Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_sse4_1_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm_set1_ps(fr->ic->k_rf);
126     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
127     crf              = _mm_set1_ps(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
138     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
139     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
143     rcutoff_scalar   = fr->ic->rcoulomb;
144     rcutoff          = _mm_set1_ps(rcutoff_scalar);
145     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
179
180         fix0             = _mm_setzero_ps();
181         fiy0             = _mm_setzero_ps();
182         fiz0             = _mm_setzero_ps();
183         fix1             = _mm_setzero_ps();
184         fiy1             = _mm_setzero_ps();
185         fiz1             = _mm_setzero_ps();
186         fix2             = _mm_setzero_ps();
187         fiy2             = _mm_setzero_ps();
188         fiz2             = _mm_setzero_ps();
189         fix3             = _mm_setzero_ps();
190         fiy3             = _mm_setzero_ps();
191         fiz3             = _mm_setzero_ps();
192
193         /* Reset potential sums */
194         velecsum         = _mm_setzero_ps();
195         vvdwsum          = _mm_setzero_ps();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             jnrC             = jjnr[jidx+2];
205             jnrD             = jjnr[jidx+3];
206             j_coord_offsetA  = DIM*jnrA;
207             j_coord_offsetB  = DIM*jnrB;
208             j_coord_offsetC  = DIM*jnrC;
209             j_coord_offsetD  = DIM*jnrD;
210
211             /* load j atom coordinates */
212             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
213                                               x+j_coord_offsetC,x+j_coord_offsetD,
214                                               &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm_sub_ps(ix0,jx0);
218             dy00             = _mm_sub_ps(iy0,jy0);
219             dz00             = _mm_sub_ps(iz0,jz0);
220             dx10             = _mm_sub_ps(ix1,jx0);
221             dy10             = _mm_sub_ps(iy1,jy0);
222             dz10             = _mm_sub_ps(iz1,jz0);
223             dx20             = _mm_sub_ps(ix2,jx0);
224             dy20             = _mm_sub_ps(iy2,jy0);
225             dz20             = _mm_sub_ps(iz2,jz0);
226             dx30             = _mm_sub_ps(ix3,jx0);
227             dy30             = _mm_sub_ps(iy3,jy0);
228             dz30             = _mm_sub_ps(iz3,jz0);
229
230             /* Calculate squared distance and things based on it */
231             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
232             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
233             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
234             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
235
236             rinv00           = sse41_invsqrt_f(rsq00);
237             rinv10           = sse41_invsqrt_f(rsq10);
238             rinv20           = sse41_invsqrt_f(rsq20);
239             rinv30           = sse41_invsqrt_f(rsq30);
240
241             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
242             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
243             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
247                                                               charge+jnrC+0,charge+jnrD+0);
248             vdwjidx0A        = 2*vdwtype[jnrA+0];
249             vdwjidx0B        = 2*vdwtype[jnrB+0];
250             vdwjidx0C        = 2*vdwtype[jnrC+0];
251             vdwjidx0D        = 2*vdwtype[jnrD+0];
252
253             fjx0             = _mm_setzero_ps();
254             fjy0             = _mm_setzero_ps();
255             fjz0             = _mm_setzero_ps();
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             r00              = _mm_mul_ps(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
265                                          vdwparam+vdwioffset0+vdwjidx0B,
266                                          vdwparam+vdwioffset0+vdwjidx0C,
267                                          vdwparam+vdwioffset0+vdwjidx0D,
268                                          &c6_00,&c12_00);
269
270             /* Calculate table index by multiplying r with table scale and truncate to integer */
271             rt               = _mm_mul_ps(r00,vftabscale);
272             vfitab           = _mm_cvttps_epi32(rt);
273             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
274             vfitab           = _mm_slli_epi32(vfitab,3);
275
276             /* CUBIC SPLINE TABLE DISPERSION */
277             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
278             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
279             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
280             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
281             _MM_TRANSPOSE4_PS(Y,F,G,H);
282             Heps             = _mm_mul_ps(vfeps,H);
283             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
284             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
285             vvdw6            = _mm_mul_ps(c6_00,VV);
286             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
287             fvdw6            = _mm_mul_ps(c6_00,FF);
288
289             /* CUBIC SPLINE TABLE REPULSION */
290             vfitab           = _mm_add_epi32(vfitab,ifour);
291             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
292             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
293             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
294             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
295             _MM_TRANSPOSE4_PS(Y,F,G,H);
296             Heps             = _mm_mul_ps(vfeps,H);
297             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
