8861646a5fa93c7798d723ecba034b35b7801fad
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse4_1_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm_set1_ps(fr->ic->k_rf);
126     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
127     crf              = _mm_set1_ps(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
138     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
139     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
143     rcutoff_scalar   = fr->rcoulomb;
144     rcutoff          = _mm_set1_ps(rcutoff_scalar);
145     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm_setzero_ps();
181         fiy0             = _mm_setzero_ps();
182         fiz0             = _mm_setzero_ps();
183         fix1             = _mm_setzero_ps();
184         fiy1             = _mm_setzero_ps();
185         fiz1             = _mm_setzero_ps();
186         fix2             = _mm_setzero_ps();
187         fiy2             = _mm_setzero_ps();
188         fiz2             = _mm_setzero_ps();
189
190         /* Reset potential sums */
191         velecsum         = _mm_setzero_ps();
192         vvdwsum          = _mm_setzero_ps();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207
208             /* load j atom coordinates */
209             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
210                                               x+j_coord_offsetC,x+j_coord_offsetD,
211                                               &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm_sub_ps(ix0,jx0);
215             dy00             = _mm_sub_ps(iy0,jy0);
216             dz00             = _mm_sub_ps(iz0,jz0);
217             dx10             = _mm_sub_ps(ix1,jx0);
218             dy10             = _mm_sub_ps(iy1,jy0);
219             dz10             = _mm_sub_ps(iz1,jz0);
220             dx20             = _mm_sub_ps(ix2,jx0);
221             dy20             = _mm_sub_ps(iy2,jy0);
222             dz20             = _mm_sub_ps(iz2,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
226             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
227             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
228
229             rinv00           = gmx_mm_invsqrt_ps(rsq00);
230             rinv10           = gmx_mm_invsqrt_ps(rsq10);
231             rinv20           = gmx_mm_invsqrt_ps(rsq20);
232
233             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
234             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
235             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
239                                                               charge+jnrC+0,charge+jnrD+0);
240             vdwjidx0A        = 2*vdwtype[jnrA+0];
241             vdwjidx0B        = 2*vdwtype[jnrB+0];
242             vdwjidx0C        = 2*vdwtype[jnrC+0];
243             vdwjidx0D        = 2*vdwtype[jnrD+0];
244
245             fjx0             = _mm_setzero_ps();
246             fjy0             = _mm_setzero_ps();
247             fjz0             = _mm_setzero_ps();
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             if (gmx_mm_any_lt(rsq00,rcutoff2))
254             {
255
256             r00              = _mm_mul_ps(rsq00,rinv00);
257
258             /* Compute parameters for interactions between i and j atoms */
259             qq00             = _mm_mul_ps(iq0,jq0);
260             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
261                                          vdwparam+vdwioffset0+vdwjidx0B,
262                                          vdwparam+vdwioffset0+vdwjidx0C,
263                                          vdwparam+vdwioffset0+vdwjidx0D,
264                                          &c6_00,&c12_00);
265
266             /* Calculate table index by multiplying r with table scale and truncate to integer */
267             rt               = _mm_mul_ps(r00,vftabscale);
268             vfitab           = _mm_cvttps_epi32(rt);
269             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
270             vfitab           = _mm_slli_epi32(vfitab,3);
271
272             /* REACTION-FIELD ELECTROSTATICS */
273             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
274             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
275
276             /* CUBIC SPLINE TABLE DISPERSION */
277             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
278             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
279             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
280             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
281             _MM_TRANSPOSE4_PS(Y,F,G,H);
282             Heps             = _mm_mul_ps(vfeps,H);
283             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
284             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
285             vvdw6            = _mm_mul_ps(c6_00,VV);
286             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
287             fvdw6            = _mm_mul_ps(c6_00,FF);
288
289             /* CUBIC SPLINE TABLE REPULSION */
290             vfitab           = _mm_add_epi32(vfitab,ifour);
291             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
292             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
