Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse4_1_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm_set1_ps(fr->ic->k_rf);
122     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
123     crf              = _mm_set1_ps(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
131     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
132     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
136     rcutoff_scalar   = fr->rcoulomb;
137     rcutoff          = _mm_set1_ps(rcutoff_scalar);
138     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
139
140     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
141     rvdw             = _mm_set1_ps(fr->rvdw);
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
175
176         fix0             = _mm_setzero_ps();
177         fiy0             = _mm_setzero_ps();
178         fiz0             = _mm_setzero_ps();
179         fix1             = _mm_setzero_ps();
180         fiy1             = _mm_setzero_ps();
181         fiz1             = _mm_setzero_ps();
182         fix2             = _mm_setzero_ps();
183         fiy2             = _mm_setzero_ps();
184         fiz2             = _mm_setzero_ps();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_ps();
188         vvdwsum          = _mm_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               x+j_coord_offsetC,x+j_coord_offsetD,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_ps(ix0,jx0);
211             dy00             = _mm_sub_ps(iy0,jy0);
212             dz00             = _mm_sub_ps(iz0,jz0);
213             dx10             = _mm_sub_ps(ix1,jx0);
214             dy10             = _mm_sub_ps(iy1,jy0);
215             dz10             = _mm_sub_ps(iz1,jz0);
216             dx20             = _mm_sub_ps(ix2,jx0);
217             dy20             = _mm_sub_ps(iy2,jy0);
218             dz20             = _mm_sub_ps(iz2,jz0);
219
220             /* Calculate squared distance and things based on it */
221             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
222             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
223             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
224
225             rinv00           = gmx_mm_invsqrt_ps(rsq00);
226             rinv10           = gmx_mm_invsqrt_ps(rsq10);
227             rinv20           = gmx_mm_invsqrt_ps(rsq20);
228
229             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
230             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
231             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
235                                                               charge+jnrC+0,charge+jnrD+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238             vdwjidx0C        = 2*vdwtype[jnrC+0];
239             vdwjidx0D        = 2*vdwtype[jnrD+0];
240
241             fjx0             = _mm_setzero_ps();
242             fjy0             = _mm_setzero_ps();
243             fjz0             = _mm_setzero_ps();
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             if (gmx_mm_any_lt(rsq00,rcutoff2))
250             {
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm_mul_ps(iq0,jq0);
254             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,
256                                          vdwparam+vdwioffset0+vdwjidx0C,
257                                          vdwparam+vdwioffset0+vdwjidx0D,
258                                          &c6_00,&c12_00);
259
260             /* REACTION-FIELD ELECTROSTATICS */
261             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
262             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
263
264             /* LENNARD-JONES DISPERSION/REPULSION */
265
266             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
267             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
268             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
269             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
270                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
271             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
272
273             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velec            = _mm_and_ps(velec,cutoff_mask);
277             velecsum         = _mm_add_ps(velecsum,velec);
278             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
279             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
280
281             fscal            = _mm_add_ps(felec,fvdw);
282
283             fscal            = _mm_and_ps(fscal,cutoff_mask);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm_mul_ps(fscal,dx00);
287             ty               = _mm_mul_ps(fscal,dy00);
288             tz               = _mm_mul_ps(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm_add_ps(fix0,tx);
292             fiy0             = _mm_add_ps(fiy0,ty);
293             fiz0             = _mm_add_ps(fiz0,tz);
294
