51f7cf0452ac06a6be9875b2412670d6c924ec95
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse4_1_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128           dummy_mask,cutoff_mask;
106     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107     __m128           one     = _mm_set1_ps(1.0);
108     __m128           two     = _mm_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_ps(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     krf              = _mm_set1_ps(fr->ic->k_rf);
123     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
124     crf              = _mm_set1_ps(fr->ic->c_rf);
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
132     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
133     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff_scalar   = fr->rcoulomb;
138     rcutoff          = _mm_set1_ps(rcutoff_scalar);
139     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
140
141     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
142     rvdw             = _mm_set1_ps(fr->rvdw);
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
175                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
176
177         fix0             = _mm_setzero_ps();
178         fiy0             = _mm_setzero_ps();
179         fiz0             = _mm_setzero_ps();
180         fix1             = _mm_setzero_ps();
181         fiy1             = _mm_setzero_ps();
182         fiz1             = _mm_setzero_ps();
183         fix2             = _mm_setzero_ps();
184         fiy2             = _mm_setzero_ps();
185         fiz2             = _mm_setzero_ps();
186         fix3             = _mm_setzero_ps();
187         fiy3             = _mm_setzero_ps();
188         fiz3             = _mm_setzero_ps();
189
190         /* Reset potential sums */
191         velecsum         = _mm_setzero_ps();
192         vvdwsum          = _mm_setzero_ps();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207
208             /* load j atom coordinates */
209             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
210                                               x+j_coord_offsetC,x+j_coord_offsetD,
211                                               &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm_sub_ps(ix0,jx0);
215             dy00             = _mm_sub_ps(iy0,jy0);
216             dz00             = _mm_sub_ps(iz0,jz0);
217             dx10             = _mm_sub_ps(ix1,jx0);
218             dy10             = _mm_sub_ps(iy1,jy0);
219             dz10             = _mm_sub_ps(iz1,jz0);
220             dx20             = _mm_sub_ps(ix2,jx0);
221             dy20             = _mm_sub_ps(iy2,jy0);
222             dz20             = _mm_sub_ps(iz2,jz0);
223             dx30             = _mm_sub_ps(ix3,jx0);
224             dy30             = _mm_sub_ps(iy3,jy0);
225             dz30             = _mm_sub_ps(iz3,jz0);
226
227             /* Calculate squared distance and things based on it */
228             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
229             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
230             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
231             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
232
233             rinv10           = gmx_mm_invsqrt_ps(rsq10);
234             rinv20           = gmx_mm_invsqrt_ps(rsq20);
235             rinv30           = gmx_mm_invsqrt_ps(rsq30);
236
237             rinvsq00         = gmx_mm_inv_ps(rsq00);
238             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
239             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
240             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
241
242             /* Load parameters for j particles */
243             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
244                                                               charge+jnrC+0,charge+jnrD+0);
245             vdwjidx0A        = 2*vdwtype[jnrA+0];
246             vdwjidx0B        = 2*vdwtype[jnrB+0];
247             vdwjidx0C        = 2*vdwtype[jnrC+0];
248             vdwjidx0D        = 2*vdwtype[jnrD+0];
249
250             fjx0             = _mm_setzero_ps();
251             fjy0             = _mm_setzero_ps();
252             fjz0             = _mm_setzero_ps();
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             if (gmx_mm_any_lt(rsq00,rcutoff2))
259             {
260
261             /* Compute parameters for interactions between i and j atoms */
262             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
263                                          vdwparam+vdwioffset0+vdwjidx0B,
264                                          vdwparam+vdwioffset0+vdwjidx0C,
265                                          vdwparam+vdwioffset0+vdwjidx0D,
266                                          &c6_00,&c12_00);
267
268             /* LENNARD-JONES DISPERSION/REPULSION */
269
270             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
271             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
272             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
273             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
274                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
275             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
276
277             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
281             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
282
283             fscal            = fvdw;
284
