Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128i          vfitab;
108     __m128i          ifour       = _mm_set1_epi32(4);
109     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
110     real             *vftab;
111     __m128           dummy_mask,cutoff_mask;
112     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113     __m128           one     = _mm_set1_ps(1.0);
114     __m128           two     = _mm_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_ps(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     krf              = _mm_set1_ps(fr->ic->k_rf);
129     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
130     crf              = _mm_set1_ps(fr->ic->c_rf);
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134
135     vftab            = kernel_data->table_vdw->data;
136     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
141     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
142     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
146     rcutoff_scalar   = fr->rcoulomb;
147     rcutoff          = _mm_set1_ps(rcutoff_scalar);
148     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = jnrC = jnrD = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154     j_coord_offsetC = 0;
155     j_coord_offsetD = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
182
183         fix0             = _mm_setzero_ps();
184         fiy0             = _mm_setzero_ps();
185         fiz0             = _mm_setzero_ps();
186         fix1             = _mm_setzero_ps();
187         fiy1             = _mm_setzero_ps();
188         fiz1             = _mm_setzero_ps();
189         fix2             = _mm_setzero_ps();
190         fiy2             = _mm_setzero_ps();
191         fiz2             = _mm_setzero_ps();
192         fix3             = _mm_setzero_ps();
193         fiy3             = _mm_setzero_ps();
194         fiz3             = _mm_setzero_ps();
195
196         /* Reset potential sums */
197         velecsum         = _mm_setzero_ps();
198         vvdwsum          = _mm_setzero_ps();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             jnrC             = jjnr[jidx+2];
208             jnrD             = jjnr[jidx+3];
209             j_coord_offsetA  = DIM*jnrA;
210             j_coord_offsetB  = DIM*jnrB;
211             j_coord_offsetC  = DIM*jnrC;
212             j_coord_offsetD  = DIM*jnrD;
213
214             /* load j atom coordinates */
215             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                               x+j_coord_offsetC,x+j_coord_offsetD,
217                                               &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm_sub_ps(ix0,jx0);
221             dy00             = _mm_sub_ps(iy0,jy0);
222             dz00             = _mm_sub_ps(iz0,jz0);
223             dx10             = _mm_sub_ps(ix1,jx0);
224             dy10             = _mm_sub_ps(iy1,jy0);
225             dz10             = _mm_sub_ps(iz1,jz0);
226             dx20             = _mm_sub_ps(ix2,jx0);
227             dy20             = _mm_sub_ps(iy2,jy0);
228             dz20             = _mm_sub_ps(iz2,jz0);
229             dx30             = _mm_sub_ps(ix3,jx0);
230             dy30             = _mm_sub_ps(iy3,jy0);
231             dz30             = _mm_sub_ps(iz3,jz0);
232
233             /* Calculate squared distance and things based on it */
234             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
235             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
236             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
237             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
238
239             rinv00           = gmx_mm_invsqrt_ps(rsq00);
240             rinv10           = gmx_mm_invsqrt_ps(rsq10);
241             rinv20           = gmx_mm_invsqrt_ps(rsq20);
242             rinv30           = gmx_mm_invsqrt_ps(rsq30);
243
244             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
245             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
246             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
247
248             /* Load parameters for j particles */
249             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
250                                                               charge+jnrC+0,charge+jnrD+0);
251             vdwjidx0A        = 2*vdwtype[jnrA+0];
252             vdwjidx0B        = 2*vdwtype[jnrB+0];
253             vdwjidx0C        = 2*vdwtype[jnrC+0];
254             vdwjidx0D        = 2*vdwtype[jnrD+0];
255
256             fjx0             = _mm_setzero_ps();
257             fjy0             = _mm_setzero_ps();
258             fjz0             = _mm_setzero_ps();
259
260             /**************************
261              * CALCULATE INTERACTIONS *
262              **************************/
263
264             r00              = _mm_mul_ps(rsq00,rinv00);
265
266             /* Compute parameters for interactions between i and j atoms */
267             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
268                                          vdwparam+vdwioffset0+vdwjidx0B,
269                                          vdwparam+vdwioffset0+vdwjidx0C,
270                                          vdwparam+vdwioffset0+vdwjidx0D,
271                                          &c6_00,&c12_00);
272
273             /* Calculate table index by multiplying r with table scale and truncate to integer */
274             rt               = _mm_mul_ps(r00,vftabscale);
275             vfitab           = _mm_cvttps_epi32(rt);
276             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
277             vfitab           = _mm_slli_epi32(vfitab,3);
278
279             /* CUBIC SPLINE TABLE DISPERSION */
280             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
281             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
282             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
283             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
284             _MM_TRANSPOSE4_PS(Y,F,G,H);
285             Heps             = _mm_mul_ps(vfeps,H);
286             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
287             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
288             vvdw6            = _mm_mul_ps(c6_00,VV);
289             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
290             fvdw6            = _mm_mul_ps(c6_00,FF);
291
292             /* CUBIC SPLINE TABLE REPULSION */
293             vfitab           = _mm_add_epi32(vfitab,ifour);