295             fjx0             = _mm_add_ps(fjx0,tx);
296             fjy0             = _mm_add_ps(fjy0,ty);
297             fjz0             = _mm_add_ps(fjz0,tz);
298
299             }
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             if (gmx_mm_any_lt(rsq10,rcutoff2))
306             {
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq10             = _mm_mul_ps(iq1,jq0);
310
311             /* REACTION-FIELD ELECTROSTATICS */
312             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
313             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
314
315             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velec            = _mm_and_ps(velec,cutoff_mask);
319             velecsum         = _mm_add_ps(velecsum,velec);
320
321             fscal            = felec;
322
323             fscal            = _mm_and_ps(fscal,cutoff_mask);
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm_mul_ps(fscal,dx10);
327             ty               = _mm_mul_ps(fscal,dy10);
328             tz               = _mm_mul_ps(fscal,dz10);
329
330             /* Update vectorial force */
331             fix1             = _mm_add_ps(fix1,tx);
332             fiy1             = _mm_add_ps(fiy1,ty);
333             fiz1             = _mm_add_ps(fiz1,tz);
334
335             fjx0             = _mm_add_ps(fjx0,tx);
336             fjy0             = _mm_add_ps(fjy0,ty);
337             fjz0             = _mm_add_ps(fjz0,tz);
338
339             }
340
341             /**************************
342              * CALCULATE INTERACTIONS *
343              **************************/
344
345             if (gmx_mm_any_lt(rsq20,rcutoff2))
346             {
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq20             = _mm_mul_ps(iq2,jq0);
350
351             /* REACTION-FIELD ELECTROSTATICS */
352             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
353             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
354
355             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velec            = _mm_and_ps(velec,cutoff_mask);
359             velecsum         = _mm_add_ps(velecsum,velec);
360
361             fscal            = felec;
362
363             fscal            = _mm_and_ps(fscal,cutoff_mask);
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm_mul_ps(fscal,dx20);
367             ty               = _mm_mul_ps(fscal,dy20);
368             tz               = _mm_mul_ps(fscal,dz20);
369
370             /* Update vectorial force */
371             fix2             = _mm_add_ps(fix2,tx);
372             fiy2             = _mm_add_ps(fiy2,ty);
373             fiz2             = _mm_add_ps(fiz2,tz);
374
375             fjx0             = _mm_add_ps(fjx0,tx);
376             fjy0             = _mm_add_ps(fjy0,ty);
377             fjz0             = _mm_add_ps(fjz0,tz);
378
379             }
380
381             fjptrA             = f+j_coord_offsetA;
382             fjptrB             = f+j_coord_offsetB;
383             fjptrC             = f+j_coord_offsetC;
384             fjptrD             = f+j_coord_offsetD;
385
386             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
387
388             /* Inner loop uses 126 flops */
389         }
390
391         if(jidx<j_index_end)
392         {
393
394             /* Get j neighbor index, and coordinate index */
395             jnrlistA         = jjnr[jidx];
396             jnrlistB         = jjnr[jidx+1];
397             jnrlistC         = jjnr[jidx+2];
398             jnrlistD         = jjnr[jidx+3];
399             /* Sign of each element will be negative for non-real atoms.
400              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
401              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
402              */
403             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
404             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
405             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
406             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
407             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
408             j_coord_offsetA  = DIM*jnrA;
409             j_coord_offsetB  = DIM*jnrB;
410             j_coord_offsetC  = DIM*jnrC;
411             j_coord_offsetD  = DIM*jnrD;
412
413             /* load j atom coordinates */
414             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
415                                               x+j_coord_offsetC,x+j_coord_offsetD,
416                                               &jx0,&jy0,&jz0);
417
418             /* Calculate displacement vector */
419             dx00             = _mm_sub_ps(ix0,jx0);
420             dy00             = _mm_sub_ps(iy0,jy0);
421             dz00             = _mm_sub_ps(iz0,jz0);
422             dx10             = _mm_sub_ps(ix1,jx0);
423             dy10             = _mm_sub_ps(iy1,jy0);
