Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse4_1_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm_set1_ps(fr->ic->k_rf);
124     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
125     crf              = _mm_set1_ps(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
136     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
137     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm_set1_ps(rcutoff_scalar);
143     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = jnrC = jnrD = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149     j_coord_offsetC = 0;
150     j_coord_offsetD = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
177
178         fix0             = _mm_setzero_ps();
179         fiy0             = _mm_setzero_ps();
180         fiz0             = _mm_setzero_ps();
181         fix1             = _mm_setzero_ps();
182         fiy1             = _mm_setzero_ps();
183         fiz1             = _mm_setzero_ps();
184         fix2             = _mm_setzero_ps();
185         fiy2             = _mm_setzero_ps();
186         fiz2             = _mm_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm_setzero_ps();
190         vvdwsum          = _mm_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               x+j_coord_offsetC,x+j_coord_offsetD,
209                                               &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm_sub_ps(ix0,jx0);
213             dy00             = _mm_sub_ps(iy0,jy0);
214             dz00             = _mm_sub_ps(iz0,jz0);
215             dx10             = _mm_sub_ps(ix1,jx0);
216             dy10             = _mm_sub_ps(iy1,jy0);
217             dz10             = _mm_sub_ps(iz1,jz0);
218             dx20             = _mm_sub_ps(ix2,jx0);
219             dy20             = _mm_sub_ps(iy2,jy0);
220             dz20             = _mm_sub_ps(iz2,jz0);
221
222             /* Calculate squared distance and things based on it */
223             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
224             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
225             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
226
227             rinv00           = gmx_mm_invsqrt_ps(rsq00);
228             rinv10           = gmx_mm_invsqrt_ps(rsq10);
229             rinv20           = gmx_mm_invsqrt_ps(rsq20);
230
231             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
232             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
233             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
234
235             /* Load parameters for j particles */
236             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
237                                                               charge+jnrC+0,charge+jnrD+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240             vdwjidx0C        = 2*vdwtype[jnrC+0];
241             vdwjidx0D        = 2*vdwtype[jnrD+0];
242
243             fjx0             = _mm_setzero_ps();
244             fjy0             = _mm_setzero_ps();
245             fjz0             = _mm_setzero_ps();
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             if (gmx_mm_any_lt(rsq00,rcutoff2))
252             {
253
254             r00              = _mm_mul_ps(rsq00,rinv00);
255
256             /* Compute parameters for interactions between i and j atoms */
257             qq00             = _mm_mul_ps(iq0,jq0);
258             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
259                                          vdwparam+vdwioffset0+vdwjidx0B,
260                                          vdwparam+vdwioffset0+vdwjidx0C,
261                                          vdwparam+vdwioffset0+vdwjidx0D,
262                                          &c6_00,&c12_00);
263
264             /* Calculate table index by multiplying r with table scale and truncate to integer */
265             rt               = _mm_mul_ps(r00,vftabscale);
266             vfitab           = _mm_cvttps_epi32(rt);
267             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
268             vfitab           = _mm_slli_epi32(vfitab,3);
269
270             /* REACTION-FIELD ELECTROSTATICS */
271             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
272             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
273
274             /* CUBIC SPLINE TABLE DISPERSION */
275             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
276             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
277             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
278             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
279             _MM_TRANSPOSE4_PS(Y,F,G,H);
280             Heps             = _mm_mul_ps(vfeps,H);
281             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
282             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
283             vvdw6            = _mm_mul_ps(c6_00,VV);
284             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
285             fvdw6            = _mm_mul_ps(c6_00,FF);
286
287             /* CUBIC SPLINE TABLE REPULSION */
288             vfitab           = _mm_add_epi32(vfitab,ifour);
289             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