298             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
299             vvdw12           = _mm_mul_ps(c12_00,VV);
300             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
301             fvdw12           = _mm_mul_ps(c12_00,FF);
302             vvdw             = _mm_add_ps(vvdw12,vvdw6);
303             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
307
308             fscal            = fvdw;
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm_mul_ps(fscal,dx00);
312             ty               = _mm_mul_ps(fscal,dy00);
313             tz               = _mm_mul_ps(fscal,dz00);
314
315             /* Update vectorial force */
316             fix0             = _mm_add_ps(fix0,tx);
317             fiy0             = _mm_add_ps(fiy0,ty);
318             fiz0             = _mm_add_ps(fiz0,tz);
319
320             fjx0             = _mm_add_ps(fjx0,tx);
321             fjy0             = _mm_add_ps(fjy0,ty);
322             fjz0             = _mm_add_ps(fjz0,tz);
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             if (gmx_mm_any_lt(rsq10,rcutoff2))
329             {
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq10             = _mm_mul_ps(iq1,jq0);
333
334             /* REACTION-FIELD ELECTROSTATICS */
335             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
336             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
337
338             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velec            = _mm_and_ps(velec,cutoff_mask);
342             velecsum         = _mm_add_ps(velecsum,velec);
343
344             fscal            = felec;
345
346             fscal            = _mm_and_ps(fscal,cutoff_mask);
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm_mul_ps(fscal,dx10);
350             ty               = _mm_mul_ps(fscal,dy10);
351             tz               = _mm_mul_ps(fscal,dz10);
352
353             /* Update vectorial force */
354             fix1             = _mm_add_ps(fix1,tx);
355             fiy1             = _mm_add_ps(fiy1,ty);
356             fiz1             = _mm_add_ps(fiz1,tz);
357
358             fjx0             = _mm_add_ps(fjx0,tx);
359             fjy0             = _mm_add_ps(fjy0,ty);
360             fjz0             = _mm_add_ps(fjz0,tz);
361
362             }
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             if (gmx_mm_any_lt(rsq20,rcutoff2))
369             {
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq20             = _mm_mul_ps(iq2,jq0);
373
374             /* REACTION-FIELD ELECTROSTATICS */
375             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
376             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
377
378             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
379
380             /* Update potential sum for this i atom from the interaction with this j atom. */
381             velec            = _mm_and_ps(velec,cutoff_mask);
382             velecsum         = _mm_add_ps(velecsum,velec);
383
384             fscal            = felec;
385
386             fscal            = _mm_and_ps(fscal,cutoff_mask);
387
388             /* Calculate temporary vectorial force */
389             tx               = _mm_mul_ps(fscal,dx20);
390             ty               = _mm_mul_ps(fscal,dy20);
391             tz               = _mm_mul_ps(fscal,dz20);
392
393             /* Update vectorial force */
394             fix2             = _mm_add_ps(fix2,tx);
395             fiy2             = _mm_add_ps(fiy2,ty);
396             fiz2             = _mm_add_ps(fiz2,tz);
397
398             fjx0             = _mm_add_ps(fjx0,tx);
399             fjy0             = _mm_add_ps(fjy0,ty);
400             fjz0             = _mm_add_ps(fjz0,tz);
401
402             }
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             if (gmx_mm_any_lt(rsq30,rcutoff2))
409             {
410
411             /* Compute parameters for interactions between i and j atoms */
412             qq30             = _mm_mul_ps(iq3,jq0);
413
414             /* REACTION-FIELD ELECTROSTATICS */
415             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
416             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
417
418             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velec            = _mm_and_ps(velec,cutoff_mask);
422             velecsum         = _mm_add_ps(velecsum,velec);
423
424             fscal            = felec;
425
426             fscal            = _mm_and_ps(fscal,cutoff_mask);
427
428             /* Calculate temporary vectorial force */
429             tx               = _mm_mul_ps(fscal,dx30);
430             ty               = _mm_mul_ps(fscal,dy30);
431             tz               = _mm_mul_ps(fscal,dz30);
432
433             /* Update vectorial force */
434             fix3             = _mm_add_ps(fix3,tx);
435             fiy3             = _mm_add_ps(fiy3,ty);
436             fiz3             = _mm_add_ps(fiz3,tz);
437
438             fjx0             = _mm_add_ps(fjx0,tx);
439             fjy0             = _mm_add_ps(fjy0,ty);
440             fjz0             = _mm_add_ps(fjz0,tz);
441
442             }
443
444             fjptrA             = f+j_coord_offsetA;
445             fjptrB             = f+j_coord_offsetB;
446             fjptrC             = f+j_coord_offsetC;
447             fjptrD             = f+j_coord_offsetD;
448
449             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
450
451             /* Inner loop uses 164 flops */
452         }
453
454         if(jidx<j_index_end)
455         {
456
457             /* Get j neighbor index, and coordinate index */
458             jnrlistA         = jjnr[jidx];
459             jnrlistB         = jjnr[jidx+1];
460             jnrlistC         = jjnr[jidx+2];
461             jnrlistD         = jjnr[jidx+3];
462             /* Sign of each element will be negative for non-real atoms.