285             fscal            = _mm_and_ps(fscal,cutoff_mask);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm_mul_ps(fscal,dx00);
289             ty               = _mm_mul_ps(fscal,dy00);
290             tz               = _mm_mul_ps(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm_add_ps(fix0,tx);
294             fiy0             = _mm_add_ps(fiy0,ty);
295             fiz0             = _mm_add_ps(fiz0,tz);
296
297             fjx0             = _mm_add_ps(fjx0,tx);
298             fjy0             = _mm_add_ps(fjy0,ty);
299             fjz0             = _mm_add_ps(fjz0,tz);
300
301             }
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             if (gmx_mm_any_lt(rsq10,rcutoff2))
308             {
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq10             = _mm_mul_ps(iq1,jq0);
312
313             /* REACTION-FIELD ELECTROSTATICS */
314             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
315             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
316
317             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velec            = _mm_and_ps(velec,cutoff_mask);
321             velecsum         = _mm_add_ps(velecsum,velec);
322
323             fscal            = felec;
324
325             fscal            = _mm_and_ps(fscal,cutoff_mask);
326
327             /* Calculate temporary vectorial force */
328             tx               = _mm_mul_ps(fscal,dx10);
329             ty               = _mm_mul_ps(fscal,dy10);
330             tz               = _mm_mul_ps(fscal,dz10);
331
332             /* Update vectorial force */
333             fix1             = _mm_add_ps(fix1,tx);
334             fiy1             = _mm_add_ps(fiy1,ty);
335             fiz1             = _mm_add_ps(fiz1,tz);
336
337             fjx0             = _mm_add_ps(fjx0,tx);
338             fjy0             = _mm_add_ps(fjy0,ty);
339             fjz0             = _mm_add_ps(fjz0,tz);
340
341             }
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             if (gmx_mm_any_lt(rsq20,rcutoff2))
348             {
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _mm_mul_ps(iq2,jq0);
352
353             /* REACTION-FIELD ELECTROSTATICS */
354             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
355             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
356
357             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velec            = _mm_and_ps(velec,cutoff_mask);
361             velecsum         = _mm_add_ps(velecsum,velec);
362
363             fscal            = felec;
364
365             fscal            = _mm_and_ps(fscal,cutoff_mask);
366
367             /* Calculate temporary vectorial force */
368             tx               = _mm_mul_ps(fscal,dx20);
369             ty               = _mm_mul_ps(fscal,dy20);
370             tz               = _mm_mul_ps(fscal,dz20);
371
372             /* Update vectorial force */
373             fix2             = _mm_add_ps(fix2,tx);
374             fiy2             = _mm_add_ps(fiy2,ty);
375             fiz2             = _mm_add_ps(fiz2,tz);
376
377             fjx0             = _mm_add_ps(fjx0,tx);
378             fjy0             = _mm_add_ps(fjy0,ty);
379             fjz0             = _mm_add_ps(fjz0,tz);
380
381             }
382
383             /**************************
384              * CALCULATE INTERACTIONS *
385              **************************/
386
387             if (gmx_mm_any_lt(rsq30,rcutoff2))
388             {
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq30             = _mm_mul_ps(iq3,jq0);
392
393             /* REACTION-FIELD ELECTROSTATICS */
394             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
395             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
396
397             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
398
399             /* Update potential sum for this i atom from the interaction with this j atom. */
400             velec            = _mm_and_ps(velec,cutoff_mask);
401             velecsum         = _mm_add_ps(velecsum,velec);
402
403             fscal            = felec;
404
405             fscal            = _mm_and_ps(fscal,cutoff_mask);
406
407             /* Calculate temporary vectorial force */
408             tx               = _mm_mul_ps(fscal,dx30);
409             ty               = _mm_mul_ps(fscal,dy30);
410             tz               = _mm_mul_ps(fscal,dz30);
411
412             /* Update vectorial force */
413             fix3             = _mm_add_ps(fix3,tx);
414             fiy3             = _mm_add_ps(fiy3,ty);
415             fiz3             = _mm_add_ps(fiz3,tz);
416
417             fjx0             = _mm_add_ps(fjx0,tx);
418             fjy0             = _mm_add_ps(fjy0,ty);
419             fjz0             = _mm_add_ps(fjz0,tz);
420
421             }
422
423             fjptrA             = f+j_coord_offsetA;
424             fjptrB             = f+j_coord_offsetB;
425             fjptrC             = f+j_coord_offsetC;
426             fjptrD             = f+j_coord_offsetD;
427
428             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
429
430             /* Inner loop uses 149 flops */
431         }
432
433         if(jidx<j_index_end)
434         {
435
436             /* Get j neighbor index, and coordinate index */
437             jnrlistA         = jjnr[jidx];
438             jnrlistB         = jjnr[jidx+1];
439             jnrlistC         = jjnr[jidx+2];
440             jnrlistD         = jjnr[jidx+3];
441             /* Sign of each element will be negative for non-real atoms.