424             dz10             = _mm_sub_ps(iz1,jz0);
425             dx20             = _mm_sub_ps(ix2,jx0);
426             dy20             = _mm_sub_ps(iy2,jy0);
427             dz20             = _mm_sub_ps(iz2,jz0);
428
429             /* Calculate squared distance and things based on it */
430             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
431             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
432             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
433
434             rinv00           = gmx_mm_invsqrt_ps(rsq00);
435             rinv10           = gmx_mm_invsqrt_ps(rsq10);
436             rinv20           = gmx_mm_invsqrt_ps(rsq20);
437
438             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
439             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
440             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
441
442             /* Load parameters for j particles */
443             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
444                                                               charge+jnrC+0,charge+jnrD+0);
445             vdwjidx0A        = 2*vdwtype[jnrA+0];
446             vdwjidx0B        = 2*vdwtype[jnrB+0];
447             vdwjidx0C        = 2*vdwtype[jnrC+0];
448             vdwjidx0D        = 2*vdwtype[jnrD+0];
449
450             fjx0             = _mm_setzero_ps();
451             fjy0             = _mm_setzero_ps();
452             fjz0             = _mm_setzero_ps();
453
454             /**************************
455              * CALCULATE INTERACTIONS *
456              **************************/
457
458             if (gmx_mm_any_lt(rsq00,rcutoff2))
459             {
460
461             /* Compute parameters for interactions between i and j atoms */
462             qq00             = _mm_mul_ps(iq0,jq0);
463             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
464                                          vdwparam+vdwioffset0+vdwjidx0B,
465                                          vdwparam+vdwioffset0+vdwjidx0C,
466                                          vdwparam+vdwioffset0+vdwjidx0D,
467                                          &c6_00,&c12_00);
468
469             /* REACTION-FIELD ELECTROSTATICS */
470             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
471             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
472
473             /* LENNARD-JONES DISPERSION/REPULSION */
474
475             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
476             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
477             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
478             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
479                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
480             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
481
482             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
483
484             /* Update potential sum for this i atom from the interaction with this j atom. */
485             velec            = _mm_and_ps(velec,cutoff_mask);
486             velec            = _mm_andnot_ps(dummy_mask,velec);
487             velecsum         = _mm_add_ps(velecsum,velec);
488             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
489             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
490             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
491
492             fscal            = _mm_add_ps(felec,fvdw);
493
494             fscal            = _mm_and_ps(fscal,cutoff_mask);
495
496             fscal            = _mm_andnot_ps(dummy_mask,fscal);
497
498             /* Calculate temporary vectorial force */
499             tx               = _mm_mul_ps(fscal,dx00);
500             ty               = _mm_mul_ps(fscal,dy00);
501             tz               = _mm_mul_ps(fscal,dz00);
502
503             /* Update vectorial force */
504             fix0             = _mm_add_ps(fix0,tx);
505             fiy0             = _mm_add_ps(fiy0,ty);
506             fiz0             = _mm_add_ps(fiz0,tz);
507
508             fjx0             = _mm_add_ps(fjx0,tx);
509             fjy0             = _mm_add_ps(fjy0,ty);
510             fjz0             = _mm_add_ps(fjz0,tz);
511
512             }
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             if (gmx_mm_any_lt(rsq10,rcutoff2))
519             {
520
521             /* Compute parameters for interactions between i and j atoms */
522             qq10             = _mm_mul_ps(iq1,jq0);
523
524             /* REACTION-FIELD ELECTROSTATICS */
525             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
526             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
527
528             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
529
530             /* Update potential sum for this i atom from the interaction with this j atom. */
531             velec            = _mm_and_ps(velec,cutoff_mask);