290             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
291             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
292             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
293             _MM_TRANSPOSE4_PS(Y,F,G,H);
294             Heps             = _mm_mul_ps(vfeps,H);
295             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
296             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
297             vvdw12           = _mm_mul_ps(c12_00,VV);
298             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
299             fvdw12           = _mm_mul_ps(c12_00,FF);
300             vvdw             = _mm_add_ps(vvdw12,vvdw6);
301             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
302
303             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velec            = _mm_and_ps(velec,cutoff_mask);
307             velecsum         = _mm_add_ps(velecsum,velec);
308             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
309             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
310
311             fscal            = _mm_add_ps(felec,fvdw);
312
313             fscal            = _mm_and_ps(fscal,cutoff_mask);
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm_mul_ps(fscal,dx00);
317             ty               = _mm_mul_ps(fscal,dy00);
318             tz               = _mm_mul_ps(fscal,dz00);
319
320             /* Update vectorial force */
321             fix0             = _mm_add_ps(fix0,tx);
322             fiy0             = _mm_add_ps(fiy0,ty);
323             fiz0             = _mm_add_ps(fiz0,tz);
324
325             fjx0             = _mm_add_ps(fjx0,tx);
326             fjy0             = _mm_add_ps(fjy0,ty);
327             fjz0             = _mm_add_ps(fjz0,tz);
328
329             }
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             if (gmx_mm_any_lt(rsq10,rcutoff2))
336             {
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq10             = _mm_mul_ps(iq1,jq0);
340
341             /* REACTION-FIELD ELECTROSTATICS */
342             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
343             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
344
345             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velec            = _mm_and_ps(velec,cutoff_mask);
349             velecsum         = _mm_add_ps(velecsum,velec);
350
351             fscal            = felec;
352
353             fscal            = _mm_and_ps(fscal,cutoff_mask);
354
355             /* Calculate temporary vectorial force */
356             tx               = _mm_mul_ps(fscal,dx10);
357             ty               = _mm_mul_ps(fscal,dy10);
358             tz               = _mm_mul_ps(fscal,dz10);
359
360             /* Update vectorial force */
361             fix1             = _mm_add_ps(fix1,tx);
362             fiy1             = _mm_add_ps(fiy1,ty);
363             fiz1             = _mm_add_ps(fiz1,tz);
364
365             fjx0             = _mm_add_ps(fjx0,tx);
366             fjy0             = _mm_add_ps(fjy0,ty);
367             fjz0             = _mm_add_ps(fjz0,tz);
368
369             }
370
371             /**************************
372              * CALCULATE INTERACTIONS *
373              **************************/
374
375             if (gmx_mm_any_lt(rsq20,rcutoff2))
376             {
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq20             = _mm_mul_ps(iq2,jq0);
380
381             /* REACTION-FIELD ELECTROSTATICS */
382             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
383             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
384
385             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velec            = _mm_and_ps(velec,cutoff_mask);
389             velecsum         = _mm_add_ps(velecsum,velec);
390
391             fscal            = felec;
392
393             fscal            = _mm_and_ps(fscal,cutoff_mask);
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm_mul_ps(fscal,dx20);
397             ty               = _mm_mul_ps(fscal,dy20);
398             tz               = _mm_mul_ps(fscal,dz20);
399
400             /* Update vectorial force */
401             fix2             = _mm_add_ps(fix2,tx);
402             fiy2             = _mm_add_ps(fiy2,ty);
403             fiz2             = _mm_add_ps(fiz2,tz);
404
405             fjx0             = _mm_add_ps(fjx0,tx);
406             fjy0             = _mm_add_ps(fjy0,ty);
407             fjz0             = _mm_add_ps(fjz0,tz);
408
409             }
410
411             fjptrA             = f+j_coord_offsetA;
412             fjptrB             = f+j_coord_offsetB;
413             fjptrC             = f+j_coord_offsetC;
414             fjptrD             = f+j_coord_offsetD;
415
416             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
417
418             /* Inner loop uses 144 flops */
419         }
420
421         if(jidx<j_index_end)
422         {
423
424             /* Get j neighbor index, and coordinate index */
425             jnrlistA         = jjnr[jidx];
426             jnrlistB         = jjnr[jidx+1];
427             jnrlistC         = jjnr[jidx+2];
428             jnrlistD         = jjnr[jidx+3];
429             /* Sign of each element will be negative for non-real atoms.