293             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
294             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
295             _MM_TRANSPOSE4_PS(Y,F,G,H);
296             Heps             = _mm_mul_ps(vfeps,H);
297             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
298             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
299             vvdw12           = _mm_mul_ps(c12_00,VV);
300             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
301             fvdw12           = _mm_mul_ps(c12_00,FF);
302             vvdw             = _mm_add_ps(vvdw12,vvdw6);
303             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
304
305             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velec            = _mm_and_ps(velec,cutoff_mask);
309             velecsum         = _mm_add_ps(velecsum,velec);
310             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
311             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
312
313             fscal            = _mm_add_ps(felec,fvdw);
314
315             fscal            = _mm_and_ps(fscal,cutoff_mask);
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm_mul_ps(fscal,dx00);
319             ty               = _mm_mul_ps(fscal,dy00);
320             tz               = _mm_mul_ps(fscal,dz00);
321
322             /* Update vectorial force */
323             fix0             = _mm_add_ps(fix0,tx);
324             fiy0             = _mm_add_ps(fiy0,ty);
325             fiz0             = _mm_add_ps(fiz0,tz);
326
327             fjx0             = _mm_add_ps(fjx0,tx);
328             fjy0             = _mm_add_ps(fjy0,ty);
329             fjz0             = _mm_add_ps(fjz0,tz);
330
331             }
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             if (gmx_mm_any_lt(rsq10,rcutoff2))
338             {
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq10             = _mm_mul_ps(iq1,jq0);
342
343             /* REACTION-FIELD ELECTROSTATICS */
344             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
345             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
346
347             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velec            = _mm_and_ps(velec,cutoff_mask);
351             velecsum         = _mm_add_ps(velecsum,velec);
352
353             fscal            = felec;
354
355             fscal            = _mm_and_ps(fscal,cutoff_mask);
356
357             /* Calculate temporary vectorial force */
358             tx               = _mm_mul_ps(fscal,dx10);
359             ty               = _mm_mul_ps(fscal,dy10);
360             tz               = _mm_mul_ps(fscal,dz10);
361
362             /* Update vectorial force */
363             fix1             = _mm_add_ps(fix1,tx);
364             fiy1             = _mm_add_ps(fiy1,ty);
365             fiz1             = _mm_add_ps(fiz1,tz);
366
367             fjx0             = _mm_add_ps(fjx0,tx);
368             fjy0             = _mm_add_ps(fjy0,ty);
369             fjz0             = _mm_add_ps(fjz0,tz);
370
371             }
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             if (gmx_mm_any_lt(rsq20,rcutoff2))
378             {
379
380             /* Compute parameters for interactions between i and j atoms */
381             qq20             = _mm_mul_ps(iq2,jq0);
382
383             /* REACTION-FIELD ELECTROSTATICS */
384             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
385             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
386
387             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velec            = _mm_and_ps(velec,cutoff_mask);
391             velecsum         = _mm_add_ps(velecsum,velec);
392
393             fscal            = felec;
394
395             fscal            = _mm_and_ps(fscal,cutoff_mask);
396
397             /* Calculate temporary vectorial force */
398             tx               = _mm_mul_ps(fscal,dx20);
399             ty               = _mm_mul_ps(fscal,dy20);
400             tz               = _mm_mul_ps(fscal,dz20);
401
402             /* Update vectorial force */
403             fix2             = _mm_add_ps(fix2,tx);
404             fiy2             = _mm_add_ps(fiy2,ty);
405             fiz2             = _mm_add_ps(fiz2,tz);
406
407             fjx0             = _mm_add_ps(fjx0,tx);
408             fjy0             = _mm_add_ps(fjy0,ty);
409             fjz0             = _mm_add_ps(fjz0,tz);
410
411             }
412
413             fjptrA             = f+j_coord_offsetA;
414             fjptrB             = f+j_coord_offsetB;
415             fjptrC             = f+j_coord_offsetC;
416             fjptrD             = f+j_coord_offsetD;
417
418             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
419
420             /* Inner loop uses 144 flops */
421         }
422
423         if(jidx<j_index_end)
424         {
425
426             /* Get j neighbor index, and coordinate index */
427             jnrlistA         = jjnr[jidx];
428             jnrlistB         = jjnr[jidx+1];
429             jnrlistC         = jjnr[jidx+2];
430             jnrlistD         = jjnr[jidx+3];
431             /* Sign of each element will be negative for non-real atoms.