532             velec            = _mm_andnot_ps(dummy_mask,velec);
533             velecsum         = _mm_add_ps(velecsum,velec);
534
535             fscal            = felec;
536
537             fscal            = _mm_and_ps(fscal,cutoff_mask);
538
539             fscal            = _mm_andnot_ps(dummy_mask,fscal);
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm_mul_ps(fscal,dx10);
543             ty               = _mm_mul_ps(fscal,dy10);
544             tz               = _mm_mul_ps(fscal,dz10);
545
546             /* Update vectorial force */
547             fix1             = _mm_add_ps(fix1,tx);
548             fiy1             = _mm_add_ps(fiy1,ty);
549             fiz1             = _mm_add_ps(fiz1,tz);
550
551             fjx0             = _mm_add_ps(fjx0,tx);
552             fjy0             = _mm_add_ps(fjy0,ty);
553             fjz0             = _mm_add_ps(fjz0,tz);
554
555             }
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             if (gmx_mm_any_lt(rsq20,rcutoff2))
562             {
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq20             = _mm_mul_ps(iq2,jq0);
566
567             /* REACTION-FIELD ELECTROSTATICS */
568             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
569             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
570
571             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
572
573             /* Update potential sum for this i atom from the interaction with this j atom. */
574             velec            = _mm_and_ps(velec,cutoff_mask);
575             velec            = _mm_andnot_ps(dummy_mask,velec);
576             velecsum         = _mm_add_ps(velecsum,velec);
577
578             fscal            = felec;
579
580             fscal            = _mm_and_ps(fscal,cutoff_mask);
581
582             fscal            = _mm_andnot_ps(dummy_mask,fscal);
583
584             /* Calculate temporary vectorial force */
585             tx               = _mm_mul_ps(fscal,dx20);
586             ty               = _mm_mul_ps(fscal,dy20);
587             tz               = _mm_mul_ps(fscal,dz20);
588
589             /* Update vectorial force */
590             fix2             = _mm_add_ps(fix2,tx);
591             fiy2             = _mm_add_ps(fiy2,ty);
592             fiz2             = _mm_add_ps(fiz2,tz);
593
594             fjx0             = _mm_add_ps(fjx0,tx);
595             fjy0             = _mm_add_ps(fjy0,ty);
596             fjz0             = _mm_add_ps(fjz0,tz);
597
598             }
599
600             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
601             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
602             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
603             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
604
605             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
606
607             /* Inner loop uses 126 flops */
608         }
609
610         /* End of innermost loop */
611
612         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
613                                               f+i_coord_offset,fshift+i_shift_offset);
614
615         ggid                        = gid[iidx];
616         /* Update potential energies */
617         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
618         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
619
620         /* Increment number of inner iterations */
621         inneriter                  += j_index_end - j_index_start;
622
623         /* Outer loop uses 20 flops */
624     }
625
626     /* Increment number of outer iterations */
627     outeriter        += nri;
628
629     /* Update outer/inner flops */
630
631     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*126);
632 }
633 /*
634  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse4_1_single
635  * Electrostatics interaction: ReactionField
636  * VdW interaction:            LennardJones
637  * Geometry:                   Water3-Particle
638  * Calculate force/pot:        Force
639  */
640 void
641 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse4_1_single
642                     (t_nblist                    * gmx_restrict       nlist,
643                      rvec                        * gmx_restrict          xx,
644                      rvec                        * gmx_restrict          ff,
645                      t_forcerec                  * gmx_restrict          fr,
646                      t_mdatoms                   * gmx_restrict     mdatoms,
647                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
648                      t_nrnb                      * gmx_restrict        nrnb)
649 {
650     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
651      * just 0 for non-waters.
652      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
653      * jnr indices corresponding to data put in the four positions in the SIMD register.