294             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
295             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
296             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
297             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
298             _MM_TRANSPOSE4_PS(Y,F,G,H);
299             Heps             = _mm_mul_ps(vfeps,H);
300             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
301             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
302             vvdw12           = _mm_mul_ps(c12_00,VV);
303             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
304             fvdw12           = _mm_mul_ps(c12_00,FF);
305             vvdw             = _mm_add_ps(vvdw12,vvdw6);
306             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
310
311             fscal            = fvdw;
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm_mul_ps(fscal,dx00);
315             ty               = _mm_mul_ps(fscal,dy00);
316             tz               = _mm_mul_ps(fscal,dz00);
317
318             /* Update vectorial force */
319             fix0             = _mm_add_ps(fix0,tx);
320             fiy0             = _mm_add_ps(fiy0,ty);
321             fiz0             = _mm_add_ps(fiz0,tz);
322
323             fjx0             = _mm_add_ps(fjx0,tx);
324             fjy0             = _mm_add_ps(fjy0,ty);
325             fjz0             = _mm_add_ps(fjz0,tz);
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             if (gmx_mm_any_lt(rsq10,rcutoff2))
332             {
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq10             = _mm_mul_ps(iq1,jq0);
336
337             /* REACTION-FIELD ELECTROSTATICS */
338             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
339             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
340
341             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velec            = _mm_and_ps(velec,cutoff_mask);
345             velecsum         = _mm_add_ps(velecsum,velec);
346
347             fscal            = felec;
348
349             fscal            = _mm_and_ps(fscal,cutoff_mask);
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm_mul_ps(fscal,dx10);
353             ty               = _mm_mul_ps(fscal,dy10);
354             tz               = _mm_mul_ps(fscal,dz10);
355
356             /* Update vectorial force */
357             fix1             = _mm_add_ps(fix1,tx);
358             fiy1             = _mm_add_ps(fiy1,ty);
359             fiz1             = _mm_add_ps(fiz1,tz);
360
361             fjx0             = _mm_add_ps(fjx0,tx);
362             fjy0             = _mm_add_ps(fjy0,ty);
363             fjz0             = _mm_add_ps(fjz0,tz);
364
365             }
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             if (gmx_mm_any_lt(rsq20,rcutoff2))
372             {
373
374             /* Compute parameters for interactions between i and j atoms */
375             qq20             = _mm_mul_ps(iq2,jq0);
376
377             /* REACTION-FIELD ELECTROSTATICS */
378             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
379             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
380
381             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
382
383             /* Update potential sum for this i atom from the interaction with this j atom. */
384             velec            = _mm_and_ps(velec,cutoff_mask);
385             velecsum         = _mm_add_ps(velecsum,velec);
386
387             fscal            = felec;
388
389             fscal            = _mm_and_ps(fscal,cutoff_mask);
390
391             /* Calculate temporary vectorial force */
392             tx               = _mm_mul_ps(fscal,dx20);
393             ty               = _mm_mul_ps(fscal,dy20);
394             tz               = _mm_mul_ps(fscal,dz20);
395
396             /* Update vectorial force */
397             fix2             = _mm_add_ps(fix2,tx);
398             fiy2             = _mm_add_ps(fiy2,ty);
399             fiz2             = _mm_add_ps(fiz2,tz);
400
401             fjx0             = _mm_add_ps(fjx0,tx);
402             fjy0             = _mm_add_ps(fjy0,ty);
403             fjz0             = _mm_add_ps(fjz0,tz);
404
405             }
406
407             /**************************
408              * CALCULATE INTERACTIONS *
409              **************************/
410
411             if (gmx_mm_any_lt(rsq30,rcutoff2))
412             {
413
414             /* Compute parameters for interactions between i and j atoms */
415             qq30             = _mm_mul_ps(iq3,jq0);
416
417             /* REACTION-FIELD ELECTROSTATICS */
418             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
419             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
420
421             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
422
423             /* Update potential sum for this i atom from the interaction with this j atom. */
424             velec            = _mm_and_ps(velec,cutoff_mask);
425             velecsum         = _mm_add_ps(velecsum,velec);
426
427             fscal            = felec;
428
429             fscal            = _mm_and_ps(fscal,cutoff_mask);
430
431             /* Calculate temporary vectorial force */
432             tx               = _mm_mul_ps(fscal,dx30);
433             ty               = _mm_mul_ps(fscal,dy30);
434             tz               = _mm_mul_ps(fscal,dz30);
435
436             /* Update vectorial force */
437             fix3             = _mm_add_ps(fix3,tx);
438             fiy3             = _mm_add_ps(fiy3,ty);
439             fiz3             = _mm_add_ps(fiz3,tz);
440
441             fjx0             = _mm_add_ps(fjx0,tx);
442             fjy0             = _mm_add_ps(fjy0,ty);
443             fjz0             = _mm_add_ps(fjz0,tz);
444
445             }
446
447             fjptrA             = f+j_coord_offsetA;
448             fjptrB             = f+j_coord_offsetB;
449             fjptrC             = f+j_coord_offsetC;
450             fjptrD             = f+j_coord_offsetD;
451
452             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
453
454             /* Inner loop uses 164 flops */
455         }
456
457         if(jidx<j_index_end)
458         {
459
460             /* Get j neighbor index, and coordinate index */
461             jnrlistA         = jjnr[jidx];
462             jnrlistB         = jjnr[jidx+1];
463             jnrlistC         = jjnr[jidx+2];
464             jnrlistD         = jjnr[jidx+3];
465             /* Sign of each element will be negative for non-real atoms.