432              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
433              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
434              */
435             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
436             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
437             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
438             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
439             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
440             j_coord_offsetA  = DIM*jnrA;
441             j_coord_offsetB  = DIM*jnrB;
442             j_coord_offsetC  = DIM*jnrC;
443             j_coord_offsetD  = DIM*jnrD;
444
445             /* load j atom coordinates */
446             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
447                                               x+j_coord_offsetC,x+j_coord_offsetD,
448                                               &jx0,&jy0,&jz0);
449
450             /* Calculate displacement vector */
451             dx00             = _mm_sub_ps(ix0,jx0);
452             dy00             = _mm_sub_ps(iy0,jy0);
453             dz00             = _mm_sub_ps(iz0,jz0);
454             dx10             = _mm_sub_ps(ix1,jx0);
455             dy10             = _mm_sub_ps(iy1,jy0);
456             dz10             = _mm_sub_ps(iz1,jz0);
457             dx20             = _mm_sub_ps(ix2,jx0);
458             dy20             = _mm_sub_ps(iy2,jy0);
459             dz20             = _mm_sub_ps(iz2,jz0);
460
461             /* Calculate squared distance and things based on it */
462             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
463             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
464             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
465
466             rinv00           = gmx_mm_invsqrt_ps(rsq00);
467             rinv10           = gmx_mm_invsqrt_ps(rsq10);
468             rinv20           = gmx_mm_invsqrt_ps(rsq20);
469
470             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
471             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
472             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
473
474             /* Load parameters for j particles */
475             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
476                                                               charge+jnrC+0,charge+jnrD+0);
477             vdwjidx0A        = 2*vdwtype[jnrA+0];
478             vdwjidx0B        = 2*vdwtype[jnrB+0];
479             vdwjidx0C        = 2*vdwtype[jnrC+0];
480             vdwjidx0D        = 2*vdwtype[jnrD+0];
481
482             fjx0             = _mm_setzero_ps();
483             fjy0             = _mm_setzero_ps();
484             fjz0             = _mm_setzero_ps();
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             if (gmx_mm_any_lt(rsq00,rcutoff2))
491             {
492
493             r00              = _mm_mul_ps(rsq00,rinv00);
494             r00              = _mm_andnot_ps(dummy_mask,r00);
495
496             /* Compute parameters for interactions between i and j atoms */
497             qq00             = _mm_mul_ps(iq0,jq0);
498             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
499                                          vdwparam+vdwioffset0+vdwjidx0B,
500                                          vdwparam+vdwioffset0+vdwjidx0C,
501                                          vdwparam+vdwioffset0+vdwjidx0D,
502                                          &c6_00,&c12_00);
503
504             /* Calculate table index by multiplying r with table scale and truncate to integer */
505             rt               = _mm_mul_ps(r00,vftabscale);
506             vfitab           = _mm_cvttps_epi32(rt);
507             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
508             vfitab           = _mm_slli_epi32(vfitab,3);
509
510             /* REACTION-FIELD ELECTROSTATICS */
511             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
512             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
513
514             /* CUBIC SPLINE TABLE DISPERSION */
515             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
516             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
517             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
518             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
519             _MM_TRANSPOSE4_PS(Y,F,G,H);
520             Heps             = _mm_mul_ps(vfeps,H);
521             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
522             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
523             vvdw6            = _mm_mul_ps(c6_00,VV);
524             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
525             fvdw6            = _mm_mul_ps(c6_00,FF);
526
527             /* CUBIC SPLINE TABLE REPULSION */
528             vfitab           = _mm_add_epi32(vfitab,ifour);
529             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
530             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
531             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
532             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
533             _MM_TRANSPOSE4_PS(Y,F,G,H);
534             Heps             = _mm_mul_ps(vfeps,H);
535             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
536             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
537             vvdw12           = _mm_mul_ps(c12_00,VV);
538             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
539             fvdw12           = _mm_mul_ps(c12_00,FF);
540             vvdw             = _mm_add_ps(vvdw12,vvdw6);
541             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
542
543             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
544
545             /* Update potential sum for this i atom from the interaction with this j atom. */
546             velec            = _mm_and_ps(velec,cutoff_mask);
547             velec            = _mm_andnot_ps(dummy_mask,velec);
548             velecsum         = _mm_add_ps(velecsum,velec);
549             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
550             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
551             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
552
553             fscal            = _mm_add_ps(felec,fvdw);
554