463              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
464              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
465              */
466             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
467             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
468             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
469             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
470             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
471             j_coord_offsetA  = DIM*jnrA;
472             j_coord_offsetB  = DIM*jnrB;
473             j_coord_offsetC  = DIM*jnrC;
474             j_coord_offsetD  = DIM*jnrD;
475
476             /* load j atom coordinates */
477             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
478                                               x+j_coord_offsetC,x+j_coord_offsetD,
479                                               &jx0,&jy0,&jz0);
480
481             /* Calculate displacement vector */
482             dx00             = _mm_sub_ps(ix0,jx0);
483             dy00             = _mm_sub_ps(iy0,jy0);
484             dz00             = _mm_sub_ps(iz0,jz0);
485             dx10             = _mm_sub_ps(ix1,jx0);
486             dy10             = _mm_sub_ps(iy1,jy0);
487             dz10             = _mm_sub_ps(iz1,jz0);
488             dx20             = _mm_sub_ps(ix2,jx0);
489             dy20             = _mm_sub_ps(iy2,jy0);
490             dz20             = _mm_sub_ps(iz2,jz0);
491             dx30             = _mm_sub_ps(ix3,jx0);
492             dy30             = _mm_sub_ps(iy3,jy0);
493             dz30             = _mm_sub_ps(iz3,jz0);
494
495             /* Calculate squared distance and things based on it */
496             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
497             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
498             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
499             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
500
501             rinv00           = sse41_invsqrt_f(rsq00);
502             rinv10           = sse41_invsqrt_f(rsq10);
503             rinv20           = sse41_invsqrt_f(rsq20);
504             rinv30           = sse41_invsqrt_f(rsq30);
505
506             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
507             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
508             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
509
510             /* Load parameters for j particles */
511             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
512                                                               charge+jnrC+0,charge+jnrD+0);
513             vdwjidx0A        = 2*vdwtype[jnrA+0];
514             vdwjidx0B        = 2*vdwtype[jnrB+0];
515             vdwjidx0C        = 2*vdwtype[jnrC+0];
516             vdwjidx0D        = 2*vdwtype[jnrD+0];
517
518             fjx0             = _mm_setzero_ps();
519             fjy0             = _mm_setzero_ps();
520             fjz0             = _mm_setzero_ps();
521
522             /**************************
523              * CALCULATE INTERACTIONS *
524              **************************/
525
526             r00              = _mm_mul_ps(rsq00,rinv00);
527             r00              = _mm_andnot_ps(dummy_mask,r00);
528
529             /* Compute parameters for interactions between i and j atoms */
530             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
531                                          vdwparam+vdwioffset0+vdwjidx0B,
532                                          vdwparam+vdwioffset0+vdwjidx0C,
533                                          vdwparam+vdwioffset0+vdwjidx0D,
534                                          &c6_00,&c12_00);
535
536             /* Calculate table index by multiplying r with table scale and truncate to integer */
537             rt               = _mm_mul_ps(r00,vftabscale);
538             vfitab           = _mm_cvttps_epi32(rt);
539             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
540             vfitab           = _mm_slli_epi32(vfitab,3);
541
542             /* CUBIC SPLINE TABLE DISPERSION */
543             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
544             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
545             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
546             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
547             _MM_TRANSPOSE4_PS(Y,F,G,H);
548             Heps             = _mm_mul_ps(vfeps,H);
549             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
550             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
551             vvdw6            = _mm_mul_ps(c6_00,VV);
552             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
553             fvdw6            = _mm_mul_ps(c6_00,FF);
554
555             /* CUBIC SPLINE TABLE REPULSION */
556             vfitab           = _mm_add_epi32(vfitab,ifour);
557             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
558             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
559             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
560             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
561             _MM_TRANSPOSE4_PS(Y,F,G,H);
562             Heps             = _mm_mul_ps(vfeps,H);
563             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
564             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
565             vvdw12           = _mm_mul_ps(c12_00,VV);
566             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
567             fvdw12           = _mm_mul_ps(c12_00,FF);
568             vvdw             = _mm_add_ps(vvdw12,vvdw6);
569             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
570
571             /* Update potential sum for this i atom from the interaction with this j atom. */
572             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
573             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
574
575             fscal            = fvdw;
576
577             fscal            = _mm_andnot_ps(dummy_mask,fscal);
578
579             /* Calculate temporary vectorial force */
580             tx               = _mm_mul_ps(fscal,dx00);
581             ty               = _mm_mul_ps(fscal,dy00);
582             tz               = _mm_mul_ps(fscal,dz00);
583
584             /* Update vectorial force */
585             fix0             = _mm_add_ps(fix0,tx);
586             fiy0             = _mm_add_ps(fiy0,ty);
587             fiz0             = _mm_add_ps(fiz0,tz);
588
589             fjx0             = _mm_add_ps(fjx0,tx);
590             fjy0             = _mm_add_ps(fjy0,ty);
591             fjz0             = _mm_add_ps(fjz0,tz);
592
593             /**************************
594              * CALCULATE INTERACTIONS *
595              **************************/
596
597             if (gmx_mm_any_lt(rsq10,rcutoff2))
598             {
599
600             /* Compute parameters for interactions between i and j atoms */
601             qq10             = _mm_mul_ps(iq1,jq0);
602
603             /* REACTION-FIELD ELECTROSTATICS */