430              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
431              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
432              */
433             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
434             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
435             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
436             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
437             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
438             j_coord_offsetA  = DIM*jnrA;
439             j_coord_offsetB  = DIM*jnrB;
440             j_coord_offsetC  = DIM*jnrC;
441             j_coord_offsetD  = DIM*jnrD;
442
443             /* load j atom coordinates */
444             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
445                                               x+j_coord_offsetC,x+j_coord_offsetD,
446                                               &jx0,&jy0,&jz0);
447
448             /* Calculate displacement vector */
449             dx00             = _mm_sub_ps(ix0,jx0);
450             dy00             = _mm_sub_ps(iy0,jy0);
451             dz00             = _mm_sub_ps(iz0,jz0);
452             dx10             = _mm_sub_ps(ix1,jx0);
453             dy10             = _mm_sub_ps(iy1,jy0);
454             dz10             = _mm_sub_ps(iz1,jz0);
455             dx20             = _mm_sub_ps(ix2,jx0);
456             dy20             = _mm_sub_ps(iy2,jy0);
457             dz20             = _mm_sub_ps(iz2,jz0);
458
459             /* Calculate squared distance and things based on it */
460             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
461             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
462             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
463
464             rinv00           = gmx_mm_invsqrt_ps(rsq00);
465             rinv10           = gmx_mm_invsqrt_ps(rsq10);
466             rinv20           = gmx_mm_invsqrt_ps(rsq20);
467
468             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
469             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
470             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
471
472             /* Load parameters for j particles */
473             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
474                                                               charge+jnrC+0,charge+jnrD+0);
475             vdwjidx0A        = 2*vdwtype[jnrA+0];
476             vdwjidx0B        = 2*vdwtype[jnrB+0];
477             vdwjidx0C        = 2*vdwtype[jnrC+0];
478             vdwjidx0D        = 2*vdwtype[jnrD+0];
479
480             fjx0             = _mm_setzero_ps();
481             fjy0             = _mm_setzero_ps();
482             fjz0             = _mm_setzero_ps();
483
484             /**************************
485              * CALCULATE INTERACTIONS *
486              **************************/
487
488             if (gmx_mm_any_lt(rsq00,rcutoff2))
489             {
490
491             r00              = _mm_mul_ps(rsq00,rinv00);
492             r00              = _mm_andnot_ps(dummy_mask,r00);
493
494             /* Compute parameters for interactions between i and j atoms */
495             qq00             = _mm_mul_ps(iq0,jq0);
496             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
497                                          vdwparam+vdwioffset0+vdwjidx0B,
498                                          vdwparam+vdwioffset0+vdwjidx0C,
499                                          vdwparam+vdwioffset0+vdwjidx0D,
500                                          &c6_00,&c12_00);
501
502             /* Calculate table index by multiplying r with table scale and truncate to integer */
503             rt               = _mm_mul_ps(r00,vftabscale);
504             vfitab           = _mm_cvttps_epi32(rt);
505             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
506             vfitab           = _mm_slli_epi32(vfitab,3);
507
508             /* REACTION-FIELD ELECTROSTATICS */
509             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
510             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
511
512             /* CUBIC SPLINE TABLE DISPERSION */
513             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
514             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
515             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
516             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
517             _MM_TRANSPOSE4_PS(Y,F,G,H);
518             Heps             = _mm_mul_ps(vfeps,H);
519             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
520             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
521             vvdw6            = _mm_mul_ps(c6_00,VV);
522             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
523             fvdw6            = _mm_mul_ps(c6_00,FF);
524
525             /* CUBIC SPLINE TABLE REPULSION */
526             vfitab           = _mm_add_epi32(vfitab,ifour);
527             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
528             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
529             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
530             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
531             _MM_TRANSPOSE4_PS(Y,F,G,H);
532             Heps             = _mm_mul_ps(vfeps,H);
533             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
534             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
535             vvdw12           = _mm_mul_ps(c12_00,VV);
536             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
537             fvdw12           = _mm_mul_ps(c12_00,FF);
538             vvdw             = _mm_add_ps(vvdw12,vvdw6);
539             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
540
541             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
542
543             /* Update potential sum for this i atom from the interaction with this j atom. */
544             velec            = _mm_and_ps(velec,cutoff_mask);
545             velec            = _mm_andnot_ps(dummy_mask,velec);
546             velecsum         = _mm_add_ps(velecsum,velec);
547             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
548             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
549             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
550
551             fscal            = _mm_add_ps(felec,fvdw);
