Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse4_1_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
98     real             *vftab;
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_ps(fr->ic->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm_set1_ps(fr->ic->k_rf);
117     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
118     crf              = _mm_set1_ps(fr->ic->c_rf);
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_vdw->data;
124     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->ic->rcoulomb;
128     rcutoff          = _mm_set1_ps(rcutoff_scalar);
129     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162
163         fix0             = _mm_setzero_ps();
164         fiy0             = _mm_setzero_ps();
165         fiz0             = _mm_setzero_ps();
166
167         /* Load parameters for i particles */
168         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
169         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_ps();
173         vvdwsum          = _mm_setzero_ps();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188
189             /* load j atom coordinates */
190             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
191                                               x+j_coord_offsetC,x+j_coord_offsetD,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_ps(ix0,jx0);
196             dy00             = _mm_sub_ps(iy0,jy0);
197             dz00             = _mm_sub_ps(iz0,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
201
202             rinv00           = sse41_invsqrt_f(rsq00);
203
204             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
208                                                               charge+jnrC+0,charge+jnrD+0);
209             vdwjidx0A        = 2*vdwtype[jnrA+0];
210             vdwjidx0B        = 2*vdwtype[jnrB+0];
211             vdwjidx0C        = 2*vdwtype[jnrC+0];
212             vdwjidx0D        = 2*vdwtype[jnrD+0];
213
214             /**************************
215              * CALCULATE INTERACTIONS *
216              **************************/
217
218             if (gmx_mm_any_lt(rsq00,rcutoff2))
219             {
220
221             r00              = _mm_mul_ps(rsq00,rinv00);
222
223             /* Compute parameters for interactions between i and j atoms */
224             qq00             = _mm_mul_ps(iq0,jq0);
225             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
226                                          vdwparam+vdwioffset0+vdwjidx0B,
227                                          vdwparam+vdwioffset0+vdwjidx0C,
228                                          vdwparam+vdwioffset0+vdwjidx0D,
229                                          &c6_00,&c12_00);
230
231             /* Calculate table index by multiplying r with table scale and truncate to integer */
232             rt               = _mm_mul_ps(r00,vftabscale);
233             vfitab           = _mm_cvttps_epi32(rt);
234             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
235             vfitab           = _mm_slli_epi32(vfitab,3);
236
237             /* REACTION-FIELD ELECTROSTATICS */
238             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
239             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
240
241             /* CUBIC SPLINE TABLE DISPERSION */
242             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
243             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
244             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
245             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
246             _MM_TRANSPOSE4_PS(Y,F,G,H);
247             Heps             = _mm_mul_ps(vfeps,H);
248             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
249             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
250             vvdw6            = _mm_mul_ps(c6_00,VV);
251             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
252             fvdw6            = _mm_mul_ps(c6_00,FF);
253
254             /* CUBIC SPLINE TABLE REPULSION */
255             vfitab           = _mm_add_epi32(vfitab,ifour);
256             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
257             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
258             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
259             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
260             _MM_TRANSPOSE4_PS(Y,F,G,H);
261             Heps             = _mm_mul_ps(vfeps,H);
262             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
263             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
264             vvdw12           = _mm_mul_ps(c12_00,VV);
265             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
266             fvdw12           = _mm_mul_ps(c12_00,FF);
267             vvdw             = _mm_add_ps(vvdw12,vvdw6);
268             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
269
270             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             velec            = _mm_and_ps(velec,cutoff_mask);
274             velecsum         = _mm_add_ps(velecsum,velec);
275             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
276             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
277
278             fscal            = _mm_add_ps(felec,fvdw);
279
280             fscal            = _mm_and_ps(fscal,cutoff_mask);
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm_mul_ps(fscal,dx00);
284             ty               = _mm_mul_ps(fscal,dy00);
285             tz               = _mm_mul_ps(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm_add_ps(fix0,tx);
289             fiy0             = _mm_add_ps(fiy0,ty);
290             fiz0             = _mm_add_ps(fiz0,tz);
291
292             fjptrA             = f+j_coord_offsetA;
293             fjptrB             = f+j_coord_offsetB;
294             fjptrC             = f+j_coord_offsetC;
295             fjptrD             = f+j_coord_offsetD;
296             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
297
298             }
299
300             /* Inner loop uses 72 flops */
301         }
302
303         if(jidx<j_index_end)
304         {
305
306             /* Get j neighbor index, and coordinate index */
307             jnrlistA         = jjnr[jidx];
308             jnrlistB         = jjnr[jidx+1];
309             jnrlistC         = jjnr[jidx+2];
310             jnrlistD         = jjnr[jidx+3];
311             /* Sign of each element will be negative for non-real atoms.
