Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse4_1_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128i          vfitab;
83     __m128i          ifour       = _mm_set1_epi32(4);
84     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
85     real             *vftab;
86     __m128           dummy_mask,cutoff_mask;
87     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
88     __m128           one     = _mm_set1_ps(1.0);
89     __m128           two     = _mm_set1_ps(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm_set1_ps(fr->epsfac);
102     charge           = mdatoms->chargeA;
103     krf              = _mm_set1_ps(fr->ic->k_rf);
104     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
105     crf              = _mm_set1_ps(fr->ic->c_rf);
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     vftab            = kernel_data->table_vdw->data;
111     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
112
113     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
114     rcutoff_scalar   = fr->rcoulomb;
115     rcutoff          = _mm_set1_ps(rcutoff_scalar);
116     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = jnrC = jnrD = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122     j_coord_offsetC = 0;
123     j_coord_offsetD = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     for(iidx=0;iidx<4*DIM;iidx++)
129     {
130         scratch[iidx] = 0.0;
131     }
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149
150         fix0             = _mm_setzero_ps();
151         fiy0             = _mm_setzero_ps();
152         fiz0             = _mm_setzero_ps();
153
154         /* Load parameters for i particles */
155         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
156         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         velecsum         = _mm_setzero_ps();
160         vvdwsum          = _mm_setzero_ps();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173             j_coord_offsetC  = DIM*jnrC;
174             j_coord_offsetD  = DIM*jnrD;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               x+j_coord_offsetC,x+j_coord_offsetD,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_ps(ix0,jx0);
183             dy00             = _mm_sub_ps(iy0,jy0);
184             dz00             = _mm_sub_ps(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
188
189             rinv00           = gmx_mm_invsqrt_ps(rsq00);
190
191             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
195                                                               charge+jnrC+0,charge+jnrD+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198             vdwjidx0C        = 2*vdwtype[jnrC+0];
199             vdwjidx0D        = 2*vdwtype[jnrD+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             if (gmx_mm_any_lt(rsq00,rcutoff2))
206             {
207
208             r00              = _mm_mul_ps(rsq00,rinv00);
209
210             /* Compute parameters for interactions between i and j atoms */
211             qq00             = _mm_mul_ps(iq0,jq0);
212             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
213                                          vdwparam+vdwioffset0+vdwjidx0B,
214                                          vdwparam+vdwioffset0+vdwjidx0C,
215                                          vdwparam+vdwioffset0+vdwjidx0D,
216                                          &c6_00,&c12_00);
217
218             /* Calculate table index by multiplying r with table scale and truncate to integer */
219             rt               = _mm_mul_ps(r00,vftabscale);
220             vfitab           = _mm_cvttps_epi32(rt);
221             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
222             vfitab           = _mm_slli_epi32(vfitab,3);
223
224             /* REACTION-FIELD ELECTROSTATICS */
225             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
226             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
227
228             /* CUBIC SPLINE TABLE DISPERSION */
229             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
230             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
231             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
232             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
233             _MM_TRANSPOSE4_PS(Y,F,G,H);
234             Heps             = _mm_mul_ps(vfeps,H);
235             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
236             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
237             vvdw6            = _mm_mul_ps(c6_00,VV);
238             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
239             fvdw6            = _mm_mul_ps(c6_00,FF);
240
241             /* CUBIC SPLINE TABLE REPULSION */
242             vfitab           = _mm_add_epi32(vfitab,ifour);
243             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
244             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
245             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
246             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
247             _MM_TRANSPOSE4_PS(Y,F,G,H);
248             Heps             = _mm_mul_ps(vfeps,H);
249             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
250             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
251             vvdw12           = _mm_mul_ps(c12_00,VV);
252             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
253             fvdw12           = _mm_mul_ps(c12_00,FF);
254             vvdw             = _mm_add_ps(vvdw12,vvdw6);
255             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
256
257             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
258
259             /* Update potential sum for this i atom from the interaction with this j atom. */
260             velec            = _mm_and_ps(velec,cutoff_mask);
261             velecsum         = _mm_add_ps(velecsum,velec);
262             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
263             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
264
265             fscal            = _mm_add_ps(felec,fvdw);
266
267             fscal            = _mm_and_ps(fscal,cutoff_mask);
268
269             /* Calculate temporary vectorial force */
270             tx               = _mm_mul_ps(fscal,dx00);
271             ty               = _mm_mul_ps(fscal,dy00);
272             tz               = _mm_mul_ps(fscal,dz00);
273
274             /* Update vectorial force */
275             fix0             = _mm_add_ps(fix0,tx);
276             fiy0             = _mm_add_ps(fiy0,ty);
277             fiz0             = _mm_add_ps(fiz0,tz);
278
279             fjptrA             = f+j_coord_offsetA;
280             fjptrB             = f+j_coord_offsetB;
281             fjptrC             = f+j_coord_offsetC;
282             fjptrD             = f+j_coord_offsetD;
283             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
284
285             }
286
287             /* Inner loop uses 72 flops */
288         }
289
290         if(jidx<j_index_end)
291         {
292
293             /* Get j neighbor index, and coordinate index */
294             jnrlistA         = jjnr[jidx];
295             jnrlistB         = jjnr[jidx+1];
296             jnrlistC         = jjnr[jidx+2];
297             jnrlistD         = jjnr[jidx+3];
298             /* Sign of each element will be negative for non-real atoms.