552
553             fscal            = _mm_and_ps(fscal,cutoff_mask);
554
555             fscal            = _mm_andnot_ps(dummy_mask,fscal);
556
557             /* Calculate temporary vectorial force */
558             tx               = _mm_mul_ps(fscal,dx00);
559             ty               = _mm_mul_ps(fscal,dy00);
560             tz               = _mm_mul_ps(fscal,dz00);
561
562             /* Update vectorial force */
563             fix0             = _mm_add_ps(fix0,tx);
564             fiy0             = _mm_add_ps(fiy0,ty);
565             fiz0             = _mm_add_ps(fiz0,tz);
566
567             fjx0             = _mm_add_ps(fjx0,tx);
568             fjy0             = _mm_add_ps(fjy0,ty);
569             fjz0             = _mm_add_ps(fjz0,tz);
570
571             }
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             if (gmx_mm_any_lt(rsq10,rcutoff2))
578             {
579
580             /* Compute parameters for interactions between i and j atoms */
581             qq10             = _mm_mul_ps(iq1,jq0);
582
583             /* REACTION-FIELD ELECTROSTATICS */
584             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
585             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
586
587             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
588
589             /* Update potential sum for this i atom from the interaction with this j atom. */
590             velec            = _mm_and_ps(velec,cutoff_mask);
591             velec            = _mm_andnot_ps(dummy_mask,velec);
592             velecsum         = _mm_add_ps(velecsum,velec);
593
594             fscal            = felec;
595
596             fscal            = _mm_and_ps(fscal,cutoff_mask);
597
598             fscal            = _mm_andnot_ps(dummy_mask,fscal);
599
600             /* Calculate temporary vectorial force */
601             tx               = _mm_mul_ps(fscal,dx10);
602             ty               = _mm_mul_ps(fscal,dy10);
603             tz               = _mm_mul_ps(fscal,dz10);
604
605             /* Update vectorial force */
606             fix1             = _mm_add_ps(fix1,tx);
607             fiy1             = _mm_add_ps(fiy1,ty);
608             fiz1             = _mm_add_ps(fiz1,tz);
609
610             fjx0             = _mm_add_ps(fjx0,tx);
611             fjy0             = _mm_add_ps(fjy0,ty);
612             fjz0             = _mm_add_ps(fjz0,tz);
613
614             }
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             if (gmx_mm_any_lt(rsq20,rcutoff2))
621             {
622
623             /* Compute parameters for interactions between i and j atoms */
624             qq20             = _mm_mul_ps(iq2,jq0);
625
626             /* REACTION-FIELD ELECTROSTATICS */
627             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
628             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
629
630             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
631
632             /* Update potential sum for this i atom from the interaction with this j atom. */
633             velec            = _mm_and_ps(velec,cutoff_mask);
634             velec            = _mm_andnot_ps(dummy_mask,velec);
635             velecsum         = _mm_add_ps(velecsum,velec);
636
637             fscal            = felec;
638
639             fscal            = _mm_and_ps(fscal,cutoff_mask);
640
641             fscal            = _mm_andnot_ps(dummy_mask,fscal);
642
643             /* Calculate temporary vectorial force */
644             tx               = _mm_mul_ps(fscal,dx20);
645             ty               = _mm_mul_ps(fscal,dy20);
646             tz               = _mm_mul_ps(fscal,dz20);
647
648             /* Update vectorial force */
649             fix2             = _mm_add_ps(fix2,tx);
650             fiy2             = _mm_add_ps(fiy2,ty);
651             fiz2             = _mm_add_ps(fiz2,tz);
652
653             fjx0             = _mm_add_ps(fjx0,tx);
654             fjy0             = _mm_add_ps(fjy0,ty);
655             fjz0             = _mm_add_ps(fjz0,tz);
656
657             }
658
659             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
660             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
661             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
662             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
663
664             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
665
666             /* Inner loop uses 145 flops */
667         }
668
669         /* End of innermost loop */
670
671         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
672                                               f+i_coord_offset,fshift+i_shift_offset);
673
674         ggid                        = gid[iidx];
675         /* Update potential energies */
676         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
677         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
678
679         /* Increment number of inner iterations */
680         inneriter                  += j_index_end - j_index_start;
681
682         /* Outer loop uses 20 flops */
683     }
684
685     /* Increment number of outer iterations */
686     outeriter        += nri;
687
688     /* Update outer/inner flops */
689
690     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
691 }
692 /*
693  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse4_1_single
694  * Electrostatics interaction: ReactionField
695  * VdW interaction:            CubicSplineTable
696  * Geometry:                   Water3-Particle
697  * Calculate force/pot:        Force
698  */
699 void
700 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse4_1_single
701                     (t_nblist                    * gmx_restrict       nlist,
702                      rvec                        * gmx_restrict          xx,
703                      rvec                        * gmx_restrict          ff,
704                      t_forcerec                  * gmx_restrict          fr,
705                      t_mdatoms                   * gmx_restrict     mdatoms,
706                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
707                      t_nrnb                      * gmx_restrict        nrnb)
708 {
709     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
710      * just 0 for non-waters.
711      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
712      * jnr indices corresponding to data put in the four positions in the SIMD register.