555             fscal            = _mm_and_ps(fscal,cutoff_mask);
556
557             fscal            = _mm_andnot_ps(dummy_mask,fscal);
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm_mul_ps(fscal,dx00);
561             ty               = _mm_mul_ps(fscal,dy00);
562             tz               = _mm_mul_ps(fscal,dz00);
563
564             /* Update vectorial force */
565             fix0             = _mm_add_ps(fix0,tx);
566             fiy0             = _mm_add_ps(fiy0,ty);
567             fiz0             = _mm_add_ps(fiz0,tz);
568
569             fjx0             = _mm_add_ps(fjx0,tx);
570             fjy0             = _mm_add_ps(fjy0,ty);
571             fjz0             = _mm_add_ps(fjz0,tz);
572
573             }
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             if (gmx_mm_any_lt(rsq10,rcutoff2))
580             {
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq10             = _mm_mul_ps(iq1,jq0);
584
585             /* REACTION-FIELD ELECTROSTATICS */
586             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
587             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
588
589             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
590
591             /* Update potential sum for this i atom from the interaction with this j atom. */
592             velec            = _mm_and_ps(velec,cutoff_mask);
593             velec            = _mm_andnot_ps(dummy_mask,velec);
594             velecsum         = _mm_add_ps(velecsum,velec);
595
596             fscal            = felec;
597
598             fscal            = _mm_and_ps(fscal,cutoff_mask);
599
600             fscal            = _mm_andnot_ps(dummy_mask,fscal);
601
602             /* Calculate temporary vectorial force */
603             tx               = _mm_mul_ps(fscal,dx10);
604             ty               = _mm_mul_ps(fscal,dy10);
605             tz               = _mm_mul_ps(fscal,dz10);
606
607             /* Update vectorial force */
608             fix1             = _mm_add_ps(fix1,tx);
609             fiy1             = _mm_add_ps(fiy1,ty);
610             fiz1             = _mm_add_ps(fiz1,tz);
611
612             fjx0             = _mm_add_ps(fjx0,tx);
613             fjy0             = _mm_add_ps(fjy0,ty);
614             fjz0             = _mm_add_ps(fjz0,tz);
615
616             }
617
618             /**************************
619              * CALCULATE INTERACTIONS *
620              **************************/
621
622             if (gmx_mm_any_lt(rsq20,rcutoff2))
623             {
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq20             = _mm_mul_ps(iq2,jq0);
627
628             /* REACTION-FIELD ELECTROSTATICS */
629             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
630             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
631
632             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
633
634             /* Update potential sum for this i atom from the interaction with this j atom. */
635             velec            = _mm_and_ps(velec,cutoff_mask);
636             velec            = _mm_andnot_ps(dummy_mask,velec);
637             velecsum         = _mm_add_ps(velecsum,velec);
638
639             fscal            = felec;
640
641             fscal            = _mm_and_ps(fscal,cutoff_mask);
642
643             fscal            = _mm_andnot_ps(dummy_mask,fscal);
644
645             /* Calculate temporary vectorial force */
646             tx               = _mm_mul_ps(fscal,dx20);
647             ty               = _mm_mul_ps(fscal,dy20);
648             tz               = _mm_mul_ps(fscal,dz20);
649
650             /* Update vectorial force */
651             fix2             = _mm_add_ps(fix2,tx);
652             fiy2             = _mm_add_ps(fiy2,ty);
653             fiz2             = _mm_add_ps(fiz2,tz);
654
655             fjx0             = _mm_add_ps(fjx0,tx);
656             fjy0             = _mm_add_ps(fjy0,ty);
657             fjz0             = _mm_add_ps(fjz0,tz);
658
659             }
660
661             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
662             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
663             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
664             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
665
666             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
667
668             /* Inner loop uses 145 flops */
669         }
670
671         /* End of innermost loop */
672
673         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
674                                               f+i_coord_offset,fshift+i_shift_offset);
675
676         ggid                        = gid[iidx];
677         /* Update potential energies */
678         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
679         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
680
681         /* Increment number of inner iterations */
682         inneriter                  += j_index_end - j_index_start;
683
684         /* Outer loop uses 20 flops */
685     }
686
687     /* Increment number of outer iterations */
688     outeriter        += nri;
689
690     /* Update outer/inner flops */
691
692     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
693 }
694 /*
695  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse4_1_single
696  * Electrostatics interaction: ReactionField
697  * VdW interaction:            CubicSplineTable
698  * Geometry:                   Water3-Particle
699  * Calculate force/pot:        Force
700  */
701 void
702 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse4_1_single
703                     (t_nblist                    * gmx_restrict       nlist,
704                      rvec                        * gmx_restrict          xx,
705                      rvec                        * gmx_restrict          ff,
706                      t_forcerec                  * gmx_restrict          fr,
707                      t_mdatoms                   * gmx_restrict     mdatoms,
708                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
709                      t_nrnb                      * gmx_restrict        nrnb)
710 {
711     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
712      * just 0 for non-waters.
713      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
714      * jnr indices corresponding to data put in the four positions in the SIMD register.