466              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
467              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
468              */
469             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
470             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
471             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
472             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
473             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
474             j_coord_offsetA  = DIM*jnrA;
475             j_coord_offsetB  = DIM*jnrB;
476             j_coord_offsetC  = DIM*jnrC;
477             j_coord_offsetD  = DIM*jnrD;
478
479             /* load j atom coordinates */
480             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
481                                               x+j_coord_offsetC,x+j_coord_offsetD,
482                                               &jx0,&jy0,&jz0);
483
484             /* Calculate displacement vector */
485             dx00             = _mm_sub_ps(ix0,jx0);
486             dy00             = _mm_sub_ps(iy0,jy0);
487             dz00             = _mm_sub_ps(iz0,jz0);
488             dx10             = _mm_sub_ps(ix1,jx0);
489             dy10             = _mm_sub_ps(iy1,jy0);
490             dz10             = _mm_sub_ps(iz1,jz0);
491             dx20             = _mm_sub_ps(ix2,jx0);
492             dy20             = _mm_sub_ps(iy2,jy0);
493             dz20             = _mm_sub_ps(iz2,jz0);
494             dx30             = _mm_sub_ps(ix3,jx0);
495             dy30             = _mm_sub_ps(iy3,jy0);
496             dz30             = _mm_sub_ps(iz3,jz0);
497
498             /* Calculate squared distance and things based on it */
499             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
500             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
501             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
502             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
503
504             rinv00           = gmx_mm_invsqrt_ps(rsq00);
505             rinv10           = gmx_mm_invsqrt_ps(rsq10);
506             rinv20           = gmx_mm_invsqrt_ps(rsq20);
507             rinv30           = gmx_mm_invsqrt_ps(rsq30);
508
509             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
510             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
511             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
512
513             /* Load parameters for j particles */
514             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
515                                                               charge+jnrC+0,charge+jnrD+0);
516             vdwjidx0A        = 2*vdwtype[jnrA+0];
517             vdwjidx0B        = 2*vdwtype[jnrB+0];
518             vdwjidx0C        = 2*vdwtype[jnrC+0];
519             vdwjidx0D        = 2*vdwtype[jnrD+0];
520
521             fjx0             = _mm_setzero_ps();
522             fjy0             = _mm_setzero_ps();
523             fjz0             = _mm_setzero_ps();
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             r00              = _mm_mul_ps(rsq00,rinv00);
530             r00              = _mm_andnot_ps(dummy_mask,r00);
531
532             /* Compute parameters for interactions between i and j atoms */
533             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
534                                          vdwparam+vdwioffset0+vdwjidx0B,
535                                          vdwparam+vdwioffset0+vdwjidx0C,
536                                          vdwparam+vdwioffset0+vdwjidx0D,
537                                          &c6_00,&c12_00);
538
539             /* Calculate table index by multiplying r with table scale and truncate to integer */
540             rt               = _mm_mul_ps(r00,vftabscale);
541             vfitab           = _mm_cvttps_epi32(rt);
542             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
543             vfitab           = _mm_slli_epi32(vfitab,3);
544
545             /* CUBIC SPLINE TABLE DISPERSION */
546             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
547             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
548             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
549             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
550             _MM_TRANSPOSE4_PS(Y,F,G,H);
551             Heps             = _mm_mul_ps(vfeps,H);
552             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
553             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
554             vvdw6            = _mm_mul_ps(c6_00,VV);
555             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
556             fvdw6            = _mm_mul_ps(c6_00,FF);
557
558             /* CUBIC SPLINE TABLE REPULSION */
559             vfitab           = _mm_add_epi32(vfitab,ifour);
560             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
561             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
562             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
563             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
564             _MM_TRANSPOSE4_PS(Y,F,G,H);
565             Heps             = _mm_mul_ps(vfeps,H);
566             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
567             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
568             vvdw12           = _mm_mul_ps(c12_00,VV);
569             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
570             fvdw12           = _mm_mul_ps(c12_00,FF);
571             vvdw             = _mm_add_ps(vvdw12,vvdw6);
572             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
573
574             /* Update potential sum for this i atom from the interaction with this j atom. */
575             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
576             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
577
578             fscal            = fvdw;
579
580             fscal            = _mm_andnot_ps(dummy_mask,fscal);
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm_mul_ps(fscal,dx00);
584             ty               = _mm_mul_ps(fscal,dy00);
585             tz               = _mm_mul_ps(fscal,dz00);
586
587             /* Update vectorial force */
588             fix0             = _mm_add_ps(fix0,tx);
589             fiy0             = _mm_add_ps(fiy0,ty);
590             fiz0             = _mm_add_ps(fiz0,tz);
591
592             fjx0             = _mm_add_ps(fjx0,tx);
593             fjy0             = _mm_add_ps(fjy0,ty);
594             fjz0             = _mm_add_ps(fjz0,tz);
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             if (gmx_mm_any_lt(rsq10,rcutoff2))
601             {
602
603             /* Compute parameters for interactions between i and j atoms */
604             qq10             = _mm_mul_ps(iq1,jq0);
605
606             /* REACTION-FIELD ELECTROSTATICS */
