Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse4_1_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91     real             *vftab;
92     __m128           dummy_mask,cutoff_mask;
93     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94     __m128           one     = _mm_set1_ps(1.0);
95     __m128           two     = _mm_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm_set1_ps(fr->ic->k_rf);
110     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
111     crf              = _mm_set1_ps(fr->ic->c_rf);
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
122     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
123     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm_set1_ps(rcutoff_scalar);
129     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
163
164         fix0             = _mm_setzero_ps();
165         fiy0             = _mm_setzero_ps();
166         fiz0             = _mm_setzero_ps();
167         fix1             = _mm_setzero_ps();
168         fiy1             = _mm_setzero_ps();
169         fiz1             = _mm_setzero_ps();
170         fix2             = _mm_setzero_ps();
171         fiy2             = _mm_setzero_ps();
172         fiz2             = _mm_setzero_ps();
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176         vvdwsum          = _mm_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               x+j_coord_offsetC,x+j_coord_offsetD,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_ps(ix0,jx0);
199             dy00             = _mm_sub_ps(iy0,jy0);
200             dz00             = _mm_sub_ps(iz0,jz0);
201             dx10             = _mm_sub_ps(ix1,jx0);
202             dy10             = _mm_sub_ps(iy1,jy0);
203             dz10             = _mm_sub_ps(iz1,jz0);
204             dx20             = _mm_sub_ps(ix2,jx0);
205             dy20             = _mm_sub_ps(iy2,jy0);
206             dz20             = _mm_sub_ps(iz2,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
210             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
211             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
212
213             rinv00           = gmx_mm_invsqrt_ps(rsq00);
214             rinv10           = gmx_mm_invsqrt_ps(rsq10);
215             rinv20           = gmx_mm_invsqrt_ps(rsq20);
216
217             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
218             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
219             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
223                                                               charge+jnrC+0,charge+jnrD+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226             vdwjidx0C        = 2*vdwtype[jnrC+0];
227             vdwjidx0D        = 2*vdwtype[jnrD+0];
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             if (gmx_mm_any_lt(rsq00,rcutoff2))
234             {
235
236             r00              = _mm_mul_ps(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm_mul_ps(iq0,jq0);
240             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
241                                          vdwparam+vdwioffset0+vdwjidx0B,
242                                          vdwparam+vdwioffset0+vdwjidx0C,
243                                          vdwparam+vdwioffset0+vdwjidx0D,
244                                          &c6_00,&c12_00);
245
246             /* Calculate table index by multiplying r with table scale and truncate to integer */
247             rt               = _mm_mul_ps(r00,vftabscale);
248             vfitab           = _mm_cvttps_epi32(rt);
249             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
250             vfitab           = _mm_slli_epi32(vfitab,3);
251
252             /* REACTION-FIELD ELECTROSTATICS */
253             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
254             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
255
256             /* CUBIC SPLINE TABLE DISPERSION */
257             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
258             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
259             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
260             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
261             _MM_TRANSPOSE4_PS(Y,F,G,H);
262             Heps             = _mm_mul_ps(vfeps,H);
263             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
264             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
265             vvdw6            = _mm_mul_ps(c6_00,VV);
266             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
267             fvdw6            = _mm_mul_ps(c6_00,FF);
268
269             /* CUBIC SPLINE TABLE REPULSION */
270             vfitab           = _mm_add_epi32(vfitab,ifour);
271             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
272             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
273             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
274             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
275             _MM_TRANSPOSE4_PS(Y,F,G,H);