715      */
716     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
717     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
718     int              jnrA,jnrB,jnrC,jnrD;
719     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
720     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
721     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
722     real             rcutoff_scalar;
723     real             *shiftvec,*fshift,*x,*f;
724     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
725     real             scratch[4*DIM];
726     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
727     int              vdwioffset0;
728     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
729     int              vdwioffset1;
730     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
731     int              vdwioffset2;
732     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
733     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
734     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
735     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
736     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
737     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
738     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
739     real             *charge;
740     int              nvdwtype;
741     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
742     int              *vdwtype;
743     real             *vdwparam;
744     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
745     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
746     __m128i          vfitab;
747     __m128i          ifour       = _mm_set1_epi32(4);
748     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
749     real             *vftab;
750     __m128           dummy_mask,cutoff_mask;
751     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
752     __m128           one     = _mm_set1_ps(1.0);
753     __m128           two     = _mm_set1_ps(2.0);
754     x                = xx[0];
755     f                = ff[0];
756
757     nri              = nlist->nri;
758     iinr             = nlist->iinr;
759     jindex           = nlist->jindex;
760     jjnr             = nlist->jjnr;
761     shiftidx         = nlist->shift;
762     gid              = nlist->gid;
763     shiftvec         = fr->shift_vec[0];
764     fshift           = fr->fshift[0];
765     facel            = _mm_set1_ps(fr->epsfac);
766     charge           = mdatoms->chargeA;
767     krf              = _mm_set1_ps(fr->ic->k_rf);
768     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
769     crf              = _mm_set1_ps(fr->ic->c_rf);
770     nvdwtype         = fr->ntype;
771     vdwparam         = fr->nbfp;
772     vdwtype          = mdatoms->typeA;
773
774     vftab            = kernel_data->table_vdw->data;
775     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
776
777     /* Setup water-specific parameters */
778     inr              = nlist->iinr[0];
779     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
780     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
781     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
782     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
783
784     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
785     rcutoff_scalar   = fr->rcoulomb;
786     rcutoff          = _mm_set1_ps(rcutoff_scalar);
787     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
788
789     /* Avoid stupid compiler warnings */
790     jnrA = jnrB = jnrC = jnrD = 0;
791     j_coord_offsetA = 0;
792     j_coord_offsetB = 0;
793     j_coord_offsetC = 0;
794     j_coord_offsetD = 0;
795
796     outeriter        = 0;
797     inneriter        = 0;
798
799     for(iidx=0;iidx<4*DIM;iidx++)
800     {
801         scratch[iidx] = 0.0;
802     }
803
804     /* Start outer loop over neighborlists */
805     for(iidx=0; iidx<nri; iidx++)
806     {
807         /* Load shift vector for this list */
808         i_shift_offset   = DIM*shiftidx[iidx];
809
810         /* Load limits for loop over neighbors */
811         j_index_start    = jindex[iidx];
812         j_index_end      = jindex[iidx+1];
813
814         /* Get outer coordinate index */
815         inr              = iinr[iidx];
816         i_coord_offset   = DIM*inr;
817
818         /* Load i particle coords and add shift vector */
819         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
820                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
821
822         fix0             = _mm_setzero_ps();
823         fiy0             = _mm_setzero_ps();
824         fiz0             = _mm_setzero_ps();
825         fix1             = _mm_setzero_ps();
826         fiy1             = _mm_setzero_ps();
827         fiz1             = _mm_setzero_ps();
828         fix2             = _mm_setzero_ps();
829         fiy2             = _mm_setzero_ps();
830         fiz2             = _mm_setzero_ps();
831
832         /* Start inner kernel loop */
833         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
834         {
835
836             /* Get j neighbor index, and coordinate index */
837             jnrA             = jjnr[jidx];
838             jnrB             = jjnr[jidx+1];
839             jnrC             = jjnr[jidx+2];
840             jnrD             = jjnr[jidx+3];
841             j_coord_offsetA  = DIM*jnrA;
842             j_coord_offsetB  = DIM*jnrB;
843             j_coord_offsetC  = DIM*jnrC;
844             j_coord_offsetD  = DIM*jnrD;
845
846             /* load j atom coordinates */
847             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
848                                               x+j_coord_offsetC,x+j_coord_offsetD,
849                                               &jx0,&jy0,&jz0);
850
851             /* Calculate displacement vector */
852             dx00             = _mm_sub_ps(ix0,jx0);
853             dy00             = _mm_sub_ps(iy0,jy0);
854             dz00             = _mm_sub_ps(iz0,jz0);
855             dx10             = _mm_sub_ps(ix1,jx0);
856             dy10             = _mm_sub_ps(iy1,jy0);
857             dz10             = _mm_sub_ps(iz1,jz0);