299              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
300              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
301              */
302             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
303             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
304             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
305             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
306             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
307             j_coord_offsetA  = DIM*jnrA;
308             j_coord_offsetB  = DIM*jnrB;
309             j_coord_offsetC  = DIM*jnrC;
310             j_coord_offsetD  = DIM*jnrD;
311
312             /* load j atom coordinates */
313             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
314                                               x+j_coord_offsetC,x+j_coord_offsetD,
315                                               &jx0,&jy0,&jz0);
316
317             /* Calculate displacement vector */
318             dx00             = _mm_sub_ps(ix0,jx0);
319             dy00             = _mm_sub_ps(iy0,jy0);
320             dz00             = _mm_sub_ps(iz0,jz0);
321
322             /* Calculate squared distance and things based on it */
323             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
324
325             rinv00           = gmx_mm_invsqrt_ps(rsq00);
326
327             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
328
329             /* Load parameters for j particles */
330             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
331                                                               charge+jnrC+0,charge+jnrD+0);
332             vdwjidx0A        = 2*vdwtype[jnrA+0];
333             vdwjidx0B        = 2*vdwtype[jnrB+0];
334             vdwjidx0C        = 2*vdwtype[jnrC+0];
335             vdwjidx0D        = 2*vdwtype[jnrD+0];
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             if (gmx_mm_any_lt(rsq00,rcutoff2))
342             {
343
344             r00              = _mm_mul_ps(rsq00,rinv00);
345             r00              = _mm_andnot_ps(dummy_mask,r00);
346
347             /* Compute parameters for interactions between i and j atoms */
348             qq00             = _mm_mul_ps(iq0,jq0);
349             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
350                                          vdwparam+vdwioffset0+vdwjidx0B,
351                                          vdwparam+vdwioffset0+vdwjidx0C,
352                                          vdwparam+vdwioffset0+vdwjidx0D,
353                                          &c6_00,&c12_00);
354
355             /* Calculate table index by multiplying r with table scale and truncate to integer */
356             rt               = _mm_mul_ps(r00,vftabscale);
357             vfitab           = _mm_cvttps_epi32(rt);
358             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
359             vfitab           = _mm_slli_epi32(vfitab,3);
360
361             /* REACTION-FIELD ELECTROSTATICS */
362             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
363             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
364
365             /* CUBIC SPLINE TABLE DISPERSION */
366             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
367             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
368             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
369             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
370             _MM_TRANSPOSE4_PS(Y,F,G,H);
371             Heps             = _mm_mul_ps(vfeps,H);
372             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
373             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
374             vvdw6            = _mm_mul_ps(c6_00,VV);
375             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
376             fvdw6            = _mm_mul_ps(c6_00,FF);
377
378             /* CUBIC SPLINE TABLE REPULSION */
379             vfitab           = _mm_add_epi32(vfitab,ifour);
380             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
381             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
382             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
383             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
384             _MM_TRANSPOSE4_PS(Y,F,G,H);
385             Heps             = _mm_mul_ps(vfeps,H);
386             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
387             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
388             vvdw12           = _mm_mul_ps(c12_00,VV);
389             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
390             fvdw12           = _mm_mul_ps(c12_00,FF);
391             vvdw             = _mm_add_ps(vvdw12,vvdw6);
392             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
393
394             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
395
396             /* Update potential sum for this i atom from the interaction with this j atom. */
397             velec            = _mm_and_ps(velec,cutoff_mask);
398             velec            = _mm_andnot_ps(dummy_mask,velec);
399             velecsum         = _mm_add_ps(velecsum,velec);
400             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
401             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
402             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
403
404             fscal            = _mm_add_ps(felec,fvdw);
405
406             fscal            = _mm_and_ps(fscal,cutoff_mask);
407
408             fscal            = _mm_andnot_ps(dummy_mask,fscal);
409
410             /* Calculate temporary vectorial force */
411             tx               = _mm_mul_ps(fscal,dx00);
412             ty               = _mm_mul_ps(fscal,dy00);
413             tz               = _mm_mul_ps(fscal,dz00);
414
415             /* Update vectorial force */
416             fix0             = _mm_add_ps(fix0,tx);
417             fiy0             = _mm_add_ps(fiy0,ty);
418             fiz0             = _mm_add_ps(fiz0,tz);