442              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
443              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
444              */
445             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
446             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
447             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
448             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
449             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
450             j_coord_offsetA  = DIM*jnrA;
451             j_coord_offsetB  = DIM*jnrB;
452             j_coord_offsetC  = DIM*jnrC;
453             j_coord_offsetD  = DIM*jnrD;
454
455             /* load j atom coordinates */
456             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
457                                               x+j_coord_offsetC,x+j_coord_offsetD,
458                                               &jx0,&jy0,&jz0);
459
460             /* Calculate displacement vector */
461             dx00             = _mm_sub_ps(ix0,jx0);
462             dy00             = _mm_sub_ps(iy0,jy0);
463             dz00             = _mm_sub_ps(iz0,jz0);
464             dx10             = _mm_sub_ps(ix1,jx0);
465             dy10             = _mm_sub_ps(iy1,jy0);
466             dz10             = _mm_sub_ps(iz1,jz0);
467             dx20             = _mm_sub_ps(ix2,jx0);
468             dy20             = _mm_sub_ps(iy2,jy0);
469             dz20             = _mm_sub_ps(iz2,jz0);
470             dx30             = _mm_sub_ps(ix3,jx0);
471             dy30             = _mm_sub_ps(iy3,jy0);
472             dz30             = _mm_sub_ps(iz3,jz0);
473
474             /* Calculate squared distance and things based on it */
475             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
476             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
477             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
478             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
479
480             rinv10           = gmx_mm_invsqrt_ps(rsq10);
481             rinv20           = gmx_mm_invsqrt_ps(rsq20);
482             rinv30           = gmx_mm_invsqrt_ps(rsq30);
483
484             rinvsq00         = gmx_mm_inv_ps(rsq00);
485             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
486             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
487             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
488
489             /* Load parameters for j particles */
490             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
491                                                               charge+jnrC+0,charge+jnrD+0);
492             vdwjidx0A        = 2*vdwtype[jnrA+0];
493             vdwjidx0B        = 2*vdwtype[jnrB+0];
494             vdwjidx0C        = 2*vdwtype[jnrC+0];
495             vdwjidx0D        = 2*vdwtype[jnrD+0];
496
497             fjx0             = _mm_setzero_ps();
498             fjy0             = _mm_setzero_ps();
499             fjz0             = _mm_setzero_ps();
500
501             /**************************
502              * CALCULATE INTERACTIONS *
503              **************************/
504
505             if (gmx_mm_any_lt(rsq00,rcutoff2))
506             {
507
508             /* Compute parameters for interactions between i and j atoms */
509             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
510                                          vdwparam+vdwioffset0+vdwjidx0B,
511                                          vdwparam+vdwioffset0+vdwjidx0C,
512                                          vdwparam+vdwioffset0+vdwjidx0D,
513                                          &c6_00,&c12_00);
514
515             /* LENNARD-JONES DISPERSION/REPULSION */
516
517             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
518             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
519             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
520             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
521                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
522             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
523
524             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
525
526             /* Update potential sum for this i atom from the interaction with this j atom. */
527             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
528             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
529             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
530
531             fscal            = fvdw;
532
533             fscal            = _mm_and_ps(fscal,cutoff_mask);
534
535             fscal            = _mm_andnot_ps(dummy_mask,fscal);
536
537             /* Calculate temporary vectorial force */
538             tx               = _mm_mul_ps(fscal,dx00);
539             ty               = _mm_mul_ps(fscal,dy00);
540             tz               = _mm_mul_ps(fscal,dz00);
541
542             /* Update vectorial force */
543             fix0             = _mm_add_ps(fix0,tx);
544             fiy0             = _mm_add_ps(fiy0,ty);
545             fiz0             = _mm_add_ps(fiz0,tz);
546
547             fjx0             = _mm_add_ps(fjx0,tx);
548             fjy0             = _mm_add_ps(fjy0,ty);
549             fjz0             = _mm_add_ps(fjz0,tz);
550
551             }
552
553             /**************************
554              * CALCULATE INTERACTIONS *
555              **************************/
556
557             if (gmx_mm_any_lt(rsq10,rcutoff2))
558             {
559
560             /* Compute parameters for interactions between i and j atoms */
561             qq10             = _mm_mul_ps(iq1,jq0);
562
563             /* REACTION-FIELD ELECTROSTATICS */
564             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
565             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
566
567             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             velec            = _mm_and_ps(velec,cutoff_mask);
571             velec            = _mm_andnot_ps(dummy_mask,velec);
572             velecsum         = _mm_add_ps(velecsum,velec);
573
574             fscal            = felec;
575
576             fscal            = _mm_and_ps(fscal,cutoff_mask);