858             dx20             = _mm_sub_ps(ix2,jx0);
859             dy20             = _mm_sub_ps(iy2,jy0);
860             dz20             = _mm_sub_ps(iz2,jz0);
861
862             /* Calculate squared distance and things based on it */
863             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
864             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
865             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
866
867             rinv00           = gmx_mm_invsqrt_ps(rsq00);
868             rinv10           = gmx_mm_invsqrt_ps(rsq10);
869             rinv20           = gmx_mm_invsqrt_ps(rsq20);
870
871             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
872             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
873             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
874
875             /* Load parameters for j particles */
876             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
877                                                               charge+jnrC+0,charge+jnrD+0);
878             vdwjidx0A        = 2*vdwtype[jnrA+0];
879             vdwjidx0B        = 2*vdwtype[jnrB+0];
880             vdwjidx0C        = 2*vdwtype[jnrC+0];
881             vdwjidx0D        = 2*vdwtype[jnrD+0];
882
883             fjx0             = _mm_setzero_ps();
884             fjy0             = _mm_setzero_ps();
885             fjz0             = _mm_setzero_ps();
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             if (gmx_mm_any_lt(rsq00,rcutoff2))
892             {
893
894             r00              = _mm_mul_ps(rsq00,rinv00);
895
896             /* Compute parameters for interactions between i and j atoms */
897             qq00             = _mm_mul_ps(iq0,jq0);
898             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
899                                          vdwparam+vdwioffset0+vdwjidx0B,
900                                          vdwparam+vdwioffset0+vdwjidx0C,
901                                          vdwparam+vdwioffset0+vdwjidx0D,
902                                          &c6_00,&c12_00);
903
904             /* Calculate table index by multiplying r with table scale and truncate to integer */
905             rt               = _mm_mul_ps(r00,vftabscale);
906             vfitab           = _mm_cvttps_epi32(rt);
907             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
908             vfitab           = _mm_slli_epi32(vfitab,3);
909
910             /* REACTION-FIELD ELECTROSTATICS */
911             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
912
913             /* CUBIC SPLINE TABLE DISPERSION */
914             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
915             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
916             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
917             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
918             _MM_TRANSPOSE4_PS(Y,F,G,H);
919             Heps             = _mm_mul_ps(vfeps,H);
920             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
921             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
922             fvdw6            = _mm_mul_ps(c6_00,FF);
923
924             /* CUBIC SPLINE TABLE REPULSION */
925             vfitab           = _mm_add_epi32(vfitab,ifour);
926             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
927             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
928             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
929             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
930             _MM_TRANSPOSE4_PS(Y,F,G,H);
931             Heps             = _mm_mul_ps(vfeps,H);
932             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
933             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
934             fvdw12           = _mm_mul_ps(c12_00,FF);
935             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
936
937             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
938
939             fscal            = _mm_add_ps(felec,fvdw);
940
941             fscal            = _mm_and_ps(fscal,cutoff_mask);
942
943             /* Calculate temporary vectorial force */
944             tx               = _mm_mul_ps(fscal,dx00);
945             ty               = _mm_mul_ps(fscal,dy00);
946             tz               = _mm_mul_ps(fscal,dz00);
947
948             /* Update vectorial force */
949             fix0             = _mm_add_ps(fix0,tx);
950             fiy0             = _mm_add_ps(fiy0,ty);
951             fiz0             = _mm_add_ps(fiz0,tz);
952
953             fjx0             = _mm_add_ps(fjx0,tx);
954             fjy0             = _mm_add_ps(fjy0,ty);
955             fjz0             = _mm_add_ps(fjz0,tz);
956
957             }
958
959             /**************************
960              * CALCULATE INTERACTIONS *
961              **************************/
962
963             if (gmx_mm_any_lt(rsq10,rcutoff2))
964             {
965
966             /* Compute parameters for interactions between i and j atoms */
967             qq10             = _mm_mul_ps(iq1,jq0);
968
969             /* REACTION-FIELD ELECTROSTATICS */
970             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
971
972             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
973
974             fscal            = felec;
975
976             fscal            = _mm_and_ps(fscal,cutoff_mask);
977
978             /* Calculate temporary vectorial force */
979             tx               = _mm_mul_ps(fscal,dx10);
980             ty               = _mm_mul_ps(fscal,dy10);
981             tz               = _mm_mul_ps(fscal,dz10);
982
983             /* Update vectorial force */
984             fix1             = _mm_add_ps(fix1,tx);
985             fiy1             = _mm_add_ps(fiy1,ty);
986             fiz1             = _mm_add_ps(fiz1,tz);
987
988             fjx0             = _mm_add_ps(fjx0,tx);
989             fjy0             = _mm_add_ps(fjy0,ty);
990             fjz0             = _mm_add_ps(fjz0,tz);
991
992             }
993
994             /**************************