604             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
605             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
606
607             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
608
609             /* Update potential sum for this i atom from the interaction with this j atom. */
610             velec            = _mm_and_ps(velec,cutoff_mask);
611             velec            = _mm_andnot_ps(dummy_mask,velec);
612             velecsum         = _mm_add_ps(velecsum,velec);
613
614             fscal            = felec;
615
616             fscal            = _mm_and_ps(fscal,cutoff_mask);
617
618             fscal            = _mm_andnot_ps(dummy_mask,fscal);
619
620             /* Calculate temporary vectorial force */
621             tx               = _mm_mul_ps(fscal,dx10);
622             ty               = _mm_mul_ps(fscal,dy10);
623             tz               = _mm_mul_ps(fscal,dz10);
624
625             /* Update vectorial force */
626             fix1             = _mm_add_ps(fix1,tx);
627             fiy1             = _mm_add_ps(fiy1,ty);
628             fiz1             = _mm_add_ps(fiz1,tz);
629
630             fjx0             = _mm_add_ps(fjx0,tx);
631             fjy0             = _mm_add_ps(fjy0,ty);
632             fjz0             = _mm_add_ps(fjz0,tz);
633
634             }
635
636             /**************************
637              * CALCULATE INTERACTIONS *
638              **************************/
639
640             if (gmx_mm_any_lt(rsq20,rcutoff2))
641             {
642
643             /* Compute parameters for interactions between i and j atoms */
644             qq20             = _mm_mul_ps(iq2,jq0);
645
646             /* REACTION-FIELD ELECTROSTATICS */
647             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
648             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
649
650             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
651
652             /* Update potential sum for this i atom from the interaction with this j atom. */
653             velec            = _mm_and_ps(velec,cutoff_mask);
654             velec            = _mm_andnot_ps(dummy_mask,velec);
655             velecsum         = _mm_add_ps(velecsum,velec);
656
657             fscal            = felec;
658
659             fscal            = _mm_and_ps(fscal,cutoff_mask);
660
661             fscal            = _mm_andnot_ps(dummy_mask,fscal);
662
663             /* Calculate temporary vectorial force */
664             tx               = _mm_mul_ps(fscal,dx20);
665             ty               = _mm_mul_ps(fscal,dy20);
666             tz               = _mm_mul_ps(fscal,dz20);
667
668             /* Update vectorial force */
669             fix2             = _mm_add_ps(fix2,tx);
670             fiy2             = _mm_add_ps(fiy2,ty);
671             fiz2             = _mm_add_ps(fiz2,tz);
672
673             fjx0             = _mm_add_ps(fjx0,tx);
674             fjy0             = _mm_add_ps(fjy0,ty);
675             fjz0             = _mm_add_ps(fjz0,tz);
676
677             }
678
679             /**************************
680              * CALCULATE INTERACTIONS *
681              **************************/
682
683             if (gmx_mm_any_lt(rsq30,rcutoff2))
684             {
685
686             /* Compute parameters for interactions between i and j atoms */
687             qq30             = _mm_mul_ps(iq3,jq0);
688
689             /* REACTION-FIELD ELECTROSTATICS */
690             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
691             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
692
693             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
694
695             /* Update potential sum for this i atom from the interaction with this j atom. */
696             velec            = _mm_and_ps(velec,cutoff_mask);
697             velec            = _mm_andnot_ps(dummy_mask,velec);
698             velecsum         = _mm_add_ps(velecsum,velec);
699
700             fscal            = felec;
701
702             fscal            = _mm_and_ps(fscal,cutoff_mask);
703
704             fscal            = _mm_andnot_ps(dummy_mask,fscal);
705
706             /* Calculate temporary vectorial force */
707             tx               = _mm_mul_ps(fscal,dx30);
708             ty               = _mm_mul_ps(fscal,dy30);
709             tz               = _mm_mul_ps(fscal,dz30);
710
711             /* Update vectorial force */
712             fix3             = _mm_add_ps(fix3,tx);
713             fiy3             = _mm_add_ps(fiy3,ty);
714             fiz3             = _mm_add_ps(fiz3,tz);
715
716             fjx0             = _mm_add_ps(fjx0,tx);
717             fjy0             = _mm_add_ps(fjy0,ty);
718             fjz0             = _mm_add_ps(fjz0,tz);
719
720             }
721
722             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
723             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
724             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
725             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
726
727             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
728
729             /* Inner loop uses 165 flops */
730         }
731
732         /* End of innermost loop */
733
734         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
735                                               f+i_coord_offset,fshift+i_shift_offset);
736
737         ggid                        = gid[iidx];
738         /* Update potential energies */
739         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
740         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
741
742         /* Increment number of inner iterations */
743         inneriter                  += j_index_end - j_index_start;
744
745         /* Outer loop uses 26 flops */
746     }
747
748     /* Increment number of outer iterations */
749     outeriter        += nri;
750
751     /* Update outer/inner flops */
752
753     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*165);
754 }
755 /*
756  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_single
757  * Electrostatics interaction: ReactionField
758  * VdW interaction:            CubicSplineTable
759  * Geometry:                   Water4-Particle
760  * Calculate force/pot:        Force
761  */
762 void
763 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_single
764                     (t_nblist                    * gmx_restrict       nlist,
765                      rvec                        * gmx_restrict          xx,
766                      rvec                        * gmx_restrict          ff,
767                      struct t_forcerec           * gmx_restrict          fr,
768                      t_mdatoms                   * gmx_restrict     mdatoms,
769                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
770                      t_nrnb                      * gmx_restrict        nrnb)
771 {
772     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
773      * just 0 for non-waters.
774      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
775      * jnr indices corresponding to data put in the four positions in the SIMD register.