419
420             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
421             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
422             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
423             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
424             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
425
426             }
427
428             /* Inner loop uses 73 flops */
429         }
430
431         /* End of innermost loop */
432
433         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
434                                               f+i_coord_offset,fshift+i_shift_offset);
435
436         ggid                        = gid[iidx];
437         /* Update potential energies */
438         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
439         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
440
441         /* Increment number of inner iterations */
442         inneriter                  += j_index_end - j_index_start;
443
444         /* Outer loop uses 9 flops */
445     }
446
447     /* Increment number of outer iterations */
448     outeriter        += nri;
449
450     /* Update outer/inner flops */
451
452     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
453 }
454 /*
455  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse4_1_single
456  * Electrostatics interaction: ReactionField
457  * VdW interaction:            CubicSplineTable
458  * Geometry:                   Particle-Particle
459  * Calculate force/pot:        Force
460  */
461 void
462 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse4_1_single
463                     (t_nblist * gmx_restrict                nlist,
464                      rvec * gmx_restrict                    xx,
465                      rvec * gmx_restrict                    ff,
466                      t_forcerec * gmx_restrict              fr,
467                      t_mdatoms * gmx_restrict               mdatoms,
468                      nb_kernel_data_t * gmx_restrict        kernel_data,
469                      t_nrnb * gmx_restrict                  nrnb)
470 {
471     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
472      * just 0 for non-waters.
473      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
474      * jnr indices corresponding to data put in the four positions in the SIMD register.
475      */
476     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
477     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
478     int              jnrA,jnrB,jnrC,jnrD;
479     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
480     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
481     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
482     real             rcutoff_scalar;
483     real             *shiftvec,*fshift,*x,*f;
484     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
485     real             scratch[4*DIM];
486     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
487     int              vdwioffset0;
488     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
489     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
490     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
491     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
492     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
493     real             *charge;
494     int              nvdwtype;
495     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
496     int              *vdwtype;
497     real             *vdwparam;
498     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
499     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
500     __m128i          vfitab;
501     __m128i          ifour       = _mm_set1_epi32(4);
502     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
503     real             *vftab;
504     __m128           dummy_mask,cutoff_mask;
505     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
506     __m128           one     = _mm_set1_ps(1.0);
507     __m128           two     = _mm_set1_ps(2.0);
508     x                = xx[0];
509     f                = ff[0];
510
511     nri              = nlist->nri;
512     iinr             = nlist->iinr;
513     jindex           = nlist->jindex;
514     jjnr             = nlist->jjnr;
515     shiftidx         = nlist->shift;
516     gid              = nlist->gid;
517     shiftvec         = fr->shift_vec[0];
518     fshift           = fr->fshift[0];
519     facel            = _mm_set1_ps(fr->epsfac);
520     charge           = mdatoms->chargeA;
521     krf              = _mm_set1_ps(fr->ic->k_rf);
522     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
523     crf              = _mm_set1_ps(fr->ic->c_rf);
524     nvdwtype         = fr->ntype;
525     vdwparam         = fr->nbfp;
526     vdwtype          = mdatoms->typeA;
527
528     vftab            = kernel_data->table_vdw->data;
529     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
530
531     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
532     rcutoff_scalar   = fr->rcoulomb;
533     rcutoff          = _mm_set1_ps(rcutoff_scalar);
534     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
535
536     /* Avoid stupid compiler warnings */
537     jnrA = jnrB = jnrC = jnrD = 0;
538     j_coord_offsetA = 0;
539     j_coord_offsetB = 0;
540     j_coord_offsetC = 0;
541     j_coord_offsetD = 0;
542
543     outeriter        = 0;
544     inneriter        = 0;
545
546     for(iidx=0;iidx<4*DIM;iidx++)
547     {
548         scratch[iidx] = 0.0;
549     }
550
551     /* Start outer loop over neighborlists */
552     for(iidx=0; iidx<nri; iidx++)
553     {
554         /* Load shift vector for this list */
555         i_shift_offset   = DIM*shiftidx[iidx];
556
557         /* Load limits for loop over neighbors */
558         j_index_start    = jindex[iidx];
559         j_index_end      = jindex[iidx+1];
560
561         /* Get outer coordinate index */
562         inr              = iinr[iidx];
563         i_coord_offset   = DIM*inr;
564
565         /* Load i particle coords and add shift vector */