713      */
714     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
715     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
716     int              jnrA,jnrB,jnrC,jnrD;
717     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
718     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
719     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
720     real             rcutoff_scalar;
721     real             *shiftvec,*fshift,*x,*f;
722     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
723     real             scratch[4*DIM];
724     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
725     int              vdwioffset0;
726     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
727     int              vdwioffset1;
728     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
729     int              vdwioffset2;
730     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
731     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
732     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
733     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
734     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
735     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
736     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
737     real             *charge;
738     int              nvdwtype;
739     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
740     int              *vdwtype;
741     real             *vdwparam;
742     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
743     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
744     __m128i          vfitab;
745     __m128i          ifour       = _mm_set1_epi32(4);
746     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
747     real             *vftab;
748     __m128           dummy_mask,cutoff_mask;
749     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
750     __m128           one     = _mm_set1_ps(1.0);
751     __m128           two     = _mm_set1_ps(2.0);
752     x                = xx[0];
753     f                = ff[0];
754
755     nri              = nlist->nri;
756     iinr             = nlist->iinr;
757     jindex           = nlist->jindex;
758     jjnr             = nlist->jjnr;
759     shiftidx         = nlist->shift;
760     gid              = nlist->gid;
761     shiftvec         = fr->shift_vec[0];
762     fshift           = fr->fshift[0];
763     facel            = _mm_set1_ps(fr->epsfac);
764     charge           = mdatoms->chargeA;
765     krf              = _mm_set1_ps(fr->ic->k_rf);
766     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
767     crf              = _mm_set1_ps(fr->ic->c_rf);
768     nvdwtype         = fr->ntype;
769     vdwparam         = fr->nbfp;
770     vdwtype          = mdatoms->typeA;
771
772     vftab            = kernel_data->table_vdw->data;
773     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
774
775     /* Setup water-specific parameters */
776     inr              = nlist->iinr[0];
777     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
778     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
779     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
780     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
781
782     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
783     rcutoff_scalar   = fr->rcoulomb;
784     rcutoff          = _mm_set1_ps(rcutoff_scalar);
785     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
786
787     /* Avoid stupid compiler warnings */
788     jnrA = jnrB = jnrC = jnrD = 0;
789     j_coord_offsetA = 0;
790     j_coord_offsetB = 0;
791     j_coord_offsetC = 0;
792     j_coord_offsetD = 0;
793
794     outeriter        = 0;
795     inneriter        = 0;
796
797     for(iidx=0;iidx<4*DIM;iidx++)
798     {
799         scratch[iidx] = 0.0;
800     }
801
802     /* Start outer loop over neighborlists */
803     for(iidx=0; iidx<nri; iidx++)
804     {
805         /* Load shift vector for this list */
806         i_shift_offset   = DIM*shiftidx[iidx];
807
808         /* Load limits for loop over neighbors */
809         j_index_start    = jindex[iidx];
810         j_index_end      = jindex[iidx+1];
811
812         /* Get outer coordinate index */
813         inr              = iinr[iidx];
814         i_coord_offset   = DIM*inr;
815
816         /* Load i particle coords and add shift vector */
817         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
818                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
819
820         fix0             = _mm_setzero_ps();
821         fiy0             = _mm_setzero_ps();
822         fiz0             = _mm_setzero_ps();
823         fix1             = _mm_setzero_ps();
824         fiy1             = _mm_setzero_ps();
825         fiz1             = _mm_setzero_ps();
826         fix2             = _mm_setzero_ps();
827         fiy2             = _mm_setzero_ps();
828         fiz2             = _mm_setzero_ps();
829
830         /* Start inner kernel loop */
831         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
832         {
833
834             /* Get j neighbor index, and coordinate index */
835             jnrA             = jjnr[jidx];
836             jnrB             = jjnr[jidx+1];
837             jnrC             = jjnr[jidx+2];
838             jnrD             = jjnr[jidx+3];
839             j_coord_offsetA  = DIM*jnrA;
840             j_coord_offsetB  = DIM*jnrB;
841             j_coord_offsetC  = DIM*jnrC;
842             j_coord_offsetD  = DIM*jnrD;
843
844             /* load j atom coordinates */
845             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
846                                               x+j_coord_offsetC,x+j_coord_offsetD,
847                                               &jx0,&jy0,&jz0);
848
849             /* Calculate displacement vector */
850             dx00             = _mm_sub_ps(ix0,jx0);
851             dy00             = _mm_sub_ps(iy0,jy0);
852             dz00             = _mm_sub_ps(iz0,jz0);
853             dx10             = _mm_sub_ps(ix1,jx0);
854             dy10             = _mm_sub_ps(iy1,jy0);
855             dz10             = _mm_sub_ps(iz1,jz0);