776      */
777     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
778     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
779     int              jnrA,jnrB,jnrC,jnrD;
780     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
781     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
782     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
783     real             rcutoff_scalar;
784     real             *shiftvec,*fshift,*x,*f;
785     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
786     real             scratch[4*DIM];
787     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
788     int              vdwioffset0;
789     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
790     int              vdwioffset1;
791     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
792     int              vdwioffset2;
793     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
794     int              vdwioffset3;
795     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
796     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
797     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
798     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
799     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
800     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
801     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
802     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
803     real             *charge;
804     int              nvdwtype;
805     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
806     int              *vdwtype;
807     real             *vdwparam;
808     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
809     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
810     __m128i          vfitab;
811     __m128i          ifour       = _mm_set1_epi32(4);
812     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
813     real             *vftab;
814     __m128           dummy_mask,cutoff_mask;
815     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
816     __m128           one     = _mm_set1_ps(1.0);
817     __m128           two     = _mm_set1_ps(2.0);
818     x                = xx[0];
819     f                = ff[0];
820
821     nri              = nlist->nri;
822     iinr             = nlist->iinr;
823     jindex           = nlist->jindex;
824     jjnr             = nlist->jjnr;
825     shiftidx         = nlist->shift;
826     gid              = nlist->gid;
827     shiftvec         = fr->shift_vec[0];
828     fshift           = fr->fshift[0];
829     facel            = _mm_set1_ps(fr->ic->epsfac);
830     charge           = mdatoms->chargeA;
831     krf              = _mm_set1_ps(fr->ic->k_rf);
832     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
833     crf              = _mm_set1_ps(fr->ic->c_rf);
834     nvdwtype         = fr->ntype;
835     vdwparam         = fr->nbfp;
836     vdwtype          = mdatoms->typeA;
837
838     vftab            = kernel_data->table_vdw->data;
839     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
840
841     /* Setup water-specific parameters */
842     inr              = nlist->iinr[0];
843     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
844     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
845     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
846     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
847
848     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
849     rcutoff_scalar   = fr->ic->rcoulomb;
850     rcutoff          = _mm_set1_ps(rcutoff_scalar);
851     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
852
853     /* Avoid stupid compiler warnings */
854     jnrA = jnrB = jnrC = jnrD = 0;
855     j_coord_offsetA = 0;
856     j_coord_offsetB = 0;
857     j_coord_offsetC = 0;
858     j_coord_offsetD = 0;
859
860     outeriter        = 0;
861     inneriter        = 0;
862
863     for(iidx=0;iidx<4*DIM;iidx++)
864     {
865         scratch[iidx] = 0.0;
866     }
867
868     /* Start outer loop over neighborlists */
869     for(iidx=0; iidx<nri; iidx++)
870     {
871         /* Load shift vector for this list */
872         i_shift_offset   = DIM*shiftidx[iidx];
873
874         /* Load limits for loop over neighbors */
875         j_index_start    = jindex[iidx];
876         j_index_end      = jindex[iidx+1];
877
878         /* Get outer coordinate index */
879         inr              = iinr[iidx];
880         i_coord_offset   = DIM*inr;
881
882         /* Load i particle coords and add shift vector */
883         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
884                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
885
886         fix0             = _mm_setzero_ps();
887         fiy0             = _mm_setzero_ps();
888         fiz0             = _mm_setzero_ps();
889         fix1             = _mm_setzero_ps();
890         fiy1             = _mm_setzero_ps();
891         fiz1             = _mm_setzero_ps();
892         fix2             = _mm_setzero_ps();
893         fiy2             = _mm_setzero_ps();
894         fiz2             = _mm_setzero_ps();
895         fix3             = _mm_setzero_ps();
896         fiy3             = _mm_setzero_ps();
897         fiz3             = _mm_setzero_ps();
898
899         /* Start inner kernel loop */
900         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
901         {
902
903             /* Get j neighbor index, and coordinate index */
904             jnrA             = jjnr[jidx];
905             jnrB             = jjnr[jidx+1];
906             jnrC             = jjnr[jidx+2];
907             jnrD             = jjnr[jidx+3];
908             j_coord_offsetA  = DIM*jnrA;
909             j_coord_offsetB  = DIM*jnrB;
910             j_coord_offsetC  = DIM*jnrC;
911             j_coord_offsetD  = DIM*jnrD;
912
913             /* load j atom coordinates */
914             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
915                                               x+j_coord_offsetC,x+j_coord_offsetD,
916                                               &jx0,&jy0,&jz0);
917
918             /* Calculate displacement vector */
919             dx00             = _mm_sub_ps(ix0,jx0);
920             dy00             = _mm_sub_ps(iy0,jy0);
921             dz00             = _mm_sub_ps(iz0,jz0);
922             dx10             = _mm_sub_ps(ix1,jx0);
923             dy10             = _mm_sub_ps(iy1,jy0);
924             dz10             = _mm_sub_ps(iz1,jz0);
925             dx20             = _mm_sub_ps(ix2,jx0);
926             dy20             = _mm_sub_ps(iy2,jy0);
927             dz20             = _mm_sub_ps(iz2,jz0);
928             dx30             = _mm_sub_ps(ix3,jx0);
929             dy30             = _mm_sub_ps(iy3,jy0);
930             dz30             = _mm_sub_ps(iz3,jz0);
931
932             /* Calculate squared distance and things based on it */
933             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
934             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
935             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
936             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
937
938             rinv00           = sse41_invsqrt_f(rsq00);
939             rinv10           = sse41_invsqrt_f(rsq10);
940             rinv20           = sse41_invsqrt_f(rsq20);
941             rinv30           = sse41_invsqrt_f(rsq30);
942
943             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
944             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
945             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
946
947             /* Load parameters for j particles */
948             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
949                                                               charge+jnrC+0,charge+jnrD+0);
950             vdwjidx0A        = 2*vdwtype[jnrA+0];
951             vdwjidx0B        = 2*vdwtype[jnrB+0];
952             vdwjidx0C        = 2*vdwtype[jnrC+0];
953             vdwjidx0D        = 2*vdwtype[jnrD+0];