577
578             fscal            = _mm_andnot_ps(dummy_mask,fscal);
579
580             /* Calculate temporary vectorial force */
581             tx               = _mm_mul_ps(fscal,dx10);
582             ty               = _mm_mul_ps(fscal,dy10);
583             tz               = _mm_mul_ps(fscal,dz10);
584
585             /* Update vectorial force */
586             fix1             = _mm_add_ps(fix1,tx);
587             fiy1             = _mm_add_ps(fiy1,ty);
588             fiz1             = _mm_add_ps(fiz1,tz);
589
590             fjx0             = _mm_add_ps(fjx0,tx);
591             fjy0             = _mm_add_ps(fjy0,ty);
592             fjz0             = _mm_add_ps(fjz0,tz);
593
594             }
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             if (gmx_mm_any_lt(rsq20,rcutoff2))
601             {
602
603             /* Compute parameters for interactions between i and j atoms */
604             qq20             = _mm_mul_ps(iq2,jq0);
605
606             /* REACTION-FIELD ELECTROSTATICS */
607             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
608             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
609
610             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
611
612             /* Update potential sum for this i atom from the interaction with this j atom. */
613             velec            = _mm_and_ps(velec,cutoff_mask);
614             velec            = _mm_andnot_ps(dummy_mask,velec);
615             velecsum         = _mm_add_ps(velecsum,velec);
616
617             fscal            = felec;
618
619             fscal            = _mm_and_ps(fscal,cutoff_mask);
620
621             fscal            = _mm_andnot_ps(dummy_mask,fscal);
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm_mul_ps(fscal,dx20);
625             ty               = _mm_mul_ps(fscal,dy20);
626             tz               = _mm_mul_ps(fscal,dz20);
627
628             /* Update vectorial force */
629             fix2             = _mm_add_ps(fix2,tx);
630             fiy2             = _mm_add_ps(fiy2,ty);
631             fiz2             = _mm_add_ps(fiz2,tz);
632
633             fjx0             = _mm_add_ps(fjx0,tx);
634             fjy0             = _mm_add_ps(fjy0,ty);
635             fjz0             = _mm_add_ps(fjz0,tz);
636
637             }
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             if (gmx_mm_any_lt(rsq30,rcutoff2))
644             {
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq30             = _mm_mul_ps(iq3,jq0);
648
649             /* REACTION-FIELD ELECTROSTATICS */
650             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
651             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
652
653             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
654
655             /* Update potential sum for this i atom from the interaction with this j atom. */
656             velec            = _mm_and_ps(velec,cutoff_mask);
657             velec            = _mm_andnot_ps(dummy_mask,velec);
658             velecsum         = _mm_add_ps(velecsum,velec);
659
660             fscal            = felec;
661
662             fscal            = _mm_and_ps(fscal,cutoff_mask);
663
664             fscal            = _mm_andnot_ps(dummy_mask,fscal);
665
666             /* Calculate temporary vectorial force */
667             tx               = _mm_mul_ps(fscal,dx30);
668             ty               = _mm_mul_ps(fscal,dy30);
669             tz               = _mm_mul_ps(fscal,dz30);
670
671             /* Update vectorial force */
672             fix3             = _mm_add_ps(fix3,tx);
673             fiy3             = _mm_add_ps(fiy3,ty);
674             fiz3             = _mm_add_ps(fiz3,tz);
675
676             fjx0             = _mm_add_ps(fjx0,tx);
677             fjy0             = _mm_add_ps(fjy0,ty);
678             fjz0             = _mm_add_ps(fjz0,tz);
679
680             }
681
682             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
683             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
684             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
685             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
686
687             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
688
689             /* Inner loop uses 149 flops */
690         }
691
692         /* End of innermost loop */
693
694         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
695                                               f+i_coord_offset,fshift+i_shift_offset);
696
697         ggid                        = gid[iidx];
698         /* Update potential energies */
699         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
700         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
701
702         /* Increment number of inner iterations */
703         inneriter                  += j_index_end - j_index_start;
704
705         /* Outer loop uses 26 flops */
706     }
707
708     /* Increment number of outer iterations */
709     outeriter        += nri;
710
711     /* Update outer/inner flops */
712
713     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*149);
714 }
715 /*
716  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse4_1_single
717  * Electrostatics interaction: ReactionField
718  * VdW interaction:            LennardJones
719  * Geometry:                   Water4-Particle
720  * Calculate force/pot:        Force
721  */
722 void
723 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse4_1_single
724                     (t_nblist                    * gmx_restrict       nlist,
725                      rvec                        * gmx_restrict          xx,
726                      rvec                        * gmx_restrict          ff,
727                      t_forcerec                  * gmx_restrict          fr,
728                      t_mdatoms                   * gmx_restrict     mdatoms,
729                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
730                      t_nrnb                      * gmx_restrict        nrnb)
731 {
732     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
733      * just 0 for non-waters.
734      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
735      * jnr indices corresponding to data put in the four positions in the SIMD register.