607             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
608             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
609
610             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
611
612             /* Update potential sum for this i atom from the interaction with this j atom. */
613             velec            = _mm_and_ps(velec,cutoff_mask);
614             velec            = _mm_andnot_ps(dummy_mask,velec);
615             velecsum         = _mm_add_ps(velecsum,velec);
616
617             fscal            = felec;
618
619             fscal            = _mm_and_ps(fscal,cutoff_mask);
620
621             fscal            = _mm_andnot_ps(dummy_mask,fscal);
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm_mul_ps(fscal,dx10);
625             ty               = _mm_mul_ps(fscal,dy10);
626             tz               = _mm_mul_ps(fscal,dz10);
627
628             /* Update vectorial force */
629             fix1             = _mm_add_ps(fix1,tx);
630             fiy1             = _mm_add_ps(fiy1,ty);
631             fiz1             = _mm_add_ps(fiz1,tz);
632
633             fjx0             = _mm_add_ps(fjx0,tx);
634             fjy0             = _mm_add_ps(fjy0,ty);
635             fjz0             = _mm_add_ps(fjz0,tz);
636
637             }
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             if (gmx_mm_any_lt(rsq20,rcutoff2))
644             {
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq20             = _mm_mul_ps(iq2,jq0);
648
649             /* REACTION-FIELD ELECTROSTATICS */
650             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
651             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
652
653             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
654
655             /* Update potential sum for this i atom from the interaction with this j atom. */
656             velec            = _mm_and_ps(velec,cutoff_mask);
657             velec            = _mm_andnot_ps(dummy_mask,velec);
658             velecsum         = _mm_add_ps(velecsum,velec);
659
660             fscal            = felec;
661
662             fscal            = _mm_and_ps(fscal,cutoff_mask);
663
664             fscal            = _mm_andnot_ps(dummy_mask,fscal);
665
666             /* Calculate temporary vectorial force */
667             tx               = _mm_mul_ps(fscal,dx20);
668             ty               = _mm_mul_ps(fscal,dy20);
669             tz               = _mm_mul_ps(fscal,dz20);
670
671             /* Update vectorial force */
672             fix2             = _mm_add_ps(fix2,tx);
673             fiy2             = _mm_add_ps(fiy2,ty);
674             fiz2             = _mm_add_ps(fiz2,tz);
675
676             fjx0             = _mm_add_ps(fjx0,tx);
677             fjy0             = _mm_add_ps(fjy0,ty);
678             fjz0             = _mm_add_ps(fjz0,tz);
679
680             }
681
682             /**************************
683              * CALCULATE INTERACTIONS *
684              **************************/
685
686             if (gmx_mm_any_lt(rsq30,rcutoff2))
687             {
688
689             /* Compute parameters for interactions between i and j atoms */
690             qq30             = _mm_mul_ps(iq3,jq0);
691
692             /* REACTION-FIELD ELECTROSTATICS */
693             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
694             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
695
696             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
697
698             /* Update potential sum for this i atom from the interaction with this j atom. */
699             velec            = _mm_and_ps(velec,cutoff_mask);
700             velec            = _mm_andnot_ps(dummy_mask,velec);
701             velecsum         = _mm_add_ps(velecsum,velec);
702
703             fscal            = felec;
704
705             fscal            = _mm_and_ps(fscal,cutoff_mask);
706
707             fscal            = _mm_andnot_ps(dummy_mask,fscal);
708
709             /* Calculate temporary vectorial force */
710             tx               = _mm_mul_ps(fscal,dx30);
711             ty               = _mm_mul_ps(fscal,dy30);
712             tz               = _mm_mul_ps(fscal,dz30);
713
714             /* Update vectorial force */
715             fix3             = _mm_add_ps(fix3,tx);
716             fiy3             = _mm_add_ps(fiy3,ty);
717             fiz3             = _mm_add_ps(fiz3,tz);
718
719             fjx0             = _mm_add_ps(fjx0,tx);
720             fjy0             = _mm_add_ps(fjy0,ty);
721             fjz0             = _mm_add_ps(fjz0,tz);
722
723             }
724
725             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
726             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
727             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
728             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
729
730             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
731
732             /* Inner loop uses 165 flops */
733         }
734
735         /* End of innermost loop */
736
737         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
738                                               f+i_coord_offset,fshift+i_shift_offset);
739
740         ggid                        = gid[iidx];
741         /* Update potential energies */
742         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
743         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
744
745         /* Increment number of inner iterations */
746         inneriter                  += j_index_end - j_index_start;
747
748         /* Outer loop uses 26 flops */
749     }
750
751     /* Increment number of outer iterations */
752     outeriter        += nri;
753
754     /* Update outer/inner flops */
755
756     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*165);
757 }
758 /*
759  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_single
760  * Electrostatics interaction: ReactionField
761  * VdW interaction:            CubicSplineTable
762  * Geometry:                   Water4-Particle
763  * Calculate force/pot:        Force
764  */
765 void
766 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_single
767                     (t_nblist                    * gmx_restrict       nlist,
768                      rvec                        * gmx_restrict          xx,
769                      rvec                        * gmx_restrict          ff,
770                      t_forcerec                  * gmx_restrict          fr,
771                      t_mdatoms                   * gmx_restrict     mdatoms,
772                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
773                      t_nrnb                      * gmx_restrict        nrnb)
774 {
775     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
776      * just 0 for non-waters.
777      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
778      * jnr indices corresponding to data put in the four positions in the SIMD register.