954
955             fjx0             = _mm_setzero_ps();
956             fjy0             = _mm_setzero_ps();
957             fjz0             = _mm_setzero_ps();
958
959             /**************************
960              * CALCULATE INTERACTIONS *
961              **************************/
962
963             r00              = _mm_mul_ps(rsq00,rinv00);
964
965             /* Compute parameters for interactions between i and j atoms */
966             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
967                                          vdwparam+vdwioffset0+vdwjidx0B,
968                                          vdwparam+vdwioffset0+vdwjidx0C,
969                                          vdwparam+vdwioffset0+vdwjidx0D,
970                                          &c6_00,&c12_00);
971
972             /* Calculate table index by multiplying r with table scale and truncate to integer */
973             rt               = _mm_mul_ps(r00,vftabscale);
974             vfitab           = _mm_cvttps_epi32(rt);
975             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
976             vfitab           = _mm_slli_epi32(vfitab,3);
977
978             /* CUBIC SPLINE TABLE DISPERSION */
979             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
980             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
981             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
982             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
983             _MM_TRANSPOSE4_PS(Y,F,G,H);
984             Heps             = _mm_mul_ps(vfeps,H);
985             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
986             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
987             fvdw6            = _mm_mul_ps(c6_00,FF);
988
989             /* CUBIC SPLINE TABLE REPULSION */
990             vfitab           = _mm_add_epi32(vfitab,ifour);
991             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
992             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
993             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
994             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
995             _MM_TRANSPOSE4_PS(Y,F,G,H);
996             Heps             = _mm_mul_ps(vfeps,H);
997             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
998             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
999             fvdw12           = _mm_mul_ps(c12_00,FF);
1000             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1001
1002             fscal            = fvdw;
1003
1004             /* Calculate temporary vectorial force */
1005             tx               = _mm_mul_ps(fscal,dx00);
1006             ty               = _mm_mul_ps(fscal,dy00);
1007             tz               = _mm_mul_ps(fscal,dz00);
1008
1009             /* Update vectorial force */
1010             fix0             = _mm_add_ps(fix0,tx);
1011             fiy0             = _mm_add_ps(fiy0,ty);
1012             fiz0             = _mm_add_ps(fiz0,tz);
1013
1014             fjx0             = _mm_add_ps(fjx0,tx);
1015             fjy0             = _mm_add_ps(fjy0,ty);
1016             fjz0             = _mm_add_ps(fjz0,tz);
1017
1018             /**************************
1019              * CALCULATE INTERACTIONS *
1020              **************************/
1021
1022             if (gmx_mm_any_lt(rsq10,rcutoff2))
1023             {
1024
1025             /* Compute parameters for interactions between i and j atoms */
1026             qq10             = _mm_mul_ps(iq1,jq0);
1027
1028             /* REACTION-FIELD ELECTROSTATICS */
1029             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1030
1031             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1032
1033             fscal            = felec;
1034
1035             fscal            = _mm_and_ps(fscal,cutoff_mask);
1036
1037             /* Calculate temporary vectorial force */
1038             tx               = _mm_mul_ps(fscal,dx10);
1039             ty               = _mm_mul_ps(fscal,dy10);
1040             tz               = _mm_mul_ps(fscal,dz10);
1041
1042             /* Update vectorial force */
1043             fix1             = _mm_add_ps(fix1,tx);
1044             fiy1             = _mm_add_ps(fiy1,ty);
1045             fiz1             = _mm_add_ps(fiz1,tz);
1046
1047             fjx0             = _mm_add_ps(fjx0,tx);
1048             fjy0             = _mm_add_ps(fjy0,ty);
1049             fjz0             = _mm_add_ps(fjz0,tz);
1050
1051             }
1052
1053             /**************************
1054              * CALCULATE INTERACTIONS *
1055              **************************/
1056
1057             if (gmx_mm_any_lt(rsq20,rcutoff2))
1058             {
1059
1060             /* Compute parameters for interactions between i and j atoms */
1061             qq20             = _mm_mul_ps(iq2,jq0);
1062
1063             /* REACTION-FIELD ELECTROSTATICS */
1064             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1065
1066             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1067
1068             fscal            = felec;
1069
1070             fscal            = _mm_and_ps(fscal,cutoff_mask);
1071
1072             /* Calculate temporary vectorial force */
1073             tx               = _mm_mul_ps(fscal,dx20);
1074             ty               = _mm_mul_ps(fscal,dy20);
1075             tz               = _mm_mul_ps(fscal,dz20);
1076
1077             /* Update vectorial force */
1078             fix2             = _mm_add_ps(fix2,tx);
1079             fiy2             = _mm_add_ps(fiy2,ty);
1080             fiz2             = _mm_add_ps(fiz2,tz);
1081
1082             fjx0             = _mm_add_ps(fjx0,tx);
1083             fjy0             = _mm_add_ps(fjy0,ty);
1084             fjz0             = _mm_add_ps(fjz0,tz);
1085
1086             }
1087
1088             /**************************
1089              * CALCULATE INTERACTIONS *
1090              **************************/
1091
1092             if (gmx_mm_any_lt(rsq30,rcutoff2))
1093             {
1094
1095             /* Compute parameters for interactions between i and j atoms */
1096             qq30             = _mm_mul_ps(iq3,jq0);
1097
1098             /* REACTION-FIELD ELECTROSTATICS */
1099             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1100
1101             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1102
1103             fscal            = felec;
1104
1105             fscal            = _mm_and_ps(fscal,cutoff_mask);
1106
1107             /* Calculate temporary vectorial force */
1108             tx               = _mm_mul_ps(fscal,dx30);
1109             ty               = _mm_mul_ps(fscal,dy30);
1110             tz               = _mm_mul_ps(fscal,dz30);
1111
1112             /* Update vectorial force */
1113             fix3             = _mm_add_ps(fix3,tx);
1114             fiy3             = _mm_add_ps(fiy3,ty);
1115             fiz3             = _mm_add_ps(fiz3,tz);
1116
1117             fjx0             = _mm_add_ps(fjx0,tx);
1118             fjy0             = _mm_add_ps(fjy0,ty);
1119             fjz0             = _mm_add_ps(fjz0,tz);
1120
1121             }
1122
1123             fjptrA             = f+j_coord_offsetA;
1124             fjptrB             = f+j_coord_offsetB;
1125             fjptrC             = f+j_coord_offsetC;
1126             fjptrD             = f+j_coord_offsetD;
1127
1128             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1129
1130             /* Inner loop uses 138 flops */
1131         }
1132
1133         if(jidx<j_index_end)
1134         {
1135
1136             /* Get j neighbor index, and coordinate index */
1137             jnrlistA         = jjnr[jidx];
1138             jnrlistB         = jjnr[jidx+1];
1139             jnrlistC         = jjnr[jidx+2];
1140             jnrlistD         = jjnr[jidx+3];
1141             /* Sign of each element will be negative for non-real atoms.