566         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
567
568         fix0             = _mm_setzero_ps();
569         fiy0             = _mm_setzero_ps();
570         fiz0             = _mm_setzero_ps();
571
572         /* Load parameters for i particles */
573         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
574         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
575
576         /* Start inner kernel loop */
577         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
578         {
579
580             /* Get j neighbor index, and coordinate index */
581             jnrA             = jjnr[jidx];
582             jnrB             = jjnr[jidx+1];
583             jnrC             = jjnr[jidx+2];
584             jnrD             = jjnr[jidx+3];
585             j_coord_offsetA  = DIM*jnrA;
586             j_coord_offsetB  = DIM*jnrB;
587             j_coord_offsetC  = DIM*jnrC;
588             j_coord_offsetD  = DIM*jnrD;
589
590             /* load j atom coordinates */
591             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
592                                               x+j_coord_offsetC,x+j_coord_offsetD,
593                                               &jx0,&jy0,&jz0);
594
595             /* Calculate displacement vector */
596             dx00             = _mm_sub_ps(ix0,jx0);
597             dy00             = _mm_sub_ps(iy0,jy0);
598             dz00             = _mm_sub_ps(iz0,jz0);
599
600             /* Calculate squared distance and things based on it */
601             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
602
603             rinv00           = gmx_mm_invsqrt_ps(rsq00);
604
605             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
606
607             /* Load parameters for j particles */
608             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
609                                                               charge+jnrC+0,charge+jnrD+0);
610             vdwjidx0A        = 2*vdwtype[jnrA+0];
611             vdwjidx0B        = 2*vdwtype[jnrB+0];
612             vdwjidx0C        = 2*vdwtype[jnrC+0];
613             vdwjidx0D        = 2*vdwtype[jnrD+0];
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             if (gmx_mm_any_lt(rsq00,rcutoff2))
620             {
621
622             r00              = _mm_mul_ps(rsq00,rinv00);
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq00             = _mm_mul_ps(iq0,jq0);
626             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
627                                          vdwparam+vdwioffset0+vdwjidx0B,
628                                          vdwparam+vdwioffset0+vdwjidx0C,
629                                          vdwparam+vdwioffset0+vdwjidx0D,
630                                          &c6_00,&c12_00);
631
632             /* Calculate table index by multiplying r with table scale and truncate to integer */
633             rt               = _mm_mul_ps(r00,vftabscale);
634             vfitab           = _mm_cvttps_epi32(rt);
635             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
636             vfitab           = _mm_slli_epi32(vfitab,3);
637
638             /* REACTION-FIELD ELECTROSTATICS */
639             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
640
641             /* CUBIC SPLINE TABLE DISPERSION */
642             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
643             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
644             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
645             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
646             _MM_TRANSPOSE4_PS(Y,F,G,H);
647             Heps             = _mm_mul_ps(vfeps,H);
648             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
649             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
650             fvdw6            = _mm_mul_ps(c6_00,FF);
651
652             /* CUBIC SPLINE TABLE REPULSION */
653             vfitab           = _mm_add_epi32(vfitab,ifour);
654             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
655             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
656             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
657             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
658             _MM_TRANSPOSE4_PS(Y,F,G,H);
659             Heps             = _mm_mul_ps(vfeps,H);
660             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
661             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
662             fvdw12           = _mm_mul_ps(c12_00,FF);
663             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
664
665             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
666
667             fscal            = _mm_add_ps(felec,fvdw);
668
669             fscal            = _mm_and_ps(fscal,cutoff_mask);
670
671             /* Calculate temporary vectorial force */
672             tx               = _mm_mul_ps(fscal,dx00);
673             ty               = _mm_mul_ps(fscal,dy00);
674             tz               = _mm_mul_ps(fscal,dz00);
675
676             /* Update vectorial force */
677             fix0             = _mm_add_ps(fix0,tx);
678             fiy0             = _mm_add_ps(fiy0,ty);
679             fiz0             = _mm_add_ps(fiz0,tz);
680
681             fjptrA             = f+j_coord_offsetA;
682             fjptrB             = f+j_coord_offsetB;
683             fjptrC             = f+j_coord_offsetC;
684             fjptrD             = f+j_coord_offsetD;
685             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
686
687             }
688
689             /* Inner loop uses 57 flops */
690         }
691
692         if(jidx<j_index_end)
693         {
694
695             /* Get j neighbor index, and coordinate index */
696             jnrlistA         = jjnr[jidx];
697             jnrlistB         = jjnr[jidx+1];
698             jnrlistC         = jjnr[jidx+2];
699             jnrlistD         = jjnr[jidx+3];
700             /* Sign of each element will be negative for non-real atoms.