736      */
737     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
738     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
739     int              jnrA,jnrB,jnrC,jnrD;
740     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
741     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
742     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
743     real             rcutoff_scalar;
744     real             *shiftvec,*fshift,*x,*f;
745     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
746     real             scratch[4*DIM];
747     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
748     int              vdwioffset0;
749     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
750     int              vdwioffset1;
751     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
752     int              vdwioffset2;
753     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
754     int              vdwioffset3;
755     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
756     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
757     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
758     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
759     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
760     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
761     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
762     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
763     real             *charge;
764     int              nvdwtype;
765     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
766     int              *vdwtype;
767     real             *vdwparam;
768     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
769     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
770     __m128           dummy_mask,cutoff_mask;
771     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
772     __m128           one     = _mm_set1_ps(1.0);
773     __m128           two     = _mm_set1_ps(2.0);
774     x                = xx[0];
775     f                = ff[0];
776
777     nri              = nlist->nri;
778     iinr             = nlist->iinr;
779     jindex           = nlist->jindex;
780     jjnr             = nlist->jjnr;
781     shiftidx         = nlist->shift;
782     gid              = nlist->gid;
783     shiftvec         = fr->shift_vec[0];
784     fshift           = fr->fshift[0];
785     facel            = _mm_set1_ps(fr->epsfac);
786     charge           = mdatoms->chargeA;
787     krf              = _mm_set1_ps(fr->ic->k_rf);
788     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
789     crf              = _mm_set1_ps(fr->ic->c_rf);
790     nvdwtype         = fr->ntype;
791     vdwparam         = fr->nbfp;
792     vdwtype          = mdatoms->typeA;
793
794     /* Setup water-specific parameters */
795     inr              = nlist->iinr[0];
796     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
797     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
798     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
799     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
800
801     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
802     rcutoff_scalar   = fr->rcoulomb;
803     rcutoff          = _mm_set1_ps(rcutoff_scalar);
804     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
805
806     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
807     rvdw             = _mm_set1_ps(fr->rvdw);
808
809     /* Avoid stupid compiler warnings */
810     jnrA = jnrB = jnrC = jnrD = 0;
811     j_coord_offsetA = 0;
812     j_coord_offsetB = 0;
813     j_coord_offsetC = 0;
814     j_coord_offsetD = 0;
815
816     outeriter        = 0;
817     inneriter        = 0;
818
819     for(iidx=0;iidx<4*DIM;iidx++)
820     {
821         scratch[iidx] = 0.0;
822     }
823
824     /* Start outer loop over neighborlists */
825     for(iidx=0; iidx<nri; iidx++)
826     {
827         /* Load shift vector for this list */
828         i_shift_offset   = DIM*shiftidx[iidx];
829
830         /* Load limits for loop over neighbors */
831         j_index_start    = jindex[iidx];
832         j_index_end      = jindex[iidx+1];
833
834         /* Get outer coordinate index */
835         inr              = iinr[iidx];
836         i_coord_offset   = DIM*inr;
837
838         /* Load i particle coords and add shift vector */
839         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
840                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
841
842         fix0             = _mm_setzero_ps();
843         fiy0             = _mm_setzero_ps();
844         fiz0             = _mm_setzero_ps();
845         fix1             = _mm_setzero_ps();
846         fiy1             = _mm_setzero_ps();
847         fiz1             = _mm_setzero_ps();
848         fix2             = _mm_setzero_ps();
849         fiy2             = _mm_setzero_ps();
850         fiz2             = _mm_setzero_ps();
851         fix3             = _mm_setzero_ps();
852         fiy3             = _mm_setzero_ps();
853         fiz3             = _mm_setzero_ps();
854
855         /* Start inner kernel loop */
856         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
857         {
858
859             /* Get j neighbor index, and coordinate index */
860             jnrA             = jjnr[jidx];
861             jnrB             = jjnr[jidx+1];
862             jnrC             = jjnr[jidx+2];
863             jnrD             = jjnr[jidx+3];
864             j_coord_offsetA  = DIM*jnrA;
865             j_coord_offsetB  = DIM*jnrB;
866             j_coord_offsetC  = DIM*jnrC;
867             j_coord_offsetD  = DIM*jnrD;
868
869             /* load j atom coordinates */
870             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
871                                               x+j_coord_offsetC,x+j_coord_offsetD,
872                                               &jx0,&jy0,&jz0);
873
874             /* Calculate displacement vector */
875             dx00             = _mm_sub_ps(ix0,jx0);
876             dy00             = _mm_sub_ps(iy0,jy0);
877             dz00             = _mm_sub_ps(iz0,jz0);
878             dx10             = _mm_sub_ps(ix1,jx0);