276             Heps             = _mm_mul_ps(vfeps,H);
277             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
278             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
279             vvdw12           = _mm_mul_ps(c12_00,VV);
280             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
281             fvdw12           = _mm_mul_ps(c12_00,FF);
282             vvdw             = _mm_add_ps(vvdw12,vvdw6);
283             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
284
285             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             velec            = _mm_and_ps(velec,cutoff_mask);
289             velecsum         = _mm_add_ps(velecsum,velec);
290             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
291             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
292
293             fscal            = _mm_add_ps(felec,fvdw);
294
295             fscal            = _mm_and_ps(fscal,cutoff_mask);
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm_mul_ps(fscal,dx00);
299             ty               = _mm_mul_ps(fscal,dy00);
300             tz               = _mm_mul_ps(fscal,dz00);
301
302             /* Update vectorial force */
303             fix0             = _mm_add_ps(fix0,tx);
304             fiy0             = _mm_add_ps(fiy0,ty);
305             fiz0             = _mm_add_ps(fiz0,tz);
306
307             fjptrA             = f+j_coord_offsetA;
308             fjptrB             = f+j_coord_offsetB;
309             fjptrC             = f+j_coord_offsetC;
310             fjptrD             = f+j_coord_offsetD;
311             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
312
313             }
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             if (gmx_mm_any_lt(rsq10,rcutoff2))
320             {
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq10             = _mm_mul_ps(iq1,jq0);
324
325             /* REACTION-FIELD ELECTROSTATICS */
326             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
327             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
328
329             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             velec            = _mm_and_ps(velec,cutoff_mask);
333             velecsum         = _mm_add_ps(velecsum,velec);
334
335             fscal            = felec;
336
337             fscal            = _mm_and_ps(fscal,cutoff_mask);
338
339             /* Calculate temporary vectorial force */
340             tx               = _mm_mul_ps(fscal,dx10);
341             ty               = _mm_mul_ps(fscal,dy10);
342             tz               = _mm_mul_ps(fscal,dz10);
343
344             /* Update vectorial force */
345             fix1             = _mm_add_ps(fix1,tx);
346             fiy1             = _mm_add_ps(fiy1,ty);
347             fiz1             = _mm_add_ps(fiz1,tz);
348
349             fjptrA             = f+j_coord_offsetA;
350             fjptrB             = f+j_coord_offsetB;
351             fjptrC             = f+j_coord_offsetC;
352             fjptrD             = f+j_coord_offsetD;
353             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
354
355             }
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             if (gmx_mm_any_lt(rsq20,rcutoff2))
362             {
363
364             /* Compute parameters for interactions between i and j atoms */
365             qq20             = _mm_mul_ps(iq2,jq0);
366
367             /* REACTION-FIELD ELECTROSTATICS */
368             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
369             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
370
371             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velec            = _mm_and_ps(velec,cutoff_mask);
375             velecsum         = _mm_add_ps(velecsum,velec);
376
377             fscal            = felec;
378
379             fscal            = _mm_and_ps(fscal,cutoff_mask);
380
381             /* Calculate temporary vectorial force */
382             tx               = _mm_mul_ps(fscal,dx20);
383             ty               = _mm_mul_ps(fscal,dy20);
384             tz               = _mm_mul_ps(fscal,dz20);
385
386             /* Update vectorial force */
387             fix2             = _mm_add_ps(fix2,tx);
388             fiy2             = _mm_add_ps(fiy2,ty);
389             fiz2             = _mm_add_ps(fiz2,tz);
390
391             fjptrA             = f+j_coord_offsetA;
392             fjptrB             = f+j_coord_offsetB;
393             fjptrC             = f+j_coord_offsetC;
394             fjptrD             = f+j_coord_offsetD;
395             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
396
397             }
398
399             /* Inner loop uses 144 flops */
400         }
401
402         if(jidx<j_index_end)
403         {
404
405             /* Get j neighbor index, and coordinate index */
406             jnrlistA         = jjnr[jidx];
407             jnrlistB         = jjnr[jidx+1];
408             jnrlistC         = jjnr[jidx+2];
409             jnrlistD         = jjnr[jidx+3];
410             /* Sign of each element will be negative for non-real atoms.