856             dx20             = _mm_sub_ps(ix2,jx0);
857             dy20             = _mm_sub_ps(iy2,jy0);
858             dz20             = _mm_sub_ps(iz2,jz0);
859
860             /* Calculate squared distance and things based on it */
861             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
862             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
863             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
864
865             rinv00           = gmx_mm_invsqrt_ps(rsq00);
866             rinv10           = gmx_mm_invsqrt_ps(rsq10);
867             rinv20           = gmx_mm_invsqrt_ps(rsq20);
868
869             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
870             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
871             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
872
873             /* Load parameters for j particles */
874             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
875                                                               charge+jnrC+0,charge+jnrD+0);
876             vdwjidx0A        = 2*vdwtype[jnrA+0];
877             vdwjidx0B        = 2*vdwtype[jnrB+0];
878             vdwjidx0C        = 2*vdwtype[jnrC+0];
879             vdwjidx0D        = 2*vdwtype[jnrD+0];
880
881             fjx0             = _mm_setzero_ps();
882             fjy0             = _mm_setzero_ps();
883             fjz0             = _mm_setzero_ps();
884
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             if (gmx_mm_any_lt(rsq00,rcutoff2))
890             {
891
892             r00              = _mm_mul_ps(rsq00,rinv00);
893
894             /* Compute parameters for interactions between i and j atoms */
895             qq00             = _mm_mul_ps(iq0,jq0);
896             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
897                                          vdwparam+vdwioffset0+vdwjidx0B,
898                                          vdwparam+vdwioffset0+vdwjidx0C,
899                                          vdwparam+vdwioffset0+vdwjidx0D,
900                                          &c6_00,&c12_00);
901
902             /* Calculate table index by multiplying r with table scale and truncate to integer */
903             rt               = _mm_mul_ps(r00,vftabscale);
904             vfitab           = _mm_cvttps_epi32(rt);
905             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
906             vfitab           = _mm_slli_epi32(vfitab,3);
907
908             /* REACTION-FIELD ELECTROSTATICS */
909             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
910
911             /* CUBIC SPLINE TABLE DISPERSION */
912             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
913             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
914             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
915             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
916             _MM_TRANSPOSE4_PS(Y,F,G,H);
917             Heps             = _mm_mul_ps(vfeps,H);
918             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
919             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
920             fvdw6            = _mm_mul_ps(c6_00,FF);
921
922             /* CUBIC SPLINE TABLE REPULSION */
923             vfitab           = _mm_add_epi32(vfitab,ifour);
924             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
925             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
926             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
927             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
928             _MM_TRANSPOSE4_PS(Y,F,G,H);
929             Heps             = _mm_mul_ps(vfeps,H);
930             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
931             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
932             fvdw12           = _mm_mul_ps(c12_00,FF);
933             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
934
935             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
936
937             fscal            = _mm_add_ps(felec,fvdw);
938
939             fscal            = _mm_and_ps(fscal,cutoff_mask);
940
941             /* Calculate temporary vectorial force */
942             tx               = _mm_mul_ps(fscal,dx00);
943             ty               = _mm_mul_ps(fscal,dy00);
944             tz               = _mm_mul_ps(fscal,dz00);
945
946             /* Update vectorial force */
947             fix0             = _mm_add_ps(fix0,tx);
948             fiy0             = _mm_add_ps(fiy0,ty);
949             fiz0             = _mm_add_ps(fiz0,tz);
950
951             fjx0             = _mm_add_ps(fjx0,tx);
952             fjy0             = _mm_add_ps(fjy0,ty);
953             fjz0             = _mm_add_ps(fjz0,tz);
954
955             }
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             if (gmx_mm_any_lt(rsq10,rcutoff2))
962             {
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq10             = _mm_mul_ps(iq1,jq0);
966
967             /* REACTION-FIELD ELECTROSTATICS */
968             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
969
970             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
971
972             fscal            = felec;
973
974             fscal            = _mm_and_ps(fscal,cutoff_mask);
975
976             /* Calculate temporary vectorial force */
977             tx               = _mm_mul_ps(fscal,dx10);
978             ty               = _mm_mul_ps(fscal,dy10);
979             tz               = _mm_mul_ps(fscal,dz10);
980
981             /* Update vectorial force */
982             fix1             = _mm_add_ps(fix1,tx);
983             fiy1             = _mm_add_ps(fiy1,ty);
984             fiz1             = _mm_add_ps(fiz1,tz);
985
986             fjx0             = _mm_add_ps(fjx0,tx);
987             fjy0             = _mm_add_ps(fjy0,ty);
988             fjz0             = _mm_add_ps(fjz0,tz);
989
990             }
991
992             /**************************
993              * CALCULATE INTERACTIONS *
994              **************************/