879             dy10             = _mm_sub_ps(iy1,jy0);
880             dz10             = _mm_sub_ps(iz1,jz0);
881             dx20             = _mm_sub_ps(ix2,jx0);
882             dy20             = _mm_sub_ps(iy2,jy0);
883             dz20             = _mm_sub_ps(iz2,jz0);
884             dx30             = _mm_sub_ps(ix3,jx0);
885             dy30             = _mm_sub_ps(iy3,jy0);
886             dz30             = _mm_sub_ps(iz3,jz0);
887
888             /* Calculate squared distance and things based on it */
889             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
890             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
891             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
892             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
893
894             rinv10           = gmx_mm_invsqrt_ps(rsq10);
895             rinv20           = gmx_mm_invsqrt_ps(rsq20);
896             rinv30           = gmx_mm_invsqrt_ps(rsq30);
897
898             rinvsq00         = gmx_mm_inv_ps(rsq00);
899             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
900             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
901             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
902
903             /* Load parameters for j particles */
904             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
905                                                               charge+jnrC+0,charge+jnrD+0);
906             vdwjidx0A        = 2*vdwtype[jnrA+0];
907             vdwjidx0B        = 2*vdwtype[jnrB+0];
908             vdwjidx0C        = 2*vdwtype[jnrC+0];
909             vdwjidx0D        = 2*vdwtype[jnrD+0];
910
911             fjx0             = _mm_setzero_ps();
912             fjy0             = _mm_setzero_ps();
913             fjz0             = _mm_setzero_ps();
914
915             /**************************
916              * CALCULATE INTERACTIONS *
917              **************************/
918
919             if (gmx_mm_any_lt(rsq00,rcutoff2))
920             {
921
922             /* Compute parameters for interactions between i and j atoms */
923             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
924                                          vdwparam+vdwioffset0+vdwjidx0B,
925                                          vdwparam+vdwioffset0+vdwjidx0C,
926                                          vdwparam+vdwioffset0+vdwjidx0D,
927                                          &c6_00,&c12_00);
928
929             /* LENNARD-JONES DISPERSION/REPULSION */
930
931             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
932             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
933
934             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
935
936             fscal            = fvdw;
937
938             fscal            = _mm_and_ps(fscal,cutoff_mask);
939
940             /* Calculate temporary vectorial force */
941             tx               = _mm_mul_ps(fscal,dx00);
942             ty               = _mm_mul_ps(fscal,dy00);
943             tz               = _mm_mul_ps(fscal,dz00);
944
945             /* Update vectorial force */
946             fix0             = _mm_add_ps(fix0,tx);
947             fiy0             = _mm_add_ps(fiy0,ty);
948             fiz0             = _mm_add_ps(fiz0,tz);
949
950             fjx0             = _mm_add_ps(fjx0,tx);
951             fjy0             = _mm_add_ps(fjy0,ty);
952             fjz0             = _mm_add_ps(fjz0,tz);
953
954             }
955
956             /**************************
957              * CALCULATE INTERACTIONS *
958              **************************/
959
960             if (gmx_mm_any_lt(rsq10,rcutoff2))
961             {
962
963             /* Compute parameters for interactions between i and j atoms */
964             qq10             = _mm_mul_ps(iq1,jq0);
965
966             /* REACTION-FIELD ELECTROSTATICS */
967             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
968
969             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
970
971             fscal            = felec;
972
973             fscal            = _mm_and_ps(fscal,cutoff_mask);
974
975             /* Calculate temporary vectorial force */
976             tx               = _mm_mul_ps(fscal,dx10);
977             ty               = _mm_mul_ps(fscal,dy10);
978             tz               = _mm_mul_ps(fscal,dz10);
979
980             /* Update vectorial force */
981             fix1             = _mm_add_ps(fix1,tx);
982             fiy1             = _mm_add_ps(fiy1,ty);
983             fiz1             = _mm_add_ps(fiz1,tz);
984
985             fjx0             = _mm_add_ps(fjx0,tx);
986             fjy0             = _mm_add_ps(fjy0,ty);
987             fjz0             = _mm_add_ps(fjz0,tz);
988
989             }
990
991             /**************************
992              * CALCULATE INTERACTIONS *
993              **************************/
994
995             if (gmx_mm_any_lt(rsq20,rcutoff2))
996             {
997
998             /* Compute parameters for interactions between i and j atoms */
999             qq20             = _mm_mul_ps(iq2,jq0);
1000
1001             /* REACTION-FIELD ELECTROSTATICS */
1002             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1003
1004             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1005
1006             fscal            = felec;
1007
1008             fscal            = _mm_and_ps(fscal,cutoff_mask);
1009
1010             /* Calculate temporary vectorial force */
1011             tx               = _mm_mul_ps(fscal,dx20);
1012             ty               = _mm_mul_ps(fscal,dy20);
1013             tz               = _mm_mul_ps(fscal,dz20);
1014
1015             /* Update vectorial force */
1016             fix2             = _mm_add_ps(fix2,tx);
1017             fiy2             = _mm_add_ps(fiy2,ty);
1018             fiz2             = _mm_add_ps(fiz2,tz);
1019
1020             fjx0             = _mm_add_ps(fjx0,tx);
1021             fjy0             = _mm_add_ps(fjy0,ty);
1022             fjz0             = _mm_add_ps(fjz0,tz);
1023