411              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
412              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
413              */
414             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
415             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
416             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
417             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
418             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
419             j_coord_offsetA  = DIM*jnrA;
420             j_coord_offsetB  = DIM*jnrB;
421             j_coord_offsetC  = DIM*jnrC;
422             j_coord_offsetD  = DIM*jnrD;
423
424             /* load j atom coordinates */
425             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
426                                               x+j_coord_offsetC,x+j_coord_offsetD,
427                                               &jx0,&jy0,&jz0);
428
429             /* Calculate displacement vector */
430             dx00             = _mm_sub_ps(ix0,jx0);
431             dy00             = _mm_sub_ps(iy0,jy0);
432             dz00             = _mm_sub_ps(iz0,jz0);
433             dx10             = _mm_sub_ps(ix1,jx0);
434             dy10             = _mm_sub_ps(iy1,jy0);
435             dz10             = _mm_sub_ps(iz1,jz0);
436             dx20             = _mm_sub_ps(ix2,jx0);
437             dy20             = _mm_sub_ps(iy2,jy0);
438             dz20             = _mm_sub_ps(iz2,jz0);
439
440             /* Calculate squared distance and things based on it */
441             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
442             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
443             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
444
445             rinv00           = gmx_mm_invsqrt_ps(rsq00);
446             rinv10           = gmx_mm_invsqrt_ps(rsq10);
447             rinv20           = gmx_mm_invsqrt_ps(rsq20);
448
449             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
450             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
451             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
452
453             /* Load parameters for j particles */
454             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
455                                                               charge+jnrC+0,charge+jnrD+0);
456             vdwjidx0A        = 2*vdwtype[jnrA+0];
457             vdwjidx0B        = 2*vdwtype[jnrB+0];
458             vdwjidx0C        = 2*vdwtype[jnrC+0];
459             vdwjidx0D        = 2*vdwtype[jnrD+0];
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             if (gmx_mm_any_lt(rsq00,rcutoff2))
466             {
467
468             r00              = _mm_mul_ps(rsq00,rinv00);
469             r00              = _mm_andnot_ps(dummy_mask,r00);
470
471             /* Compute parameters for interactions between i and j atoms */
472             qq00             = _mm_mul_ps(iq0,jq0);
473             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
474                                          vdwparam+vdwioffset0+vdwjidx0B,
475                                          vdwparam+vdwioffset0+vdwjidx0C,
476                                          vdwparam+vdwioffset0+vdwjidx0D,
477                                          &c6_00,&c12_00);
478
479             /* Calculate table index by multiplying r with table scale and truncate to integer */
480             rt               = _mm_mul_ps(r00,vftabscale);
481             vfitab           = _mm_cvttps_epi32(rt);
482             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
483             vfitab           = _mm_slli_epi32(vfitab,3);
484
485             /* REACTION-FIELD ELECTROSTATICS */
486             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
487             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
488
489             /* CUBIC SPLINE TABLE DISPERSION */
490             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
491             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
492             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
493             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
494             _MM_TRANSPOSE4_PS(Y,F,G,H);
495             Heps             = _mm_mul_ps(vfeps,H);
496             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
497             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
498             vvdw6            = _mm_mul_ps(c6_00,VV);
499             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
500             fvdw6            = _mm_mul_ps(c6_00,FF);
501
502             /* CUBIC SPLINE TABLE REPULSION */
503             vfitab           = _mm_add_epi32(vfitab,ifour);
504             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
505             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
506             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
507             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
508             _MM_TRANSPOSE4_PS(Y,F,G,H);
509             Heps             = _mm_mul_ps(vfeps,H);
510             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
511             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
512             vvdw12           = _mm_mul_ps(c12_00,VV);
513             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
514             fvdw12           = _mm_mul_ps(c12_00,FF);
515             vvdw             = _mm_add_ps(vvdw12,vvdw6);
516             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
517
518             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             velec            = _mm_and_ps(velec,cutoff_mask);
522             velec            = _mm_andnot_ps(dummy_mask,velec);
523             velecsum         = _mm_add_ps(velecsum,velec);
524             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
525             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
526             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
527
528             fscal            = _mm_add_ps(felec,fvdw);
529
530             fscal            = _mm_and_ps(fscal,cutoff_mask);
531
532             fscal            = _mm_andnot_ps(dummy_mask,fscal);
533
534             /* Calculate temporary vectorial force */
535             tx               = _mm_mul_ps(fscal,dx00);