701              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
702              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
703              */
704             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
705             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
706             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
707             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
708             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
709             j_coord_offsetA  = DIM*jnrA;
710             j_coord_offsetB  = DIM*jnrB;
711             j_coord_offsetC  = DIM*jnrC;
712             j_coord_offsetD  = DIM*jnrD;
713
714             /* load j atom coordinates */
715             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
716                                               x+j_coord_offsetC,x+j_coord_offsetD,
717                                               &jx0,&jy0,&jz0);
718
719             /* Calculate displacement vector */
720             dx00             = _mm_sub_ps(ix0,jx0);
721             dy00             = _mm_sub_ps(iy0,jy0);
722             dz00             = _mm_sub_ps(iz0,jz0);
723
724             /* Calculate squared distance and things based on it */
725             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
726
727             rinv00           = gmx_mm_invsqrt_ps(rsq00);
728
729             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
730
731             /* Load parameters for j particles */
732             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
733                                                               charge+jnrC+0,charge+jnrD+0);
734             vdwjidx0A        = 2*vdwtype[jnrA+0];
735             vdwjidx0B        = 2*vdwtype[jnrB+0];
736             vdwjidx0C        = 2*vdwtype[jnrC+0];
737             vdwjidx0D        = 2*vdwtype[jnrD+0];
738
739             /**************************
740              * CALCULATE INTERACTIONS *
741              **************************/
742
743             if (gmx_mm_any_lt(rsq00,rcutoff2))
744             {
745
746             r00              = _mm_mul_ps(rsq00,rinv00);
747             r00              = _mm_andnot_ps(dummy_mask,r00);
748
749             /* Compute parameters for interactions between i and j atoms */
750             qq00             = _mm_mul_ps(iq0,jq0);
751             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
752                                          vdwparam+vdwioffset0+vdwjidx0B,
753                                          vdwparam+vdwioffset0+vdwjidx0C,
754                                          vdwparam+vdwioffset0+vdwjidx0D,
755                                          &c6_00,&c12_00);
756
757             /* Calculate table index by multiplying r with table scale and truncate to integer */
758             rt               = _mm_mul_ps(r00,vftabscale);
759             vfitab           = _mm_cvttps_epi32(rt);
760             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
761             vfitab           = _mm_slli_epi32(vfitab,3);
762
763             /* REACTION-FIELD ELECTROSTATICS */
764             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
765
766             /* CUBIC SPLINE TABLE DISPERSION */
767             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
768             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
769             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
770             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
771             _MM_TRANSPOSE4_PS(Y,F,G,H);
772             Heps             = _mm_mul_ps(vfeps,H);
773             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
774             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
775             fvdw6            = _mm_mul_ps(c6_00,FF);
776
777             /* CUBIC SPLINE TABLE REPULSION */
778             vfitab           = _mm_add_epi32(vfitab,ifour);
779             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
780             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
781             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
782             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
783             _MM_TRANSPOSE4_PS(Y,F,G,H);
784             Heps             = _mm_mul_ps(vfeps,H);
785             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
786             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
787             fvdw12           = _mm_mul_ps(c12_00,FF);
788             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
789
790             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
791
792             fscal            = _mm_add_ps(felec,fvdw);
793
794             fscal            = _mm_and_ps(fscal,cutoff_mask);
795
796             fscal            = _mm_andnot_ps(dummy_mask,fscal);
797
798             /* Calculate temporary vectorial force */
799             tx               = _mm_mul_ps(fscal,dx00);
800             ty               = _mm_mul_ps(fscal,dy00);
801             tz               = _mm_mul_ps(fscal,dz00);
802
803             /* Update vectorial force */
804             fix0             = _mm_add_ps(fix0,tx);
805             fiy0             = _mm_add_ps(fiy0,ty);
806             fiz0             = _mm_add_ps(fiz0,tz);
807
808             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
809             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
810             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
811             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
812             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
813
814             }
815
816             /* Inner loop uses 58 flops */
817         }
818
819         /* End of innermost loop */
820
821         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
822                                               f+i_coord_offset,fshift+i_shift_offset);
823
824         /* Increment number of inner iterations */
825         inneriter                  += j_index_end - j_index_start;
826
827         /* Outer loop uses 7 flops */
828     }
829
830     /* Increment number of outer iterations */
831     outeriter        += nri;
832
833     /* Update outer/inner flops */
834
835     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
836 }