779      */
780     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
781     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
782     int              jnrA,jnrB,jnrC,jnrD;
783     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
784     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
785     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
786     real             rcutoff_scalar;
787     real             *shiftvec,*fshift,*x,*f;
788     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
789     real             scratch[4*DIM];
790     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
791     int              vdwioffset0;
792     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
793     int              vdwioffset1;
794     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
795     int              vdwioffset2;
796     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
797     int              vdwioffset3;
798     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
799     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
800     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
801     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
802     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
803     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
804     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
805     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
806     real             *charge;
807     int              nvdwtype;
808     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
809     int              *vdwtype;
810     real             *vdwparam;
811     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
812     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
813     __m128i          vfitab;
814     __m128i          ifour       = _mm_set1_epi32(4);
815     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
816     real             *vftab;
817     __m128           dummy_mask,cutoff_mask;
818     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
819     __m128           one     = _mm_set1_ps(1.0);
820     __m128           two     = _mm_set1_ps(2.0);
821     x                = xx[0];
822     f                = ff[0];
823
824     nri              = nlist->nri;
825     iinr             = nlist->iinr;
826     jindex           = nlist->jindex;
827     jjnr             = nlist->jjnr;
828     shiftidx         = nlist->shift;
829     gid              = nlist->gid;
830     shiftvec         = fr->shift_vec[0];
831     fshift           = fr->fshift[0];
832     facel            = _mm_set1_ps(fr->epsfac);
833     charge           = mdatoms->chargeA;
834     krf              = _mm_set1_ps(fr->ic->k_rf);
835     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
836     crf              = _mm_set1_ps(fr->ic->c_rf);
837     nvdwtype         = fr->ntype;
838     vdwparam         = fr->nbfp;
839     vdwtype          = mdatoms->typeA;
840
841     vftab            = kernel_data->table_vdw->data;
842     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
843
844     /* Setup water-specific parameters */
845     inr              = nlist->iinr[0];
846     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
847     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
848     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
849     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
850
851     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
852     rcutoff_scalar   = fr->rcoulomb;
853     rcutoff          = _mm_set1_ps(rcutoff_scalar);
854     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
855
856     /* Avoid stupid compiler warnings */
857     jnrA = jnrB = jnrC = jnrD = 0;
858     j_coord_offsetA = 0;
859     j_coord_offsetB = 0;
860     j_coord_offsetC = 0;
861     j_coord_offsetD = 0;
862
863     outeriter        = 0;
864     inneriter        = 0;
865
866     for(iidx=0;iidx<4*DIM;iidx++)
867     {
868         scratch[iidx] = 0.0;
869     }
870
871     /* Start outer loop over neighborlists */
872     for(iidx=0; iidx<nri; iidx++)
873     {
874         /* Load shift vector for this list */
875         i_shift_offset   = DIM*shiftidx[iidx];
876
877         /* Load limits for loop over neighbors */
878         j_index_start    = jindex[iidx];
879         j_index_end      = jindex[iidx+1];
880
881         /* Get outer coordinate index */
882         inr              = iinr[iidx];
883         i_coord_offset   = DIM*inr;
884
885         /* Load i particle coords and add shift vector */
886         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
887                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
888
889         fix0             = _mm_setzero_ps();
890         fiy0             = _mm_setzero_ps();
891         fiz0             = _mm_setzero_ps();
892         fix1             = _mm_setzero_ps();
893         fiy1             = _mm_setzero_ps();
894         fiz1             = _mm_setzero_ps();
895         fix2             = _mm_setzero_ps();
896         fiy2             = _mm_setzero_ps();
897         fiz2             = _mm_setzero_ps();
898         fix3             = _mm_setzero_ps();
899         fiy3             = _mm_setzero_ps();
900         fiz3             = _mm_setzero_ps();
901
902         /* Start inner kernel loop */
903         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
904         {
905
906             /* Get j neighbor index, and coordinate index */
907             jnrA             = jjnr[jidx];
908             jnrB             = jjnr[jidx+1];
909             jnrC             = jjnr[jidx+2];
910             jnrD             = jjnr[jidx+3];
911             j_coord_offsetA  = DIM*jnrA;
912             j_coord_offsetB  = DIM*jnrB;
913             j_coord_offsetC  = DIM*jnrC;
914             j_coord_offsetD  = DIM*jnrD;
915
916             /* load j atom coordinates */
917             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
918                                               x+j_coord_offsetC,x+j_coord_offsetD,
919                                               &jx0,&jy0,&jz0);
920
921             /* Calculate displacement vector */
922             dx00             = _mm_sub_ps(ix0,jx0);
923             dy00             = _mm_sub_ps(iy0,jy0);
924             dz00             = _mm_sub_ps(iz0,jz0);
925             dx10             = _mm_sub_ps(ix1,jx0);
926             dy10             = _mm_sub_ps(iy1,jy0);
927             dz10             = _mm_sub_ps(iz1,jz0);
928             dx20             = _mm_sub_ps(ix2,jx0);
929             dy20             = _mm_sub_ps(iy2,jy0);
930             dz20             = _mm_sub_ps(iz2,jz0);
931             dx30             = _mm_sub_ps(ix3,jx0);
932             dy30             = _mm_sub_ps(iy3,jy0);
933             dz30             = _mm_sub_ps(iz3,jz0);
934
935             /* Calculate squared distance and things based on it */