654      */
655     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
656     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
657     int              jnrA,jnrB,jnrC,jnrD;
658     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
659     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
660     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
661     real             rcutoff_scalar;
662     real             *shiftvec,*fshift,*x,*f;
663     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
664     real             scratch[4*DIM];
665     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
666     int              vdwioffset0;
667     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
668     int              vdwioffset1;
669     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
670     int              vdwioffset2;
671     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
672     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
673     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
674     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
675     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
676     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
677     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
678     real             *charge;
679     int              nvdwtype;
680     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
681     int              *vdwtype;
682     real             *vdwparam;
683     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
684     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
685     __m128           dummy_mask,cutoff_mask;
686     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
687     __m128           one     = _mm_set1_ps(1.0);
688     __m128           two     = _mm_set1_ps(2.0);
689     x                = xx[0];
690     f                = ff[0];
691
692     nri              = nlist->nri;
693     iinr             = nlist->iinr;
694     jindex           = nlist->jindex;
695     jjnr             = nlist->jjnr;
696     shiftidx         = nlist->shift;
697     gid              = nlist->gid;
698     shiftvec         = fr->shift_vec[0];
699     fshift           = fr->fshift[0];
700     facel            = _mm_set1_ps(fr->epsfac);
701     charge           = mdatoms->chargeA;
702     krf              = _mm_set1_ps(fr->ic->k_rf);
703     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
704     crf              = _mm_set1_ps(fr->ic->c_rf);
705     nvdwtype         = fr->ntype;
706     vdwparam         = fr->nbfp;
707     vdwtype          = mdatoms->typeA;
708
709     /* Setup water-specific parameters */
710     inr              = nlist->iinr[0];
711     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
712     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
713     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
714     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
715
716     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
717     rcutoff_scalar   = fr->rcoulomb;
718     rcutoff          = _mm_set1_ps(rcutoff_scalar);
719     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
720
721     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
722     rvdw             = _mm_set1_ps(fr->rvdw);
723
724     /* Avoid stupid compiler warnings */
725     jnrA = jnrB = jnrC = jnrD = 0;
726     j_coord_offsetA = 0;
727     j_coord_offsetB = 0;
728     j_coord_offsetC = 0;
729     j_coord_offsetD = 0;
730
731     outeriter        = 0;
732     inneriter        = 0;
733
734     for(iidx=0;iidx<4*DIM;iidx++)
735     {
736         scratch[iidx] = 0.0;
737     }
738
739     /* Start outer loop over neighborlists */
740     for(iidx=0; iidx<nri; iidx++)
741     {
742         /* Load shift vector for this list */
743         i_shift_offset   = DIM*shiftidx[iidx];
744
745         /* Load limits for loop over neighbors */
746         j_index_start    = jindex[iidx];
747         j_index_end      = jindex[iidx+1];
748
749         /* Get outer coordinate index */
750         inr              = iinr[iidx];
751         i_coord_offset   = DIM*inr;
752
753         /* Load i particle coords and add shift vector */
754         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
755                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
756
757         fix0             = _mm_setzero_ps();
758         fiy0             = _mm_setzero_ps();
759         fiz0             = _mm_setzero_ps();
760         fix1             = _mm_setzero_ps();
761         fiy1             = _mm_setzero_ps();
762         fiz1             = _mm_setzero_ps();
763         fix2             = _mm_setzero_ps();
764         fiy2             = _mm_setzero_ps();
765         fiz2             = _mm_setzero_ps();
766
767         /* Start inner kernel loop */
768         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
769         {
770
771             /* Get j neighbor index, and coordinate index */
772             jnrA             = jjnr[jidx];
773             jnrB             = jjnr[jidx+1];
774             jnrC             = jjnr[jidx+2];
775             jnrD             = jjnr[jidx+3];
776             j_coord_offsetA  = DIM*jnrA;
777             j_coord_offsetB  = DIM*jnrB;
778             j_coord_offsetC  = DIM*jnrC;