536             ty               = _mm_mul_ps(fscal,dy00);
537             tz               = _mm_mul_ps(fscal,dz00);
538
539             /* Update vectorial force */
540             fix0             = _mm_add_ps(fix0,tx);
541             fiy0             = _mm_add_ps(fiy0,ty);
542             fiz0             = _mm_add_ps(fiz0,tz);
543
544             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
545             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
546             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
547             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
548             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
549
550             }
551
552             /**************************
553              * CALCULATE INTERACTIONS *
554              **************************/
555
556             if (gmx_mm_any_lt(rsq10,rcutoff2))
557             {
558
559             /* Compute parameters for interactions between i and j atoms */
560             qq10             = _mm_mul_ps(iq1,jq0);
561
562             /* REACTION-FIELD ELECTROSTATICS */
563             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
564             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
565
566             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
567
568             /* Update potential sum for this i atom from the interaction with this j atom. */
569             velec            = _mm_and_ps(velec,cutoff_mask);
570             velec            = _mm_andnot_ps(dummy_mask,velec);
571             velecsum         = _mm_add_ps(velecsum,velec);
572
573             fscal            = felec;
574
575             fscal            = _mm_and_ps(fscal,cutoff_mask);
576
577             fscal            = _mm_andnot_ps(dummy_mask,fscal);
578
579             /* Calculate temporary vectorial force */
580             tx               = _mm_mul_ps(fscal,dx10);
581             ty               = _mm_mul_ps(fscal,dy10);
582             tz               = _mm_mul_ps(fscal,dz10);
583
584             /* Update vectorial force */
585             fix1             = _mm_add_ps(fix1,tx);
586             fiy1             = _mm_add_ps(fiy1,ty);
587             fiz1             = _mm_add_ps(fiz1,tz);
588
589             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
590             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
591             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
592             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
593             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
594
595             }
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             if (gmx_mm_any_lt(rsq20,rcutoff2))
602             {
603
604             /* Compute parameters for interactions between i and j atoms */
605             qq20             = _mm_mul_ps(iq2,jq0);
606
607             /* REACTION-FIELD ELECTROSTATICS */
608             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
609             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
610
611             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
612
613             /* Update potential sum for this i atom from the interaction with this j atom. */
614             velec            = _mm_and_ps(velec,cutoff_mask);
615             velec            = _mm_andnot_ps(dummy_mask,velec);
616             velecsum         = _mm_add_ps(velecsum,velec);
617
618             fscal            = felec;
619
620             fscal            = _mm_and_ps(fscal,cutoff_mask);
621
622             fscal            = _mm_andnot_ps(dummy_mask,fscal);
623
624             /* Calculate temporary vectorial force */
625             tx               = _mm_mul_ps(fscal,dx20);
626             ty               = _mm_mul_ps(fscal,dy20);
627             tz               = _mm_mul_ps(fscal,dz20);
628
629             /* Update vectorial force */
630             fix2             = _mm_add_ps(fix2,tx);
631             fiy2             = _mm_add_ps(fiy2,ty);
632             fiz2             = _mm_add_ps(fiz2,tz);
633
634             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
635             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
636             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
637             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
638             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
639
640             }
641
642             /* Inner loop uses 145 flops */
643         }
644
645         /* End of innermost loop */
646
647         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
648                                               f+i_coord_offset,fshift+i_shift_offset);
649
650         ggid                        = gid[iidx];
651         /* Update potential energies */
652         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
653         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
654
655         /* Increment number of inner iterations */
656         inneriter                  += j_index_end - j_index_start;
657
658         /* Outer loop uses 20 flops */
659     }
660
661     /* Increment number of outer iterations */
662     outeriter        += nri;
663
664     /* Update outer/inner flops */
665
666     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
667 }
668 /*
669  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse4_1_single
670  * Electrostatics interaction: ReactionField
671  * VdW interaction:            CubicSplineTable
672  * Geometry:                   Water3-Particle
673  * Calculate force/pot:        Force
674  */
675 void
676 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse4_1_single
677                     (t_nblist * gmx_restrict                nlist,
678                      rvec * gmx_restrict                    xx,
679                      rvec * gmx_restrict                    ff,
680                      t_forcerec * gmx_restrict              fr,
681                      t_mdatoms * gmx_restrict               mdatoms,
682                      nb_kernel_data_t * gmx_restrict        kernel_data,
683                      t_nrnb * gmx_restrict                  nrnb)
684 {
685     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
686      * just 0 for non-waters.
687      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
688      * jnr indices corresponding to data put in the four positions in the SIMD register.