995
996             if (gmx_mm_any_lt(rsq20,rcutoff2))
997             {
998
999             /* Compute parameters for interactions between i and j atoms */
1000             qq20             = _mm_mul_ps(iq2,jq0);
1001
1002             /* REACTION-FIELD ELECTROSTATICS */
1003             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1004
1005             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1006
1007             fscal            = felec;
1008
1009             fscal            = _mm_and_ps(fscal,cutoff_mask);
1010
1011             /* Calculate temporary vectorial force */
1012             tx               = _mm_mul_ps(fscal,dx20);
1013             ty               = _mm_mul_ps(fscal,dy20);
1014             tz               = _mm_mul_ps(fscal,dz20);
1015
1016             /* Update vectorial force */
1017             fix2             = _mm_add_ps(fix2,tx);
1018             fiy2             = _mm_add_ps(fiy2,ty);
1019             fiz2             = _mm_add_ps(fiz2,tz);
1020
1021             fjx0             = _mm_add_ps(fjx0,tx);
1022             fjy0             = _mm_add_ps(fjy0,ty);
1023             fjz0             = _mm_add_ps(fjz0,tz);
1024
1025             }
1026
1027             fjptrA             = f+j_coord_offsetA;
1028             fjptrB             = f+j_coord_offsetB;
1029             fjptrC             = f+j_coord_offsetC;
1030             fjptrD             = f+j_coord_offsetD;
1031
1032             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1033
1034             /* Inner loop uses 117 flops */
1035         }
1036
1037         if(jidx<j_index_end)
1038         {
1039
1040             /* Get j neighbor index, and coordinate index */
1041             jnrlistA         = jjnr[jidx];
1042             jnrlistB         = jjnr[jidx+1];
1043             jnrlistC         = jjnr[jidx+2];
1044             jnrlistD         = jjnr[jidx+3];
1045             /* Sign of each element will be negative for non-real atoms.
1046              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1047              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1048              */
1049             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1050             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1051             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1052             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1053             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1054             j_coord_offsetA  = DIM*jnrA;
1055             j_coord_offsetB  = DIM*jnrB;
1056             j_coord_offsetC  = DIM*jnrC;
1057             j_coord_offsetD  = DIM*jnrD;
1058
1059             /* load j atom coordinates */
1060             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1061                                               x+j_coord_offsetC,x+j_coord_offsetD,
1062                                               &jx0,&jy0,&jz0);
1063
1064             /* Calculate displacement vector */
1065             dx00             = _mm_sub_ps(ix0,jx0);
1066             dy00             = _mm_sub_ps(iy0,jy0);
1067             dz00             = _mm_sub_ps(iz0,jz0);
1068             dx10             = _mm_sub_ps(ix1,jx0);
1069             dy10             = _mm_sub_ps(iy1,jy0);
1070             dz10             = _mm_sub_ps(iz1,jz0);
1071             dx20             = _mm_sub_ps(ix2,jx0);
1072             dy20             = _mm_sub_ps(iy2,jy0);
1073             dz20             = _mm_sub_ps(iz2,jz0);
1074
1075             /* Calculate squared distance and things based on it */
1076             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1077             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1078             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1079
1080             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1081             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1082             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1083
1084             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1085             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1086             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1087
1088             /* Load parameters for j particles */
1089             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1090                                                               charge+jnrC+0,charge+jnrD+0);
1091             vdwjidx0A        = 2*vdwtype[jnrA+0];
1092             vdwjidx0B        = 2*vdwtype[jnrB+0];
1093             vdwjidx0C        = 2*vdwtype[jnrC+0];
1094             vdwjidx0D        = 2*vdwtype[jnrD+0];
1095
1096             fjx0             = _mm_setzero_ps();
1097             fjy0             = _mm_setzero_ps();
1098             fjz0             = _mm_setzero_ps();
1099
1100             /**************************
1101              * CALCULATE INTERACTIONS *
1102              **************************/
1103
1104             if (gmx_mm_any_lt(rsq00,rcutoff2))
1105             {
1106
1107             r00              = _mm_mul_ps(rsq00,rinv00);
1108             r00              = _mm_andnot_ps(dummy_mask,r00);
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             qq00             = _mm_mul_ps(iq0,jq0);
1112             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1113                                          vdwparam+vdwioffset0+vdwjidx0B,
1114                                          vdwparam+vdwioffset0+vdwjidx0C,
1115                                          vdwparam+vdwioffset0+vdwjidx0D,
1116                                          &c6_00,&c12_00);
1117
1118             /* Calculate table index by multiplying r with table scale and truncate to integer */
1119             rt               = _mm_mul_ps(r00,vftabscale);
1120             vfitab           = _mm_cvttps_epi32(rt);
1121             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1122             vfitab           = _mm_slli_epi32(vfitab,3);
1123
1124             /* REACTION-FIELD ELECTROSTATICS */
1125             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1126
1127             /* CUBIC SPLINE TABLE DISPERSION */