1024             }
1025
1026             /**************************
1027              * CALCULATE INTERACTIONS *
1028              **************************/
1029
1030             if (gmx_mm_any_lt(rsq30,rcutoff2))
1031             {
1032
1033             /* Compute parameters for interactions between i and j atoms */
1034             qq30             = _mm_mul_ps(iq3,jq0);
1035
1036             /* REACTION-FIELD ELECTROSTATICS */
1037             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1038
1039             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1040
1041             fscal            = felec;
1042
1043             fscal            = _mm_and_ps(fscal,cutoff_mask);
1044
1045             /* Calculate temporary vectorial force */
1046             tx               = _mm_mul_ps(fscal,dx30);
1047             ty               = _mm_mul_ps(fscal,dy30);
1048             tz               = _mm_mul_ps(fscal,dz30);
1049
1050             /* Update vectorial force */
1051             fix3             = _mm_add_ps(fix3,tx);
1052             fiy3             = _mm_add_ps(fiy3,ty);
1053             fiz3             = _mm_add_ps(fiz3,tz);
1054
1055             fjx0             = _mm_add_ps(fjx0,tx);
1056             fjy0             = _mm_add_ps(fjy0,ty);
1057             fjz0             = _mm_add_ps(fjz0,tz);
1058
1059             }
1060
1061             fjptrA             = f+j_coord_offsetA;
1062             fjptrB             = f+j_coord_offsetB;
1063             fjptrC             = f+j_coord_offsetC;
1064             fjptrD             = f+j_coord_offsetD;
1065
1066             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1067
1068             /* Inner loop uses 120 flops */
1069         }
1070
1071         if(jidx<j_index_end)
1072         {
1073
1074             /* Get j neighbor index, and coordinate index */
1075             jnrlistA         = jjnr[jidx];
1076             jnrlistB         = jjnr[jidx+1];
1077             jnrlistC         = jjnr[jidx+2];
1078             jnrlistD         = jjnr[jidx+3];
1079             /* Sign of each element will be negative for non-real atoms.
1080              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1081              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1082              */
1083             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1084             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1085             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1086             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1087             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1088             j_coord_offsetA  = DIM*jnrA;
1089             j_coord_offsetB  = DIM*jnrB;
1090             j_coord_offsetC  = DIM*jnrC;
1091             j_coord_offsetD  = DIM*jnrD;
1092
1093             /* load j atom coordinates */
1094             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1095                                               x+j_coord_offsetC,x+j_coord_offsetD,
1096                                               &jx0,&jy0,&jz0);
1097
1098             /* Calculate displacement vector */
1099             dx00             = _mm_sub_ps(ix0,jx0);
1100             dy00             = _mm_sub_ps(iy0,jy0);
1101             dz00             = _mm_sub_ps(iz0,jz0);
1102             dx10             = _mm_sub_ps(ix1,jx0);
1103             dy10             = _mm_sub_ps(iy1,jy0);
1104             dz10             = _mm_sub_ps(iz1,jz0);
1105             dx20             = _mm_sub_ps(ix2,jx0);
1106             dy20             = _mm_sub_ps(iy2,jy0);
1107             dz20             = _mm_sub_ps(iz2,jz0);
1108             dx30             = _mm_sub_ps(ix3,jx0);
1109             dy30             = _mm_sub_ps(iy3,jy0);
1110             dz30             = _mm_sub_ps(iz3,jz0);
1111
1112             /* Calculate squared distance and things based on it */
1113             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1114             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1115             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1116             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1117
1118             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1119             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1120             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1121
1122             rinvsq00         = gmx_mm_inv_ps(rsq00);
1123             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1124             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1125             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1126
1127             /* Load parameters for j particles */
1128             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1129                                                               charge+jnrC+0,charge+jnrD+0);
1130             vdwjidx0A        = 2*vdwtype[jnrA+0];
1131             vdwjidx0B        = 2*vdwtype[jnrB+0];
1132             vdwjidx0C        = 2*vdwtype[jnrC+0];
1133             vdwjidx0D        = 2*vdwtype[jnrD+0];
1134
1135             fjx0             = _mm_setzero_ps();
1136             fjy0             = _mm_setzero_ps();
1137             fjz0             = _mm_setzero_ps();
1138
1139             /**************************
1140              * CALCULATE INTERACTIONS *
1141              **************************/
1142
1143             if (gmx_mm_any_lt(rsq00,rcutoff2))
1144             {
1145
1146             /* Compute parameters for interactions between i and j atoms */
1147             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1148                                          vdwparam+vdwioffset0+vdwjidx0B,
1149                                          vdwparam+vdwioffset0+vdwjidx0C,
1150                                          vdwparam+vdwioffset0+vdwjidx0D,
1151                                          &c6_00,&c12_00);
1152
1153             /* LENNARD-JONES DISPERSION/REPULSION */
1154
1155             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1156             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1157