689      */
690     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
691     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
692     int              jnrA,jnrB,jnrC,jnrD;
693     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
694     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
695     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
696     real             rcutoff_scalar;
697     real             *shiftvec,*fshift,*x,*f;
698     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
699     real             scratch[4*DIM];
700     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
701     int              vdwioffset0;
702     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
703     int              vdwioffset1;
704     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
705     int              vdwioffset2;
706     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
707     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
708     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
709     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
710     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
711     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
712     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
713     real             *charge;
714     int              nvdwtype;
715     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
716     int              *vdwtype;
717     real             *vdwparam;
718     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
719     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
720     __m128i          vfitab;
721     __m128i          ifour       = _mm_set1_epi32(4);
722     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
723     real             *vftab;
724     __m128           dummy_mask,cutoff_mask;
725     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
726     __m128           one     = _mm_set1_ps(1.0);
727     __m128           two     = _mm_set1_ps(2.0);
728     x                = xx[0];
729     f                = ff[0];
730
731     nri              = nlist->nri;
732     iinr             = nlist->iinr;
733     jindex           = nlist->jindex;
734     jjnr             = nlist->jjnr;
735     shiftidx         = nlist->shift;
736     gid              = nlist->gid;
737     shiftvec         = fr->shift_vec[0];
738     fshift           = fr->fshift[0];
739     facel            = _mm_set1_ps(fr->epsfac);
740     charge           = mdatoms->chargeA;
741     krf              = _mm_set1_ps(fr->ic->k_rf);
742     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
743     crf              = _mm_set1_ps(fr->ic->c_rf);
744     nvdwtype         = fr->ntype;
745     vdwparam         = fr->nbfp;
746     vdwtype          = mdatoms->typeA;
747
748     vftab            = kernel_data->table_vdw->data;
749     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
750
751     /* Setup water-specific parameters */
752     inr              = nlist->iinr[0];
753     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
754     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
755     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
756     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
757
758     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
759     rcutoff_scalar   = fr->rcoulomb;
760     rcutoff          = _mm_set1_ps(rcutoff_scalar);
761     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
762
763     /* Avoid stupid compiler warnings */
764     jnrA = jnrB = jnrC = jnrD = 0;
765     j_coord_offsetA = 0;
766     j_coord_offsetB = 0;
767     j_coord_offsetC = 0;
768     j_coord_offsetD = 0;
769
770     outeriter        = 0;
771     inneriter        = 0;
772
773     for(iidx=0;iidx<4*DIM;iidx++)
774     {
775         scratch[iidx] = 0.0;
776     }
777
778     /* Start outer loop over neighborlists */
779     for(iidx=0; iidx<nri; iidx++)
780     {
781         /* Load shift vector for this list */
782         i_shift_offset   = DIM*shiftidx[iidx];
783
784         /* Load limits for loop over neighbors */
785         j_index_start    = jindex[iidx];
786         j_index_end      = jindex[iidx+1];
787
788         /* Get outer coordinate index */
789         inr              = iinr[iidx];
790         i_coord_offset   = DIM*inr;
791
792         /* Load i particle coords and add shift vector */
793         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
794                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
795
796         fix0             = _mm_setzero_ps();
797         fiy0             = _mm_setzero_ps();
798         fiz0             = _mm_setzero_ps();
799         fix1             = _mm_setzero_ps();
800         fiy1             = _mm_setzero_ps();
801         fiz1             = _mm_setzero_ps();
802         fix2             = _mm_setzero_ps();
803         fiy2             = _mm_setzero_ps();
804         fiz2             = _mm_setzero_ps();
805
806         /* Start inner kernel loop */
807         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
808         {
809
810             /* Get j neighbor index, and coordinate index */
811             jnrA             = jjnr[jidx];
812             jnrB             = jjnr[jidx+1];
813             jnrC             = jjnr[jidx+2];
814             jnrD             = jjnr[jidx+3];
815             j_coord_offsetA  = DIM*jnrA;
816             j_coord_offsetB  = DIM*jnrB;
817             j_coord_offsetC  = DIM*jnrC;
818             j_coord_offsetD  = DIM*jnrD;
819
820             /* load j atom coordinates */
821             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
822                                               x+j_coord_offsetC,x+j_coord_offsetD,
823                                               &jx0,&jy0,&jz0);
824
825             /* Calculate displacement vector */
826             dx00             = _mm_sub_ps(ix0,jx0);
827             dy00             = _mm_sub_ps(iy0,jy0);
828             dz00             = _mm_sub_ps(iz0,jz0);
829             dx10             = _mm_sub_ps(ix1,jx0);
830             dy10             = _mm_sub_ps(iy1,jy0);
831             dz10             = _mm_sub_ps(iz1,jz0);
