ps(iy3,jy0);
1109             dz30             = _mm_sub_ps(iz3,jz0);
1110
1111             /* Calculate squared distance and things based on it */
1112             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1113             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1114             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1115             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1116
1117             rinv10           = sse41_invsqrt_f(rsq10);
1118             rinv20           = sse41_invsqrt_f(rsq20);
1119             rinv30           = sse41_invsqrt_f(rsq30);
1120
1121             rinvsq00         = sse41_inv_f(rsq00);
1122             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1123             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1124             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1125
1126             /* Load parameters for j particles */
1127             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1128                                                               charge+jnrC+0,charge+jnrD+0);
1129             vdwjidx0A        = 2*vdwtype[jnrA+0];
1130             vdwjidx0B        = 2*vdwtype[jnrB+0];
1131             vdwjidx0C        = 2*vdwtype[jnrC+0];
1132             vdwjidx0D        = 2*vdwtype[jnrD+0];
1133
1134             fjx0             = _mm_setzero_ps();
1135             fjy0             = _mm_setzero_ps();
1136             fjz0             = _mm_setzero_ps();
1137
1138             /**************************
1139              * CALCULATE INTERACTIONS *
1140              **************************/
1141
1142             if (gmx_mm_any_lt(rsq00,rcutoff2))
1143             {
1144
1145             /* Compute parameters for interactions between i and j atoms */
1146             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1147                                          vdwparam+vdwioffset0+vdwjidx0B,
1148                                          vdwparam+vdwioffset0+vdwjidx0C,
1149                                          vdwparam+vdwioffset0+vdwjidx0D,
1150                                          &c6_00,&c12_00);
1151
1152             /* LENNARD-JONES DISPERSION/REPULSION */
1153
1154             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1155             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1156
1157             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1158
1159             fscal            = fvdw;
1160
1161             fscal            = _mm_and_ps(fscal,cutoff_mask);
1162
1163             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1164
1165             /* Calculate temporary vectorial force */
1166             tx               = _mm_mul_ps(fscal,dx00);
1167             ty               = _mm_mul_ps(fscal,dy00);
1168             tz               = _mm_mul_ps(fscal,dz00);
1169
1170             /* Update vectorial force */
1171             fix0             = _mm_add_ps(fix0,tx);
1172             fiy0             = _mm_add_ps(fiy0,ty);
1173             fiz0             = _mm_add_ps(fiz0,tz);
1174
1175             fjx0             = _mm_add_ps(fjx0,tx);
1176             fjy0             = _mm_add_ps(fjy0,ty);
1177             fjz0             = _mm_add_ps(fjz0,tz);
1178
1179             }
1180
1181             /**************************
1182              * CALCULATE INTERACTIONS *
1183              **************************/
1184
1185             if (gmx_mm_any_lt(rsq10,rcutoff2))
1186             {
1187
1188             /* Compute parameters for interactions between i and j atoms */
1189             qq10             = _mm_mul_ps(iq1,jq0);
1190
1191             /* REACTION-FIELD ELECTROSTATICS */
1192             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1193
1194             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1195
1196             fscal            = felec;
1197
1198             fscal            = _mm_and_ps(fscal,cutoff_mask);
1199
1200             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1201
1202             /* Calculate temporary vectorial force */
1203             tx               = _mm_mul_ps(fscal,dx10);
1204             ty               = _mm_mul_ps(fscal,dy10);
1205             tz               = _mm_mul_ps(fscal,dz10);
1206
1207             /* Update vectorial force */
1208             fix1             = _mm_add_ps(fix1,tx);
1209             fiy1             = _mm_add_ps(fiy1,ty);
1210             fiz1             = _mm_add_ps(fiz1,tz);
1211
1212             fjx0             = _mm_add_ps(fjx0,tx);
1213             fjy0             = _mm_add_ps(fjy0,ty);
1214             fjz0             = _mm_add_ps(fjz0,tz);
1215
1216             }
1217
1218             /**************************
1219              * CALCULATE INTERACTIONS *
1220              **************************/
1221
1222             if (gmx_mm_any_lt(rsq20,rcutoff2))
1223             {
1224
1225             /* Compute parameters for interactions between i and j atoms */
1226             qq20             = _mm_mul_ps(iq2,jq0);
1227
1228             /* REACTION-FIELD ELECTROSTATICS */
1229             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1230
1231             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1232
1233             fscal            = felec;
1234
1235             fscal            = _mm_and_ps(fscal,cutoff_mask);
1236
1237             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1238
1239             /* Calculate temporary vectorial force */
1240             tx               = _mm_mul_ps(fscal,dx20);
1241             ty               = _mm_mul_ps(fscal,dy20);
1242             tz               = _mm_mul_ps(fscal,dz20);
1243
1244             /* Update vectorial force */
1245             fix2             = _mm_add_ps(fix2,tx);
1246             fiy2             = _mm_add_ps(fiy2,ty);
1247             fiz2             = _mm_add_ps(fiz2,tz);
1248
1249             fjx0             = _mm_add_ps(fjx0,tx);
1250             fjy0             = _mm_add_ps(fjy0,ty);
1251             fjz0             = _mm_add_ps(fjz0,tz);
1252
1253             }
1254
1255             /**************************
1256              * CALCULATE INTERACTIONS *
1257              **************************/
1258
1259             if (gmx_mm_any_lt(rsq30,rcutoff2))
1260             {
1261
1262             /* Compute parameters for interactions between i and j atoms */
1263             qq30             = _mm_mul_ps(iq3,jq0);
1264
1265             /* REACTION-FIELD ELECTROSTATICS */
1266             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1267
1268             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1269
1270             fscal            = felec;
1271
1272             fscal            = _mm_and_ps(fscal,cutoff_mask);
1273
1274             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1275
1276             /* Calculate temporary vectorial force */
1277             tx               = _mm_mul_ps(fscal,dx30);
1278             ty               = _mm_mul_ps(fscal,dy30);
1279             tz               = _mm_mul_ps(fscal,dz30);
1280
1281             /* Update vectorial force */
1282             fix3             = _mm_add_ps(fix3,tx);
1283             fiy3             = _mm_add_ps(fiy3,ty);
1284             fiz3             = _mm_add_ps(fiz3,tz);
1285
1286             fjx0             = _mm_add_ps(fjx0,tx);
1287             fjy0             = _mm_add_ps(fjy0,ty);
1288             fjz0             = _mm_add_ps(fjz0,tz);
1289
1290             }
1291
1292             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1293             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1294             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1295             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1296
1297             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1298
1299             /* Inner loop uses 120 flops */
1300         }
1301
1302         /* End of innermost loop */
1303
1304         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1305                                               f+i_coord_offset,fshift+i_shift_offset);
1306
1307         /* Increment number of inner iterations */
1308         inneriter                  += j_index_end - j_index_start;
1309
1310         /* Outer loop uses 24 flops */
1311     }
1312
1313     /* Increment number of outer iterations */
1314     outeriter        += nri;
1315
1316     /* Update outer/inner flops */
1317
1318     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*120);
1319 }