1142              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1143              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1144              */
1145             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1146             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1147             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1148             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1149             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1150             j_coord_offsetA  = DIM*jnrA;
1151             j_coord_offsetB  = DIM*jnrB;
1152             j_coord_offsetC  = DIM*jnrC;
1153             j_coord_offsetD  = DIM*jnrD;
1154
1155             /* load j atom coordinates */
1156             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1157                                               x+j_coord_offsetC,x+j_coord_offsetD,
1158                                               &jx0,&jy0,&jz0);
1159
1160             /* Calculate displacement vector */
1161             dx00             = _mm_sub_ps(ix0,jx0);
1162             dy00             = _mm_sub_ps(iy0,jy0);
1163             dz00             = _mm_sub_ps(iz0,jz0);
1164             dx10             = _mm_sub_ps(ix1,jx0);
1165             dy10             = _mm_sub_ps(iy1,jy0);
1166             dz10             = _mm_sub_ps(iz1,jz0);
1167             dx20             = _mm_sub_ps(ix2,jx0);
1168             dy20             = _mm_sub_ps(iy2,jy0);
1169             dz20             = _mm_sub_ps(iz2,jz0);
1170             dx30             = _mm_sub_ps(ix3,jx0);
1171             dy30             = _mm_sub_ps(iy3,jy0);
1172             dz30             = _mm_sub_ps(iz3,jz0);
1173
1174             /* Calculate squared distance and things based on it */
1175             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1176             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1177             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1178             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1179
1180             rinv00           = sse41_invsqrt_f(rsq00);
1181             rinv10           = sse41_invsqrt_f(rsq10);
1182             rinv20           = sse41_invsqrt_f(rsq20);
1183             rinv30           = sse41_invsqrt_f(rsq30);
1184
1185             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1186             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1187             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1188
1189             /* Load parameters for j particles */
1190             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1191                                                               charge+jnrC+0,charge+jnrD+0);
1192             vdwjidx0A        = 2*vdwtype[jnrA+0];
1193             vdwjidx0B        = 2*vdwtype[jnrB+0];
1194             vdwjidx0C        = 2*vdwtype[jnrC+0];
1195             vdwjidx0D        = 2*vdwtype[jnrD+0];
1196
1197             fjx0             = _mm_setzero_ps();
1198             fjy0             = _mm_setzero_ps();
1199             fjz0             = _mm_setzero_ps();
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             r00              = _mm_mul_ps(rsq00,rinv00);
1206             r00              = _mm_andnot_ps(dummy_mask,r00);
1207
1208             /* Compute parameters for interactions between i and j atoms */
1209             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1210                                          vdwparam+vdwioffset0+vdwjidx0B,
1211                                          vdwparam+vdwioffset0+vdwjidx0C,
1212                                          vdwparam+vdwioffset0+vdwjidx0D,
1213                                          &c6_00,&c12_00);
1214
1215             /* Calculate table index by multiplying r with table scale and truncate to integer */
1216             rt               = _mm_mul_ps(r00,vftabscale);
1217             vfitab           = _mm_cvttps_epi32(rt);
1218             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1219             vfitab           = _mm_slli_epi32(vfitab,3);
1220
1221             /* CUBIC SPLINE TABLE DISPERSION */
1222             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1223             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1224             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1225             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1226             _MM_TRANSPOSE4_PS(Y,F,G,H);
1227             Heps             = _mm_mul_ps(vfeps,H);
1228             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1229             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1230             fvdw6            = _mm_mul_ps(c6_00,FF);
1231
1232             /* CUBIC SPLINE TABLE REPULSION */
1233             vfitab           = _mm_add_epi32(vfitab,ifour);
1234             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1235             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1236             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1237             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1238             _MM_TRANSPOSE4_PS(Y,F,G,H);
1239             Heps             = _mm_mul_ps(vfeps,H);
1240             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1241             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1242             fvdw12           = _mm_mul_ps(c12_00,FF);
1243             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1244
1245             fscal            = fvdw;
1246
1247             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1248
1249             /* Calculate temporary vectorial force */
1250             tx               = _mm_mul_ps(fscal,dx00);