832             dx20             = _mm_sub_ps(ix2,jx0);
833             dy20             = _mm_sub_ps(iy2,jy0);
834             dz20             = _mm_sub_ps(iz2,jz0);
835
836             /* Calculate squared distance and things based on it */
837             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
838             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
839             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
840
841             rinv00           = gmx_mm_invsqrt_ps(rsq00);
842             rinv10           = gmx_mm_invsqrt_ps(rsq10);
843             rinv20           = gmx_mm_invsqrt_ps(rsq20);
844
845             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
846             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
847             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
848
849             /* Load parameters for j particles */
850             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
851                                                               charge+jnrC+0,charge+jnrD+0);
852             vdwjidx0A        = 2*vdwtype[jnrA+0];
853             vdwjidx0B        = 2*vdwtype[jnrB+0];
854             vdwjidx0C        = 2*vdwtype[jnrC+0];
855             vdwjidx0D        = 2*vdwtype[jnrD+0];
856
857             /**************************
858              * CALCULATE INTERACTIONS *
859              **************************/
860
861             if (gmx_mm_any_lt(rsq00,rcutoff2))
862             {
863
864             r00              = _mm_mul_ps(rsq00,rinv00);
865
866             /* Compute parameters for interactions between i and j atoms */
867             qq00             = _mm_mul_ps(iq0,jq0);
868             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
869                                          vdwparam+vdwioffset0+vdwjidx0B,
870                                          vdwparam+vdwioffset0+vdwjidx0C,
871                                          vdwparam+vdwioffset0+vdwjidx0D,
872                                          &c6_00,&c12_00);
873
874             /* Calculate table index by multiplying r with table scale and truncate to integer */
875             rt               = _mm_mul_ps(r00,vftabscale);
876             vfitab           = _mm_cvttps_epi32(rt);
877             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
878             vfitab           = _mm_slli_epi32(vfitab,3);
879
880             /* REACTION-FIELD ELECTROSTATICS */
881             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
882
883             /* CUBIC SPLINE TABLE DISPERSION */
884             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
885             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
886             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
887             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
888             _MM_TRANSPOSE4_PS(Y,F,G,H);
889             Heps             = _mm_mul_ps(vfeps,H);
890             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
891             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
892             fvdw6            = _mm_mul_ps(c6_00,FF);
893
894             /* CUBIC SPLINE TABLE REPULSION */
895             vfitab           = _mm_add_epi32(vfitab,ifour);
896             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
897             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
898             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
899             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
900             _MM_TRANSPOSE4_PS(Y,F,G,H);
901             Heps             = _mm_mul_ps(vfeps,H);
902             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
903             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
904             fvdw12           = _mm_mul_ps(c12_00,FF);
905             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
906
907             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
908
909             fscal            = _mm_add_ps(felec,fvdw);
910
911             fscal            = _mm_and_ps(fscal,cutoff_mask);
912
913             /* Calculate temporary vectorial force */
914             tx               = _mm_mul_ps(fscal,dx00);
915             ty               = _mm_mul_ps(fscal,dy00);
916             tz               = _mm_mul_ps(fscal,dz00);
917
918             /* Update vectorial force */
919             fix0             = _mm_add_ps(fix0,tx);
920             fiy0             = _mm_add_ps(fiy0,ty);
921             fiz0             = _mm_add_ps(fiz0,tz);
922
923             fjptrA             = f+j_coord_offsetA;
924             fjptrB             = f+j_coord_offsetB;
925             fjptrC             = f+j_coord_offsetC;
926             fjptrD             = f+j_coord_offsetD;
927             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
928
929             }
930
931             /**************************
932              * CALCULATE INTERACTIONS *
933              **************************/
934
935             if (gmx_mm_any_lt(rsq10,rcutoff2))
936             {
937
938             /* Compute parameters for interactions between i and j atoms */
939             qq10             = _mm_mul_ps(iq1,jq0);
940
941             /* REACTION-FIELD ELECTROSTATICS */
942             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
943
944             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
945
946             fscal            = felec;
947
948             fscal            = _mm_and_ps(fscal,cutoff_mask);
949
950             /* Calculate temporary vectorial force */
951             tx               = _mm_mul_ps(fscal,dx10);
952             ty               = _mm_mul_ps(fscal,dy10);
953             tz               = _mm_mul_ps(fscal,dz10);
954
955             /* Update vectorial force */
956             fix1             = _mm_add_ps(fix1,tx);
957             fiy1             = _mm_add_ps(fiy1,ty);
958             fiz1             = _mm_add_ps(fiz1,tz);
959
960             fjptrA             = f+j_coord_offsetA;
961             fjptrB             = f+j_coord_offsetB;
962             fjptrC             = f+j_coord_offsetC;