779             j_coord_offsetD  = DIM*jnrD;
780
781             /* load j atom coordinates */
782             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
783                                               x+j_coord_offsetC,x+j_coord_offsetD,
784                                               &jx0,&jy0,&jz0);
785
786             /* Calculate displacement vector */
787             dx00             = _mm_sub_ps(ix0,jx0);
788             dy00             = _mm_sub_ps(iy0,jy0);
789             dz00             = _mm_sub_ps(iz0,jz0);
790             dx10             = _mm_sub_ps(ix1,jx0);
791             dy10             = _mm_sub_ps(iy1,jy0);
792             dz10             = _mm_sub_ps(iz1,jz0);
793             dx20             = _mm_sub_ps(ix2,jx0);
794             dy20             = _mm_sub_ps(iy2,jy0);
795             dz20             = _mm_sub_ps(iz2,jz0);
796
797             /* Calculate squared distance and things based on it */
798             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
799             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
800             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
801
802             rinv00           = gmx_mm_invsqrt_ps(rsq00);
803             rinv10           = gmx_mm_invsqrt_ps(rsq10);
804             rinv20           = gmx_mm_invsqrt_ps(rsq20);
805
806             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
807             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
808             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
809
810             /* Load parameters for j particles */
811             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
812                                                               charge+jnrC+0,charge+jnrD+0);
813             vdwjidx0A        = 2*vdwtype[jnrA+0];
814             vdwjidx0B        = 2*vdwtype[jnrB+0];
815             vdwjidx0C        = 2*vdwtype[jnrC+0];
816             vdwjidx0D        = 2*vdwtype[jnrD+0];
817
818             fjx0             = _mm_setzero_ps();
819             fjy0             = _mm_setzero_ps();
820             fjz0             = _mm_setzero_ps();
821
822             /**************************
823              * CALCULATE INTERACTIONS *
824              **************************/
825
826             if (gmx_mm_any_lt(rsq00,rcutoff2))
827             {
828
829             /* Compute parameters for interactions between i and j atoms */
830             qq00             = _mm_mul_ps(iq0,jq0);
831             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
832                                          vdwparam+vdwioffset0+vdwjidx0B,
833                                          vdwparam+vdwioffset0+vdwjidx0C,
834                                          vdwparam+vdwioffset0+vdwjidx0D,
835                                          &c6_00,&c12_00);
836
837             /* REACTION-FIELD ELECTROSTATICS */
838             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
839
840             /* LENNARD-JONES DISPERSION/REPULSION */
841
842             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
843             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
844
845             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
846
847             fscal            = _mm_add_ps(felec,fvdw);
848
849             fscal            = _mm_and_ps(fscal,cutoff_mask);
850
851             /* Calculate temporary vectorial force */
852             tx               = _mm_mul_ps(fscal,dx00);
853             ty               = _mm_mul_ps(fscal,dy00);
854             tz               = _mm_mul_ps(fscal,dz00);
855
856             /* Update vectorial force */
857             fix0             = _mm_add_ps(fix0,tx);
858             fiy0             = _mm_add_ps(fiy0,ty);
859             fiz0             = _mm_add_ps(fiz0,tz);
860
861             fjx0             = _mm_add_ps(fjx0,tx);
862             fjy0             = _mm_add_ps(fjy0,ty);
863             fjz0             = _mm_add_ps(fjz0,tz);
864
865             }
866
867             /**************************
868              * CALCULATE INTERACTIONS *
869              **************************/
870
871             if (gmx_mm_any_lt(rsq10,rcutoff2))
872             {
873
874             /* Compute parameters for interactions between i and j atoms */
875             qq10             = _mm_mul_ps(iq1,jq0);
876
877             /* REACTION-FIELD ELECTROSTATICS */
878             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
879
880             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
881
882             fscal            = felec;
883
884             fscal            = _mm_and_ps(fscal,cutoff_mask);
885
886             /* Calculate temporary vectorial force */
887             tx               = _mm_mul_ps(fscal,dx10);
888             ty               = _mm_mul_ps(fscal,dy10);
889             tz               = _mm_mul_ps(fscal,dz10);
890
891             /* Update vectorial force */
892             fix1             = _mm_add_ps(fix1,tx);
893             fiy1             = _mm_add_ps(fiy1,ty);
894             fiz1             = _mm_add_ps(fiz1,tz);
895
896             fjx0             = _mm_add_ps(fjx0,tx);
897             fjy0             = _mm_add_ps(fjy0,ty);