936             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
937             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
938             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
939             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
940
941             rinv00           = gmx_mm_invsqrt_ps(rsq00);
942             rinv10           = gmx_mm_invsqrt_ps(rsq10);
943             rinv20           = gmx_mm_invsqrt_ps(rsq20);
944             rinv30           = gmx_mm_invsqrt_ps(rsq30);
945
946             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
947             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
948             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
949
950             /* Load parameters for j particles */
951             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
952                                                               charge+jnrC+0,charge+jnrD+0);
953             vdwjidx0A        = 2*vdwtype[jnrA+0];
954             vdwjidx0B        = 2*vdwtype[jnrB+0];
955             vdwjidx0C        = 2*vdwtype[jnrC+0];
956             vdwjidx0D        = 2*vdwtype[jnrD+0];
957
958             fjx0             = _mm_setzero_ps();
959             fjy0             = _mm_setzero_ps();
960             fjz0             = _mm_setzero_ps();
961
962             /**************************
963              * CALCULATE INTERACTIONS *
964              **************************/
965
966             r00              = _mm_mul_ps(rsq00,rinv00);
967
968             /* Compute parameters for interactions between i and j atoms */
969             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
970                                          vdwparam+vdwioffset0+vdwjidx0B,
971                                          vdwparam+vdwioffset0+vdwjidx0C,
972                                          vdwparam+vdwioffset0+vdwjidx0D,
973                                          &c6_00,&c12_00);
974
975             /* Calculate table index by multiplying r with table scale and truncate to integer */
976             rt               = _mm_mul_ps(r00,vftabscale);
977             vfitab           = _mm_cvttps_epi32(rt);
978             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
979             vfitab           = _mm_slli_epi32(vfitab,3);
980
981             /* CUBIC SPLINE TABLE DISPERSION */
982             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
983             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
984             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
985             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
986             _MM_TRANSPOSE4_PS(Y,F,G,H);
987             Heps             = _mm_mul_ps(vfeps,H);
988             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
989             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
990             fvdw6            = _mm_mul_ps(c6_00,FF);
991
992             /* CUBIC SPLINE TABLE REPULSION */
993             vfitab           = _mm_add_epi32(vfitab,ifour);
994             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
995             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
996             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
997             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
998             _MM_TRANSPOSE4_PS(Y,F,G,H);
999             Heps             = _mm_mul_ps(vfeps,H);
1000             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1001             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1002             fvdw12           = _mm_mul_ps(c12_00,FF);
1003             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1004
1005             fscal            = fvdw;
1006
1007             /* Calculate temporary vectorial force */
1008             tx               = _mm_mul_ps(fscal,dx00);
1009             ty               = _mm_mul_ps(fscal,dy00);
1010             tz               = _mm_mul_ps(fscal,dz00);
1011
1012             /* Update vectorial force */
1013             fix0             = _mm_add_ps(fix0,tx);
1014             fiy0             = _mm_add_ps(fiy0,ty);
1015             fiz0             = _mm_add_ps(fiz0,tz);
1016
1017             fjx0             = _mm_add_ps(fjx0,tx);
1018             fjy0             = _mm_add_ps(fjy0,ty);
1019             fjz0             = _mm_add_ps(fjz0,tz);
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             if (gmx_mm_any_lt(rsq10,rcutoff2))
1026             {
1027
1028             /* Compute parameters for interactions between i and j atoms */
1029             qq10             = _mm_mul_ps(iq1,jq0);
1030
1031             /* REACTION-FIELD ELECTROSTATICS */
1032             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1033
1034             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1035
1036             fscal            = felec;
1037
1038             fscal            = _mm_and_ps(fscal,cutoff_mask);
1039
1040             /* Calculate temporary vectorial force */
1041             tx               = _mm_mul_ps(fscal,dx10);
1042             ty               = _mm_mul_ps(fscal,dy10);
1043             tz               = _mm_mul_ps(fscal,dz10);
1044
1045             /* Update vectorial force */
1046             fix1             = _mm_add_ps(fix1,tx);
1047             fiy1             = _mm_add_ps(fiy1,ty);
1048             fiz1             = _mm_add_ps(fiz1,tz);
1049
1050             fjx0             = _mm_add_ps(fjx0,tx);
1051             fjy0             = _mm_add_ps(fjy0,ty);
1052             fjz0             = _mm_add_ps(fjz0,tz);
1053
1054             }
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             if (gmx_mm_any_lt(rsq20,rcutoff2))
1061             {
1062
1063             /* Compute parameters for interactions between i and j atoms */
1064             qq20             = _mm_mul_ps(iq2,jq0);
1065
1066             /* REACTION-FIELD ELECTROSTATICS */
1067             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1068
1069             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1070
1071             fscal            = felec;
1072
1073             fscal            = _mm_and_ps(fscal,cutoff_mask);
1074
1075             /* Calculate temporary vectorial force */
1076             tx               = _mm_mul_ps(fscal,dx20);
1077             ty               = _mm_mul_ps(fscal,dy20);
1078             tz               = _mm_mul_ps(fscal,dz20);
1079
1080             /* Update vectorial force */
1081             fix2             = _mm_add_ps(fix2,tx);
1082             fiy2             = _mm_add_ps(fiy2,ty);
1083             fiz2             = _mm_add_ps(fiz2,tz);
1084
1085             fjx0             = _mm_add_ps(fjx0,tx);
1086             fjy0             = _mm_add_ps(fjy0,ty);
1087             fjz0             = _mm_add_ps(fjz0,tz);