1128             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1129             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1130             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1131             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1132             _MM_TRANSPOSE4_PS(Y,F,G,H);
1133             Heps             = _mm_mul_ps(vfeps,H);
1134             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1135             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1136             fvdw6            = _mm_mul_ps(c6_00,FF);
1137
1138             /* CUBIC SPLINE TABLE REPULSION */
1139             vfitab           = _mm_add_epi32(vfitab,ifour);
1140             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1141             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1142             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1143             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1144             _MM_TRANSPOSE4_PS(Y,F,G,H);
1145             Heps             = _mm_mul_ps(vfeps,H);
1146             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1147             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1148             fvdw12           = _mm_mul_ps(c12_00,FF);
1149             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1150
1151             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1152
1153             fscal            = _mm_add_ps(felec,fvdw);
1154
1155             fscal            = _mm_and_ps(fscal,cutoff_mask);
1156
1157             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1158
1159             /* Calculate temporary vectorial force */
1160             tx               = _mm_mul_ps(fscal,dx00);
1161             ty               = _mm_mul_ps(fscal,dy00);
1162             tz               = _mm_mul_ps(fscal,dz00);
1163
1164             /* Update vectorial force */
1165             fix0             = _mm_add_ps(fix0,tx);
1166             fiy0             = _mm_add_ps(fiy0,ty);
1167             fiz0             = _mm_add_ps(fiz0,tz);
1168
1169             fjx0             = _mm_add_ps(fjx0,tx);
1170             fjy0             = _mm_add_ps(fjy0,ty);
1171             fjz0             = _mm_add_ps(fjz0,tz);
1172
1173             }
1174
1175             /**************************
1176              * CALCULATE INTERACTIONS *
1177              **************************/
1178
1179             if (gmx_mm_any_lt(rsq10,rcutoff2))
1180             {
1181
1182             /* Compute parameters for interactions between i and j atoms */
1183             qq10             = _mm_mul_ps(iq1,jq0);
1184
1185             /* REACTION-FIELD ELECTROSTATICS */
1186             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1187
1188             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1189
1190             fscal            = felec;
1191
1192             fscal            = _mm_and_ps(fscal,cutoff_mask);
1193
1194             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1195
1196             /* Calculate temporary vectorial force */
1197             tx               = _mm_mul_ps(fscal,dx10);
1198             ty               = _mm_mul_ps(fscal,dy10);
1199             tz               = _mm_mul_ps(fscal,dz10);
1200
1201             /* Update vectorial force */
1202             fix1             = _mm_add_ps(fix1,tx);
1203             fiy1             = _mm_add_ps(fiy1,ty);
1204             fiz1             = _mm_add_ps(fiz1,tz);
1205
1206             fjx0             = _mm_add_ps(fjx0,tx);
1207             fjy0             = _mm_add_ps(fjy0,ty);
1208             fjz0             = _mm_add_ps(fjz0,tz);
1209
1210             }
1211
1212             /**************************
1213              * CALCULATE INTERACTIONS *
1214              **************************/
1215
1216             if (gmx_mm_any_lt(rsq20,rcutoff2))
1217             {
1218
1219             /* Compute parameters for interactions between i and j atoms */
1220             qq20             = _mm_mul_ps(iq2,jq0);
1221
1222             /* REACTION-FIELD ELECTROSTATICS */
1223             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1224
1225             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1226
1227             fscal            = felec;
1228
1229             fscal            = _mm_and_ps(fscal,cutoff_mask);
1230
1231             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1232
1233             /* Calculate temporary vectorial force */
1234             tx               = _mm_mul_ps(fscal,dx20);
1235             ty               = _mm_mul_ps(fscal,dy20);
1236             tz               = _mm_mul_ps(fscal,dz20);
1237
1238             /* Update vectorial force */
1239             fix2             = _mm_add_ps(fix2,tx);
1240             fiy2             = _mm_add_ps(fiy2,ty);
1241             fiz2             = _mm_add_ps(fiz2,tz);
1242
1243             fjx0             = _mm_add_ps(fjx0,tx);
1244             fjy0             = _mm_add_ps(fjy0,ty);
1245             fjz0             = _mm_add_ps(fjz0,tz);
1246
1247             }
1248
1249             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1250             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1251             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1252             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1253
1254             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1255
1256             /* Inner loop uses 118 flops */
1257         }
1258
1259         /* End of innermost loop */
1260
1261         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1262                                               f+i_coord_offset,fshift+i_shift_offset);
1263
1264         /* Increment number of inner iterations */
1265         inneriter                  += j_index_end - j_index_start;
1266
1267         /* Outer loop uses 18 flops */
1268     }
1269
1270     /* Increment number of outer iterations */
1271     outeriter        += nri;
1272
1273     /* Update outer/inner flops */
1274
1275     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1276 }