898             fjz0             = _mm_add_ps(fjz0,tz);
899
900             }
901
902             /**************************
903              * CALCULATE INTERACTIONS *
904              **************************/
905
906             if (gmx_mm_any_lt(rsq20,rcutoff2))
907             {
908
909             /* Compute parameters for interactions between i and j atoms */
910             qq20             = _mm_mul_ps(iq2,jq0);
911
912             /* REACTION-FIELD ELECTROSTATICS */
913             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
914
915             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
916
917             fscal            = felec;
918
919             fscal            = _mm_and_ps(fscal,cutoff_mask);
920
921             /* Calculate temporary vectorial force */
922             tx               = _mm_mul_ps(fscal,dx20);
923             ty               = _mm_mul_ps(fscal,dy20);
924             tz               = _mm_mul_ps(fscal,dz20);
925
926             /* Update vectorial force */
927             fix2             = _mm_add_ps(fix2,tx);
928             fiy2             = _mm_add_ps(fiy2,ty);
929             fiz2             = _mm_add_ps(fiz2,tz);
930
931             fjx0             = _mm_add_ps(fjx0,tx);
932             fjy0             = _mm_add_ps(fjy0,ty);
933             fjz0             = _mm_add_ps(fjz0,tz);
934
935             }
936
937             fjptrA             = f+j_coord_offsetA;
938             fjptrB             = f+j_coord_offsetB;
939             fjptrC             = f+j_coord_offsetC;
940             fjptrD             = f+j_coord_offsetD;
941
942             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
943
944             /* Inner loop uses 97 flops */
945         }
946
947         if(jidx<j_index_end)
948         {
949
950             /* Get j neighbor index, and coordinate index */
951             jnrlistA         = jjnr[jidx];
952             jnrlistB         = jjnr[jidx+1];
953             jnrlistC         = jjnr[jidx+2];
954             jnrlistD         = jjnr[jidx+3];
955             /* Sign of each element will be negative for non-real atoms.
956              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
957              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
958              */
959             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
960             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
961             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
962             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
963             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
964             j_coord_offsetA  = DIM*jnrA;
965             j_coord_offsetB  = DIM*jnrB;
966             j_coord_offsetC  = DIM*jnrC;
967             j_coord_offsetD  = DIM*jnrD;
968
969             /* load j atom coordinates */
970             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
971                                               x+j_coord_offsetC,x+j_coord_offsetD,
972                                               &jx0,&jy0,&jz0);
973
974             /* Calculate displacement vector */
975             dx00             = _mm_sub_ps(ix0,jx0);
976             dy00             = _mm_sub_ps(iy0,jy0);
977             dz00             = _mm_sub_ps(iz0,jz0);
978             dx10             = _mm_sub_ps(ix1,jx0);
979             dy10             = _mm_sub_ps(iy1,jy0);
980             dz10             = _mm_sub_ps(iz1,jz0);
981             dx20             = _mm_sub_ps(ix2,jx0);
982             dy20             = _mm_sub_ps(iy2,jy0);
983             dz20             = _mm_sub_ps(iz2,jz0);
984
985             /* Calculate squared distance and things based on it */
986             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
987             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
988             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
989
990             rinv00           = gmx_mm_invsqrt_ps(rsq00);
991             rinv10           = gmx_mm_invsqrt_ps(rsq10);
992             rinv20           = gmx_mm_invsqrt_ps(rsq20);
993
994             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
995             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
996             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
997
998             /* Load parameters for j particles */
999             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1000                                                               charge+jnrC+0,charge+jnrD+0);
1001             vdwjidx0A        = 2*vdwtype[jnrA+0];
1002             vdwjidx0B        = 2*vdwtype[jnrB+0];
1003             vdwjidx0C        = 2*vdwtype[jnrC+0];
1004             vdwjidx0D        = 2*vdwtype[jnrD+0];
1005
1006             fjx0             = _mm_setzero_ps();
1007             fjy0             = _mm_setzero_ps();
1008             fjz0             = _mm_setzero_ps();
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             if (gmx_mm_any_lt(rsq00,rcutoff2))
1015             {
1016
1017             /* Compute parameters for interactions between i and j atoms */
1018             qq00             = _mm_mul_ps(iq0,jq0);
1019             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1020                                          vdwparam+vdwioffset0+vdwjidx0B,