1088
1089             }
1090
1091             /**************************
1092              * CALCULATE INTERACTIONS *
1093              **************************/
1094
1095             if (gmx_mm_any_lt(rsq30,rcutoff2))
1096             {
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq30             = _mm_mul_ps(iq3,jq0);
1100
1101             /* REACTION-FIELD ELECTROSTATICS */
1102             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1103
1104             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1105
1106             fscal            = felec;
1107
1108             fscal            = _mm_and_ps(fscal,cutoff_mask);
1109
1110             /* Calculate temporary vectorial force */
1111             tx               = _mm_mul_ps(fscal,dx30);
1112             ty               = _mm_mul_ps(fscal,dy30);
1113             tz               = _mm_mul_ps(fscal,dz30);
1114
1115             /* Update vectorial force */
1116             fix3             = _mm_add_ps(fix3,tx);
1117             fiy3             = _mm_add_ps(fiy3,ty);
1118             fiz3             = _mm_add_ps(fiz3,tz);
1119
1120             fjx0             = _mm_add_ps(fjx0,tx);
1121             fjy0             = _mm_add_ps(fjy0,ty);
1122             fjz0             = _mm_add_ps(fjz0,tz);
1123
1124             }
1125
1126             fjptrA             = f+j_coord_offsetA;
1127             fjptrB             = f+j_coord_offsetB;
1128             fjptrC             = f+j_coord_offsetC;
1129             fjptrD             = f+j_coord_offsetD;
1130
1131             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1132
1133             /* Inner loop uses 138 flops */
1134         }
1135
1136         if(jidx<j_index_end)
1137         {
1138
1139             /* Get j neighbor index, and coordinate index */
1140             jnrlistA         = jjnr[jidx];
1141             jnrlistB         = jjnr[jidx+1];
1142             jnrlistC         = jjnr[jidx+2];
1143             jnrlistD         = jjnr[jidx+3];
1144             /* Sign of each element will be negative for non-real atoms.
1145              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1146              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1147              */
1148             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1149             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1150             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1151             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1152             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1153             j_coord_offsetA  = DIM*jnrA;
1154             j_coord_offsetB  = DIM*jnrB;
1155             j_coord_offsetC  = DIM*jnrC;
1156             j_coord_offsetD  = DIM*jnrD;
1157
1158             /* load j atom coordinates */
1159             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1160                                               x+j_coord_offsetC,x+j_coord_offsetD,
1161                                               &jx0,&jy0,&jz0);
1162
1163             /* Calculate displacement vector */
1164             dx00             = _mm_sub_ps(ix0,jx0);
1165             dy00             = _mm_sub_ps(iy0,jy0);
1166             dz00             = _mm_sub_ps(iz0,jz0);
1167             dx10             = _mm_sub_ps(ix1,jx0);
1168             dy10             = _mm_sub_ps(iy1,jy0);
1169             dz10             = _mm_sub_ps(iz1,jz0);
1170             dx20             = _mm_sub_ps(ix2,jx0);
1171             dy20             = _mm_sub_ps(iy2,jy0);
1172             dz20             = _mm_sub_ps(iz2,jz0);
1173             dx30             = _mm_sub_ps(ix3,jx0);
1174             dy30             = _mm_sub_ps(iy3,jy0);
1175             dz30             = _mm_sub_ps(iz3,jz0);
1176
1177             /* Calculate squared distance and things based on it */
1178             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1179             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1180             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1181             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1182
1183             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1184             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1185             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1186             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1187
1188             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1189             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1190             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1191
1192             /* Load parameters for j particles */
1193             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1194                                                               charge+jnrC+0,charge+jnrD+0);
1195             vdwjidx0A        = 2*vdwtype[jnrA+0];
1196             vdwjidx0B        = 2*vdwtype[jnrB+0];
1197             vdwjidx0C        = 2*vdwtype[jnrC+0];
1198             vdwjidx0D        = 2*vdwtype[jnrD+0];
1199
1200             fjx0             = _mm_setzero_ps();
1201             fjy0             = _mm_setzero_ps();
1202             fjz0             = _mm_setzero_ps();
1203
1204             /**************************
1205              * CALCULATE INTERACTIONS *
1206              **************************/
1207
1208             r00              = _mm_mul_ps(rsq00,rinv00);
1209             r00              = _mm_andnot_ps(dummy_mask,r00);
1210
1211             /* Compute parameters for interactions between i and j atoms */
1212             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1213                                          vdwparam+vdwioffset0+vdwjidx0B,
1214                                          vdwparam+vdwioffset0+vdwjidx0C,
1215                                          vdwparam+vdwioffset0+vdwjidx0D,
1216                                          &c6_00,&c12_00);
1217
1218             /* Calculate table index by multiplying r with table scale and truncate to integer */
1219             rt               = _mm_mul_ps(r00,vftabscale);
1220             vfitab           = _mm_cvttps_epi32(rt);
1221             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1222             vfitab           = _mm_slli_epi32(vfitab,3);
1223
1224             /* CUBIC SPLINE TABLE DISPERSION */
1225             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1226             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1227             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1228             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1229             _MM_TRANSPOSE4_PS(Y,F,G,H);
1230             Heps             = _mm_mul_ps(vfeps,H);
1231             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1232             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1233             fvdw6            = _mm_mul_ps(c6_00,FF);