995              * CALCULATE INTERACTIONS *
996              **************************/
997
998             if (gmx_mm_any_lt(rsq20,rcutoff2))
999             {
1000
1001             /* Compute parameters for interactions between i and j atoms */
1002             qq20             = _mm_mul_ps(iq2,jq0);
1003
1004             /* REACTION-FIELD ELECTROSTATICS */
1005             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1006
1007             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1008
1009             fscal            = felec;
1010
1011             fscal            = _mm_and_ps(fscal,cutoff_mask);
1012
1013             /* Calculate temporary vectorial force */
1014             tx               = _mm_mul_ps(fscal,dx20);
1015             ty               = _mm_mul_ps(fscal,dy20);
1016             tz               = _mm_mul_ps(fscal,dz20);
1017
1018             /* Update vectorial force */
1019             fix2             = _mm_add_ps(fix2,tx);
1020             fiy2             = _mm_add_ps(fiy2,ty);
1021             fiz2             = _mm_add_ps(fiz2,tz);
1022
1023             fjx0             = _mm_add_ps(fjx0,tx);
1024             fjy0             = _mm_add_ps(fjy0,ty);
1025             fjz0             = _mm_add_ps(fjz0,tz);
1026
1027             }
1028
1029             fjptrA             = f+j_coord_offsetA;
1030             fjptrB             = f+j_coord_offsetB;
1031             fjptrC             = f+j_coord_offsetC;
1032             fjptrD             = f+j_coord_offsetD;
1033
1034             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1035
1036             /* Inner loop uses 117 flops */
1037         }
1038
1039         if(jidx<j_index_end)
1040         {
1041
1042             /* Get j neighbor index, and coordinate index */
1043             jnrlistA         = jjnr[jidx];
1044             jnrlistB         = jjnr[jidx+1];
1045             jnrlistC         = jjnr[jidx+2];
1046             jnrlistD         = jjnr[jidx+3];
1047             /* Sign of each element will be negative for non-real atoms.
1048              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1049              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1050              */
1051             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1052             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1053             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1054             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1055             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1056             j_coord_offsetA  = DIM*jnrA;
1057             j_coord_offsetB  = DIM*jnrB;
1058             j_coord_offsetC  = DIM*jnrC;
1059             j_coord_offsetD  = DIM*jnrD;
1060
1061             /* load j atom coordinates */
1062             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1063                                               x+j_coord_offsetC,x+j_coord_offsetD,
1064                                               &jx0,&jy0,&jz0);
1065
1066             /* Calculate displacement vector */
1067             dx00             = _mm_sub_ps(ix0,jx0);
1068             dy00             = _mm_sub_ps(iy0,jy0);
1069             dz00             = _mm_sub_ps(iz0,jz0);
1070             dx10             = _mm_sub_ps(ix1,jx0);
1071             dy10             = _mm_sub_ps(iy1,jy0);
1072             dz10             = _mm_sub_ps(iz1,jz0);
1073             dx20             = _mm_sub_ps(ix2,jx0);
1074             dy20             = _mm_sub_ps(iy2,jy0);
1075             dz20             = _mm_sub_ps(iz2,jz0);
1076
1077             /* Calculate squared distance and things based on it */
1078             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1079             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1080             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1081
1082             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1083             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1084             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1085
1086             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1087             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1088             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1089
1090             /* Load parameters for j particles */
1091             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1092                                                               charge+jnrC+0,charge+jnrD+0);
1093             vdwjidx0A        = 2*vdwtype[jnrA+0];
1094             vdwjidx0B        = 2*vdwtype[jnrB+0];
1095             vdwjidx0C        = 2*vdwtype[jnrC+0];
1096             vdwjidx0D        = 2*vdwtype[jnrD+0];
1097
1098             fjx0             = _mm_setzero_ps();
1099             fjy0             = _mm_setzero_ps();
1100             fjz0             = _mm_setzero_ps();
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             if (gmx_mm_any_lt(rsq00,rcutoff2))
1107             {
1108
1109             r00              = _mm_mul_ps(rsq00,rinv00);
1110             r00              = _mm_andnot_ps(dummy_mask,r00);
1111
1112             /* Compute parameters for interactions between i and j atoms */
1113             qq00             = _mm_mul_ps(iq0,jq0);
1114             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1115                                          vdwparam+vdwioffset0+vdwjidx0B,
1116                                          vdwparam+vdwioffset0+vdwjidx0C,
1117                                          vdwparam+vdwioffset0+vdwjidx0D,
1118                                          &c6_00,&c12_00);
1119
1120             /* Calculate table index by multiplying r with table scale and truncate to integer */
1121             rt               = _mm_mul_ps(r00,vftabscale);
1122             vfitab           = _mm_cvttps_epi32(rt);
1123             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1124             vfitab           = _mm_slli_epi32(vfitab,3);
1125
1126             /* REACTION-FIELD ELECTROSTATICS */
1127             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1128