1251             ty               = _mm_mul_ps(fscal,dy00);
1252             tz               = _mm_mul_ps(fscal,dz00);
1253
1254             /* Update vectorial force */
1255             fix0             = _mm_add_ps(fix0,tx);
1256             fiy0             = _mm_add_ps(fiy0,ty);
1257             fiz0             = _mm_add_ps(fiz0,tz);
1258
1259             fjx0             = _mm_add_ps(fjx0,tx);
1260             fjy0             = _mm_add_ps(fjy0,ty);
1261             fjz0             = _mm_add_ps(fjz0,tz);
1262
1263             /**************************
1264              * CALCULATE INTERACTIONS *
1265              **************************/
1266
1267             if (gmx_mm_any_lt(rsq10,rcutoff2))
1268             {
1269
1270             /* Compute parameters for interactions between i and j atoms */
1271             qq10             = _mm_mul_ps(iq1,jq0);
1272
1273             /* REACTION-FIELD ELECTROSTATICS */
1274             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1275
1276             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1277
1278             fscal            = felec;
1279
1280             fscal            = _mm_and_ps(fscal,cutoff_mask);
1281
1282             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1283
1284             /* Calculate temporary vectorial force */
1285             tx               = _mm_mul_ps(fscal,dx10);
1286             ty               = _mm_mul_ps(fscal,dy10);
1287             tz               = _mm_mul_ps(fscal,dz10);
1288
1289             /* Update vectorial force */
1290             fix1             = _mm_add_ps(fix1,tx);
1291             fiy1             = _mm_add_ps(fiy1,ty);
1292             fiz1             = _mm_add_ps(fiz1,tz);
1293
1294             fjx0             = _mm_add_ps(fjx0,tx);
1295             fjy0             = _mm_add_ps(fjy0,ty);
1296             fjz0             = _mm_add_ps(fjz0,tz);
1297
1298             }
1299
1300             /**************************
1301              * CALCULATE INTERACTIONS *
1302              **************************/
1303
1304             if (gmx_mm_any_lt(rsq20,rcutoff2))
1305             {
1306
1307             /* Compute parameters for interactions between i and j atoms */
1308             qq20             = _mm_mul_ps(iq2,jq0);
1309
1310             /* REACTION-FIELD ELECTROSTATICS */
1311             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1312
1313             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1314
1315             fscal            = felec;
1316
1317             fscal            = _mm_and_ps(fscal,cutoff_mask);
1318
1319             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1320
1321             /* Calculate temporary vectorial force */
1322             tx               = _mm_mul_ps(fscal,dx20);
1323             ty               = _mm_mul_ps(fscal,dy20);
1324             tz               = _mm_mul_ps(fscal,dz20);
1325
1326             /* Update vectorial force */
1327             fix2             = _mm_add_ps(fix2,tx);
1328             fiy2             = _mm_add_ps(fiy2,ty);
1329             fiz2             = _mm_add_ps(fiz2,tz);
1330
1331             fjx0             = _mm_add_ps(fjx0,tx);
1332             fjy0             = _mm_add_ps(fjy0,ty);
1333             fjz0             = _mm_add_ps(fjz0,tz);
1334
1335             }
1336
1337             /**************************
1338              * CALCULATE INTERACTIONS *
1339              **************************/
1340
1341             if (gmx_mm_any_lt(rsq30,rcutoff2))
1342             {
1343
1344             /* Compute parameters for interactions between i and j atoms */
1345             qq30             = _mm_mul_ps(iq3,jq0);
1346
1347             /* REACTION-FIELD ELECTROSTATICS */
1348             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1349
1350             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1351
1352             fscal            = felec;
1353
1354             fscal            = _mm_and_ps(fscal,cutoff_mask);
1355
1356             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1357
1358             /* Calculate temporary vectorial force */
1359             tx               = _mm_mul_ps(fscal,dx30);
1360             ty               = _mm_mul_ps(fscal,dy30);
1361             tz               = _mm_mul_ps(fscal,dz30);
1362
1363             /* Update vectorial force */
1364             fix3             = _mm_add_ps(fix3,tx);
1365             fiy3             = _mm_add_ps(fiy3,ty);
1366             fiz3             = _mm_add_ps(fiz3,tz);
1367
1368             fjx0             = _mm_add_ps(fjx0,tx);
1369             fjy0             = _mm_add_ps(fjy0,ty);
1370             fjz0             = _mm_add_ps(fjz0,tz);
1371
1372             }
1373
1374             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1375             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1376             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1377             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1378
1379             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1380
1381             /* Inner loop uses 139 flops */
1382         }
1383
1384         /* End of innermost loop */
1385
1386         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1387                                               f+i_coord_offset,fshift+i_shift_offset);
1388
1389         /* Increment number of inner iterations */
1390         inneriter                  += j_index_end - j_index_start;
1391
1392         /* Outer loop uses 24 flops */
1393     }
1394
1395     /* Increment number of outer iterations */
1396     outeriter        += nri;
1397
1398     /* Update outer/inner flops */
1399
1400     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*139);
1401 }