963             fjptrD             = f+j_coord_offsetD;
964             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
965
966             }
967
968             /**************************
969              * CALCULATE INTERACTIONS *
970              **************************/
971
972             if (gmx_mm_any_lt(rsq20,rcutoff2))
973             {
974
975             /* Compute parameters for interactions between i and j atoms */
976             qq20             = _mm_mul_ps(iq2,jq0);
977
978             /* REACTION-FIELD ELECTROSTATICS */
979             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
980
981             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
982
983             fscal            = felec;
984
985             fscal            = _mm_and_ps(fscal,cutoff_mask);
986
987             /* Calculate temporary vectorial force */
988             tx               = _mm_mul_ps(fscal,dx20);
989             ty               = _mm_mul_ps(fscal,dy20);
990             tz               = _mm_mul_ps(fscal,dz20);
991
992             /* Update vectorial force */
993             fix2             = _mm_add_ps(fix2,tx);
994             fiy2             = _mm_add_ps(fiy2,ty);
995             fiz2             = _mm_add_ps(fiz2,tz);
996
997             fjptrA             = f+j_coord_offsetA;
998             fjptrB             = f+j_coord_offsetB;
999             fjptrC             = f+j_coord_offsetC;
1000             fjptrD             = f+j_coord_offsetD;
1001             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1002
1003             }
1004
1005             /* Inner loop uses 117 flops */
1006         }
1007
1008         if(jidx<j_index_end)
1009         {
1010
1011             /* Get j neighbor index, and coordinate index */
1012             jnrlistA         = jjnr[jidx];
1013             jnrlistB         = jjnr[jidx+1];
1014             jnrlistC         = jjnr[jidx+2];
1015             jnrlistD         = jjnr[jidx+3];
1016             /* Sign of each element will be negative for non-real atoms.
1017              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1018              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1019              */
1020             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1021             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1022             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1023             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1024             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1025             j_coord_offsetA  = DIM*jnrA;
1026             j_coord_offsetB  = DIM*jnrB;
1027             j_coord_offsetC  = DIM*jnrC;
1028             j_coord_offsetD  = DIM*jnrD;
1029
1030             /* load j atom coordinates */
1031             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1032                                               x+j_coord_offsetC,x+j_coord_offsetD,
1033                                               &jx0,&jy0,&jz0);
1034
1035             /* Calculate displacement vector */
1036             dx00             = _mm_sub_ps(ix0,jx0);
1037             dy00             = _mm_sub_ps(iy0,jy0);
1038             dz00             = _mm_sub_ps(iz0,jz0);
1039             dx10             = _mm_sub_ps(ix1,jx0);
1040             dy10             = _mm_sub_ps(iy1,jy0);
1041             dz10             = _mm_sub_ps(iz1,jz0);
1042             dx20             = _mm_sub_ps(ix2,jx0);
1043             dy20             = _mm_sub_ps(iy2,jy0);
1044             dz20             = _mm_sub_ps(iz2,jz0);
1045
1046             /* Calculate squared distance and things based on it */
1047             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1048             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1049             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1050
1051             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1052             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1053             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1054
1055             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1056             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1057             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1058
1059             /* Load parameters for j particles */
1060             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1061                                                               charge+jnrC+0,charge+jnrD+0);
1062             vdwjidx0A        = 2*vdwtype[jnrA+0];
1063             vdwjidx0B        = 2*vdwtype[jnrB+0];
1064             vdwjidx0C        = 2*vdwtype[jnrC+0];
1065             vdwjidx0D        = 2*vdwtype[jnrD+0];
1066
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             if (gmx_mm_any_lt(rsq00,rcutoff2))
1072             {
1073
1074             r00              = _mm_mul_ps(rsq00,rinv00);
1075             r00              = _mm_andnot_ps(dummy_mask,r00);
1076
1077             /* Compute parameters for interactions between i and j atoms */
1078             qq00             = _mm_mul_ps(iq0,jq0);
1079             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1080                                          vdwparam+vdwioffset0+vdwjidx0B,
1081                                          vdwparam+vdwioffset0+vdwjidx0C,
1082                                          vdwparam+vdwioffset0+vdwjidx0D,
1083                                          &c6_00,&c12_00);
1084
1085             /* Calculate table index by multiplying r with table scale and truncate to integer */
1086             rt               = _mm_mul_ps(r00,vftabscale);
1087             vfitab           = _mm_cvttps_epi32(rt);
1088             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1089             vfitab           = _mm_slli_epi32(vfitab,3);
1090
1091             /* REACTION-FIELD ELECTROSTATICS */
1092             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1093
1094             /* CUBIC SPLINE TABLE DISPERSION */