1129             /* CUBIC SPLINE TABLE DISPERSION */
1130             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1131             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1132             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1133             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1134             _MM_TRANSPOSE4_PS(Y,F,G,H);
1135             Heps             = _mm_mul_ps(vfeps,H);
1136             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1137             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1138             fvdw6            = _mm_mul_ps(c6_00,FF);
1139
1140             /* CUBIC SPLINE TABLE REPULSION */
1141             vfitab           = _mm_add_epi32(vfitab,ifour);
1142             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1143             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1144             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1145             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1146             _MM_TRANSPOSE4_PS(Y,F,G,H);
1147             Heps             = _mm_mul_ps(vfeps,H);
1148             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1149             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1150             fvdw12           = _mm_mul_ps(c12_00,FF);
1151             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1152
1153             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1154
1155             fscal            = _mm_add_ps(felec,fvdw);
1156
1157             fscal            = _mm_and_ps(fscal,cutoff_mask);
1158
1159             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1160
1161             /* Calculate temporary vectorial force */
1162             tx               = _mm_mul_ps(fscal,dx00);
1163             ty               = _mm_mul_ps(fscal,dy00);
1164             tz               = _mm_mul_ps(fscal,dz00);
1165
1166             /* Update vectorial force */
1167             fix0             = _mm_add_ps(fix0,tx);
1168             fiy0             = _mm_add_ps(fiy0,ty);
1169             fiz0             = _mm_add_ps(fiz0,tz);
1170
1171             fjx0             = _mm_add_ps(fjx0,tx);
1172             fjy0             = _mm_add_ps(fjy0,ty);
1173             fjz0             = _mm_add_ps(fjz0,tz);
1174
1175             }
1176
1177             /**************************
1178              * CALCULATE INTERACTIONS *
1179              **************************/
1180
1181             if (gmx_mm_any_lt(rsq10,rcutoff2))
1182             {
1183
1184             /* Compute parameters for interactions between i and j atoms */
1185             qq10             = _mm_mul_ps(iq1,jq0);
1186
1187             /* REACTION-FIELD ELECTROSTATICS */
1188             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1189
1190             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1191
1192             fscal            = felec;
1193
1194             fscal            = _mm_and_ps(fscal,cutoff_mask);
1195
1196             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1197
1198             /* Calculate temporary vectorial force */
1199             tx               = _mm_mul_ps(fscal,dx10);
1200             ty               = _mm_mul_ps(fscal,dy10);
1201             tz               = _mm_mul_ps(fscal,dz10);
1202
1203             /* Update vectorial force */
1204             fix1             = _mm_add_ps(fix1,tx);
1205             fiy1             = _mm_add_ps(fiy1,ty);
1206             fiz1             = _mm_add_ps(fiz1,tz);
1207
1208             fjx0             = _mm_add_ps(fjx0,tx);
1209             fjy0             = _mm_add_ps(fjy0,ty);
1210             fjz0             = _mm_add_ps(fjz0,tz);
1211
1212             }
1213
1214             /**************************
1215              * CALCULATE INTERACTIONS *
1216              **************************/
1217
1218             if (gmx_mm_any_lt(rsq20,rcutoff2))
1219             {
1220
1221             /* Compute parameters for interactions between i and j atoms */
1222             qq20             = _mm_mul_ps(iq2,jq0);
1223
1224             /* REACTION-FIELD ELECTROSTATICS */
1225             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1226
1227             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1228
1229             fscal            = felec;
1230
1231             fscal            = _mm_and_ps(fscal,cutoff_mask);
1232
1233             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1234
1235             /* Calculate temporary vectorial force */
1236             tx               = _mm_mul_ps(fscal,dx20);
1237             ty               = _mm_mul_ps(fscal,dy20);
1238             tz               = _mm_mul_ps(fscal,dz20);
1239
1240             /* Update vectorial force */
1241             fix2             = _mm_add_ps(fix2,tx);
1242             fiy2             = _mm_add_ps(fiy2,ty);
1243             fiz2             = _mm_add_ps(fiz2,tz);
1244
1245             fjx0             = _mm_add_ps(fjx0,tx);
1246             fjy0             = _mm_add_ps(fjy0,ty);
1247             fjz0             = _mm_add_ps(fjz0,tz);
1248
1249             }
1250
1251             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1252             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1253             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1254             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1255
1256             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1257
1258             /* Inner loop uses 118 flops */
1259         }
1260
1261         /* End of innermost loop */
1262
1263         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1264                                               f+i_coord_offset,fshift+i_shift_offset);
1265
1266         /* Increment number of inner iterations */
1267         inneriter                  += j_index_end - j_index_start;
1268
1269         /* Outer loop uses 18 flops */
1270     }
1271
1272     /* Increment number of outer iterations */
1273     outeriter        += nri;
1274
1275     /* Update outer/inner flops */
1276
1277     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1278 }