1158             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1159
1160             fscal            = fvdw;
1161
1162             fscal            = _mm_and_ps(fscal,cutoff_mask);
1163
1164             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1165
1166             /* Calculate temporary vectorial force */
1167             tx               = _mm_mul_ps(fscal,dx00);
1168             ty               = _mm_mul_ps(fscal,dy00);
1169             tz               = _mm_mul_ps(fscal,dz00);
1170
1171             /* Update vectorial force */
1172             fix0             = _mm_add_ps(fix0,tx);
1173             fiy0             = _mm_add_ps(fiy0,ty);
1174             fiz0             = _mm_add_ps(fiz0,tz);
1175
1176             fjx0             = _mm_add_ps(fjx0,tx);
1177             fjy0             = _mm_add_ps(fjy0,ty);
1178             fjz0             = _mm_add_ps(fjz0,tz);
1179
1180             }
1181
1182             /**************************
1183              * CALCULATE INTERACTIONS *
1184              **************************/
1185
1186             if (gmx_mm_any_lt(rsq10,rcutoff2))
1187             {
1188
1189             /* Compute parameters for interactions between i and j atoms */
1190             qq10             = _mm_mul_ps(iq1,jq0);
1191
1192             /* REACTION-FIELD ELECTROSTATICS */
1193             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1194
1195             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1196
1197             fscal            = felec;
1198
1199             fscal            = _mm_and_ps(fscal,cutoff_mask);
1200
1201             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1202
1203             /* Calculate temporary vectorial force */
1204             tx               = _mm_mul_ps(fscal,dx10);
1205             ty               = _mm_mul_ps(fscal,dy10);
1206             tz               = _mm_mul_ps(fscal,dz10);
1207
1208             /* Update vectorial force */
1209             fix1             = _mm_add_ps(fix1,tx);
1210             fiy1             = _mm_add_ps(fiy1,ty);
1211             fiz1             = _mm_add_ps(fiz1,tz);
1212
1213             fjx0             = _mm_add_ps(fjx0,tx);
1214             fjy0             = _mm_add_ps(fjy0,ty);
1215             fjz0             = _mm_add_ps(fjz0,tz);
1216
1217             }
1218
1219             /**************************
1220              * CALCULATE INTERACTIONS *
1221              **************************/
1222
1223             if (gmx_mm_any_lt(rsq20,rcutoff2))
1224             {
1225
1226             /* Compute parameters for interactions between i and j atoms */
1227             qq20             = _mm_mul_ps(iq2,jq0);
1228
1229             /* REACTION-FIELD ELECTROSTATICS */
1230             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1231
1232             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1233
1234             fscal            = felec;
1235
1236             fscal            = _mm_and_ps(fscal,cutoff_mask);
1237
1238             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1239
1240             /* Calculate temporary vectorial force */
1241             tx               = _mm_mul_ps(fscal,dx20);
1242             ty               = _mm_mul_ps(fscal,dy20);
1243             tz               = _mm_mul_ps(fscal,dz20);
1244
1245             /* Update vectorial force */
1246             fix2             = _mm_add_ps(fix2,tx);
1247             fiy2             = _mm_add_ps(fiy2,ty);
1248             fiz2             = _mm_add_ps(fiz2,tz);
1249
1250             fjx0             = _mm_add_ps(fjx0,tx);
1251             fjy0             = _mm_add_ps(fjy0,ty);
1252             fjz0             = _mm_add_ps(fjz0,tz);
1253
1254             }
1255
1256             /**************************
1257              * CALCULATE INTERACTIONS *
1258              **************************/
1259
1260             if (gmx_mm_any_lt(rsq30,rcutoff2))
1261             {
1262
1263             /* Compute parameters for interactions between i and j atoms */
1264             qq30             = _mm_mul_ps(iq3,jq0);
1265
1266             /* REACTION-FIELD ELECTROSTATICS */
1267             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1268
1269             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1270
1271             fscal            = felec;
1272
1273             fscal            = _mm_and_ps(fscal,cutoff_mask);
1274
1275             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1276
1277             /* Calculate temporary vectorial force */
1278             tx               = _mm_mul_ps(fscal,dx30);
1279             ty               = _mm_mul_ps(fscal,dy30);
1280             tz               = _mm_mul_ps(fscal,dz30);
1281
1282             /* Update vectorial force */
1283             fix3             = _mm_add_ps(fix3,tx);
1284             fiy3             = _mm_add_ps(fiy3,ty);
1285             fiz3             = _mm_add_ps(fiz3,tz);
1286
1287             fjx0             = _mm_add_ps(fjx0,tx);
1288             fjy0             = _mm_add_ps(fjy0,ty);
1289             fjz0             = _mm_add_ps(fjz0,tz);
1290
1291             }
1292
1293             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1294             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1295             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1296             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1297
1298             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1299
1300             /* Inner loop uses 120 flops */
1301         }
1302
1303         /* End of innermost loop */
1304
1305         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1306                                               f+i_coord_offset,fshift+i_shift_offset);
1307
1308         /* Increment number of inner iterations */
1309         inneriter                  += j_index_end - j_index_start;
1310
1311         /* Outer loop uses 24 flops */
1312     }
1313
1314     /* Increment number of outer iterations */
1315     outeriter        += nri;
1316
1317     /* Update outer/inner flops */
1318
1319     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*120);
1320 }