1095             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1096             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1097             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1098             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1099             _MM_TRANSPOSE4_PS(Y,F,G,H);
1100             Heps             = _mm_mul_ps(vfeps,H);
1101             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1102             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1103             fvdw6            = _mm_mul_ps(c6_00,FF);
1104
1105             /* CUBIC SPLINE TABLE REPULSION */
1106             vfitab           = _mm_add_epi32(vfitab,ifour);
1107             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1108             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1109             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1110             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1111             _MM_TRANSPOSE4_PS(Y,F,G,H);
1112             Heps             = _mm_mul_ps(vfeps,H);
1113             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1114             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1115             fvdw12           = _mm_mul_ps(c12_00,FF);
1116             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1117
1118             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1119
1120             fscal            = _mm_add_ps(felec,fvdw);
1121
1122             fscal            = _mm_and_ps(fscal,cutoff_mask);
1123
1124             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1125
1126             /* Calculate temporary vectorial force */
1127             tx               = _mm_mul_ps(fscal,dx00);
1128             ty               = _mm_mul_ps(fscal,dy00);
1129             tz               = _mm_mul_ps(fscal,dz00);
1130
1131             /* Update vectorial force */
1132             fix0             = _mm_add_ps(fix0,tx);
1133             fiy0             = _mm_add_ps(fiy0,ty);
1134             fiz0             = _mm_add_ps(fiz0,tz);
1135
1136             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1137             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1138             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1139             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1140             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1141
1142             }
1143
1144             /**************************
1145              * CALCULATE INTERACTIONS *
1146              **************************/
1147
1148             if (gmx_mm_any_lt(rsq10,rcutoff2))
1149             {
1150
1151             /* Compute parameters for interactions between i and j atoms */
1152             qq10             = _mm_mul_ps(iq1,jq0);
1153
1154             /* REACTION-FIELD ELECTROSTATICS */
1155             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1156
1157             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1158
1159             fscal            = felec;
1160
1161             fscal            = _mm_and_ps(fscal,cutoff_mask);
1162
1163             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1164
1165             /* Calculate temporary vectorial force */
1166             tx               = _mm_mul_ps(fscal,dx10);
1167             ty               = _mm_mul_ps(fscal,dy10);
1168             tz               = _mm_mul_ps(fscal,dz10);
1169
1170             /* Update vectorial force */
1171             fix1             = _mm_add_ps(fix1,tx);
1172             fiy1             = _mm_add_ps(fiy1,ty);
1173             fiz1             = _mm_add_ps(fiz1,tz);
1174
1175             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1176             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1177             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1178             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1179             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1180
1181             }
1182
1183             /**************************
1184              * CALCULATE INTERACTIONS *
1185              **************************/
1186
1187             if (gmx_mm_any_lt(rsq20,rcutoff2))
1188             {
1189
1190             /* Compute parameters for interactions between i and j atoms */
1191             qq20             = _mm_mul_ps(iq2,jq0);
1192
1193             /* REACTION-FIELD ELECTROSTATICS */
1194             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1195
1196             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1197
1198             fscal            = felec;
1199
1200             fscal            = _mm_and_ps(fscal,cutoff_mask);
1201
1202             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1203
1204             /* Calculate temporary vectorial force */
1205             tx               = _mm_mul_ps(fscal,dx20);
1206             ty               = _mm_mul_ps(fscal,dy20);
1207             tz               = _mm_mul_ps(fscal,dz20);
1208
1209             /* Update vectorial force */
1210             fix2             = _mm_add_ps(fix2,tx);
1211             fiy2             = _mm_add_ps(fiy2,ty);
1212             fiz2             = _mm_add_ps(fiz2,tz);
1213
1214             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1215             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1216             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1217             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1218             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1219
1220             }
1221
1222             /* Inner loop uses 118 flops */
1223         }
1224
1225         /* End of innermost loop */
1226
1227         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1228                                               f+i_coord_offset,fshift+i_shift_offset);
1229
1230         /* Increment number of inner iterations */
1231         inneriter                  += j_index_end - j_index_start;
1232
1233         /* Outer loop uses 18 flops */
1234     }
1235
1236     /* Increment number of outer iterations */
1237     outeriter        += nri;
1238
1239     /* Update outer/inner flops */
1240
1241     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1242 }