1021                                          vdwparam+vdwioffset0+vdwjidx0C,
1022                                          vdwparam+vdwioffset0+vdwjidx0D,
1023                                          &c6_00,&c12_00);
1024
1025             /* REACTION-FIELD ELECTROSTATICS */
1026             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1027
1028             /* LENNARD-JONES DISPERSION/REPULSION */
1029
1030             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1031             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1032
1033             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1034
1035             fscal            = _mm_add_ps(felec,fvdw);
1036
1037             fscal            = _mm_and_ps(fscal,cutoff_mask);
1038
1039             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1040
1041             /* Calculate temporary vectorial force */
1042             tx               = _mm_mul_ps(fscal,dx00);
1043             ty               = _mm_mul_ps(fscal,dy00);
1044             tz               = _mm_mul_ps(fscal,dz00);
1045
1046             /* Update vectorial force */
1047             fix0             = _mm_add_ps(fix0,tx);
1048             fiy0             = _mm_add_ps(fiy0,ty);
1049             fiz0             = _mm_add_ps(fiz0,tz);
1050
1051             fjx0             = _mm_add_ps(fjx0,tx);
1052             fjy0             = _mm_add_ps(fjy0,ty);
1053             fjz0             = _mm_add_ps(fjz0,tz);
1054
1055             }
1056
1057             /**************************
1058              * CALCULATE INTERACTIONS *
1059              **************************/
1060
1061             if (gmx_mm_any_lt(rsq10,rcutoff2))
1062             {
1063
1064             /* Compute parameters for interactions between i and j atoms */
1065             qq10             = _mm_mul_ps(iq1,jq0);
1066
1067             /* REACTION-FIELD ELECTROSTATICS */
1068             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1069
1070             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1071
1072             fscal            = felec;
1073
1074             fscal            = _mm_and_ps(fscal,cutoff_mask);
1075
1076             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1077
1078             /* Calculate temporary vectorial force */
1079             tx               = _mm_mul_ps(fscal,dx10);
1080             ty               = _mm_mul_ps(fscal,dy10);
1081             tz               = _mm_mul_ps(fscal,dz10);
1082
1083             /* Update vectorial force */
1084             fix1             = _mm_add_ps(fix1,tx);
1085             fiy1             = _mm_add_ps(fiy1,ty);
1086             fiz1             = _mm_add_ps(fiz1,tz);
1087
1088             fjx0             = _mm_add_ps(fjx0,tx);
1089             fjy0             = _mm_add_ps(fjy0,ty);
1090             fjz0             = _mm_add_ps(fjz0,tz);
1091
1092             }
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             if (gmx_mm_any_lt(rsq20,rcutoff2))
1099             {
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq20             = _mm_mul_ps(iq2,jq0);
1103
1104             /* REACTION-FIELD ELECTROSTATICS */
1105             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1106
1107             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1108
1109             fscal            = felec;
1110
1111             fscal            = _mm_and_ps(fscal,cutoff_mask);
1112
1113             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1114
1115             /* Calculate temporary vectorial force */
1116             tx               = _mm_mul_ps(fscal,dx20);
1117             ty               = _mm_mul_ps(fscal,dy20);
1118             tz               = _mm_mul_ps(fscal,dz20);
1119
1120             /* Update vectorial force */
1121             fix2             = _mm_add_ps(fix2,tx);
1122             fiy2             = _mm_add_ps(fiy2,ty);
1123             fiz2             = _mm_add_ps(fiz2,tz);
1124
1125             fjx0             = _mm_add_ps(fjx0,tx);
1126             fjy0             = _mm_add_ps(fjy0,ty);
1127             fjz0             = _mm_add_ps(fjz0,tz);
1128
1129             }
1130
1131             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1132             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1133             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1134             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1135
1136             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1137
1138             /* Inner loop uses 97 flops */
1139         }
1140
1141         /* End of innermost loop */
1142
1143         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1144                                               f+i_coord_offset,fshift+i_shift_offset);
1145
1146         /* Increment number of inner iterations */
1147         inneriter                  += j_index_end - j_index_start;
1148
1149         /* Outer loop uses 18 flops */
1150     }
1151
1152     /* Increment number of outer iterations */
1153     outeriter        += nri;
1154
1155     /* Update outer/inner flops */
1156
1157     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*97);
1158 }