1234
1235             /* CUBIC SPLINE TABLE REPULSION */
1236             vfitab           = _mm_add_epi32(vfitab,ifour);
1237             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1238             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1239             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1240             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1241             _MM_TRANSPOSE4_PS(Y,F,G,H);
1242             Heps             = _mm_mul_ps(vfeps,H);
1243             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1244             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1245             fvdw12           = _mm_mul_ps(c12_00,FF);
1246             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1247
1248             fscal            = fvdw;
1249
1250             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1251
1252             /* Calculate temporary vectorial force */
1253             tx               = _mm_mul_ps(fscal,dx00);
1254             ty               = _mm_mul_ps(fscal,dy00);
1255             tz               = _mm_mul_ps(fscal,dz00);
1256
1257             /* Update vectorial force */
1258             fix0             = _mm_add_ps(fix0,tx);
1259             fiy0             = _mm_add_ps(fiy0,ty);
1260             fiz0             = _mm_add_ps(fiz0,tz);
1261
1262             fjx0             = _mm_add_ps(fjx0,tx);
1263             fjy0             = _mm_add_ps(fjy0,ty);
1264             fjz0             = _mm_add_ps(fjz0,tz);
1265
1266             /**************************
1267              * CALCULATE INTERACTIONS *
1268              **************************/
1269
1270             if (gmx_mm_any_lt(rsq10,rcutoff2))
1271             {
1272
1273             /* Compute parameters for interactions between i and j atoms */
1274             qq10             = _mm_mul_ps(iq1,jq0);
1275
1276             /* REACTION-FIELD ELECTROSTATICS */
1277             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1278
1279             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1280
1281             fscal            = felec;
1282
1283             fscal            = _mm_and_ps(fscal,cutoff_mask);
1284
1285             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1286
1287             /* Calculate temporary vectorial force */
1288             tx               = _mm_mul_ps(fscal,dx10);
1289             ty               = _mm_mul_ps(fscal,dy10);
1290             tz               = _mm_mul_ps(fscal,dz10);
1291
1292             /* Update vectorial force */
1293             fix1             = _mm_add_ps(fix1,tx);
1294             fiy1             = _mm_add_ps(fiy1,ty);
1295             fiz1             = _mm_add_ps(fiz1,tz);
1296
1297             fjx0             = _mm_add_ps(fjx0,tx);
1298             fjy0             = _mm_add_ps(fjy0,ty);
1299             fjz0             = _mm_add_ps(fjz0,tz);
1300
1301             }
1302
1303             /**************************
1304              * CALCULATE INTERACTIONS *
1305              **************************/
1306
1307             if (gmx_mm_any_lt(rsq20,rcutoff2))
1308             {
1309
1310             /* Compute parameters for interactions between i and j atoms */
1311             qq20             = _mm_mul_ps(iq2,jq0);
1312
1313             /* REACTION-FIELD ELECTROSTATICS */
1314             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1315
1316             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1317
1318             fscal            = felec;
1319
1320             fscal            = _mm_and_ps(fscal,cutoff_mask);
1321
1322             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1323
1324             /* Calculate temporary vectorial force */
1325             tx               = _mm_mul_ps(fscal,dx20);
1326             ty               = _mm_mul_ps(fscal,dy20);
1327             tz               = _mm_mul_ps(fscal,dz20);
1328
1329             /* Update vectorial force */
1330             fix2             = _mm_add_ps(fix2,tx);
1331             fiy2             = _mm_add_ps(fiy2,ty);
1332             fiz2             = _mm_add_ps(fiz2,tz);
1333
1334             fjx0             = _mm_add_ps(fjx0,tx);
1335             fjy0             = _mm_add_ps(fjy0,ty);
1336             fjz0             = _mm_add_ps(fjz0,tz);
1337
1338             }
1339
1340             /**************************
1341              * CALCULATE INTERACTIONS *
1342              **************************/
1343
1344             if (gmx_mm_any_lt(rsq30,rcutoff2))
1345             {
1346
1347             /* Compute parameters for interactions between i and j atoms */
1348             qq30             = _mm_mul_ps(iq3,jq0);
1349
1350             /* REACTION-FIELD ELECTROSTATICS */
1351             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1352
1353             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1354
1355             fscal            = felec;
1356
1357             fscal            = _mm_and_ps(fscal,cutoff_mask);
1358
1359             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1360
1361             /* Calculate temporary vectorial force */
1362             tx               = _mm_mul_ps(fscal,dx30);
1363             ty               = _mm_mul_ps(fscal,dy30);
1364             tz               = _mm_mul_ps(fscal,dz30);
1365
1366             /* Update vectorial force */
1367             fix3             = _mm_add_ps(fix3,tx);
1368             fiy3             = _mm_add_ps(fiy3,ty);
1369             fiz3             = _mm_add_ps(fiz3,tz);
1370
1371             fjx0             = _mm_add_ps(fjx0,tx);
1372             fjy0             = _mm_add_ps(fjy0,ty);
1373             fjz0             = _mm_add_ps(fjz0,tz);
1374
1375             }
1376
1377             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1378             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1379             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1380             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1381
1382             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1383
1384             /* Inner loop uses 139 flops */
1385         }
1386
1387         /* End of innermost loop */
1388
1389         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1390                                               f+i_coord_offset,fshift+i_shift_offset);
1391
1392         /* Increment number of inner iterations */
1393         inneriter                  += j_index_end - j_index_start;
1394
1395         /* Outer loop uses 24 flops */
1396     }
1397
1398     /* Increment number of outer iterations */
1399     outeriter        += nri;
1400
1401     /* Update outer/inner flops */
1402
1403     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*139);
1404 }