312              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
313              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
314              */
315             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
316             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
317             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
318             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
319             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
320             j_coord_offsetA  = DIM*jnrA;
321             j_coord_offsetB  = DIM*jnrB;
322             j_coord_offsetC  = DIM*jnrC;
323             j_coord_offsetD  = DIM*jnrD;
324
325             /* load j atom coordinates */
326             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
327                                               x+j_coord_offsetC,x+j_coord_offsetD,
328                                               &jx0,&jy0,&jz0);
329
330             /* Calculate displacement vector */
331             dx00             = _mm_sub_ps(ix0,jx0);
332             dy00             = _mm_sub_ps(iy0,jy0);
333             dz00             = _mm_sub_ps(iz0,jz0);
334
335             /* Calculate squared distance and things based on it */
336             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
337
338             rinv00           = sse41_invsqrt_f(rsq00);
339
340             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
341
342             /* Load parameters for j particles */
343             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
344                                                               charge+jnrC+0,charge+jnrD+0);
345             vdwjidx0A        = 2*vdwtype[jnrA+0];
346             vdwjidx0B        = 2*vdwtype[jnrB+0];
347             vdwjidx0C        = 2*vdwtype[jnrC+0];
348             vdwjidx0D        = 2*vdwtype[jnrD+0];
349
350             /**************************
351              * CALCULATE INTERACTIONS *
352              **************************/
353
354             if (gmx_mm_any_lt(rsq00,rcutoff2))
355             {
356
357             r00              = _mm_mul_ps(rsq00,rinv00);
358             r00              = _mm_andnot_ps(dummy_mask,r00);
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq00             = _mm_mul_ps(iq0,jq0);
362             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
363                                          vdwparam+vdwioffset0+vdwjidx0B,
364                                          vdwparam+vdwioffset0+vdwjidx0C,
365                                          vdwparam+vdwioffset0+vdwjidx0D,
366                                          &c6_00,&c12_00);
367
368             /* Calculate table index by multiplying r with table scale and truncate to integer */
369             rt               = _mm_mul_ps(r00,vftabscale);
370             vfitab           = _mm_cvttps_epi32(rt);
371             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
372             vfitab           = _mm_slli_epi32(vfitab,3);
373
374             /* REACTION-FIELD ELECTROSTATICS */
375             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
376             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
377
378             /* CUBIC SPLINE TABLE DISPERSION */
379             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
380             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
381             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
382             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
383             _MM_TRANSPOSE4_PS(Y,F,G,H);
384             Heps             = _mm_mul_ps(vfeps,H);
385             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
386             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
387             vvdw6            = _mm_mul_ps(c6_00,VV);
388             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
389             fvdw6            = _mm_mul_ps(c6_00,FF);
390
391             /* CUBIC SPLINE TABLE REPULSION */
392             vfitab           = _mm_add_epi32(vfitab,ifour);
393             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
394             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
395             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
396             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
397             _MM_TRANSPOSE4_PS(Y,F,G,H);
398             Heps             = _mm_mul_ps(vfeps,H);
399             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
400             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
401             vvdw12           = _mm_mul_ps(c12_00,VV);
402             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
403             fvdw12           = _mm_mul_ps(c12_00,FF);
404             vvdw             = _mm_add_ps(vvdw12,vvdw6);
405             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
406
407             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velec            = _mm_and_ps(velec,cutoff_mask);
411             velec            = _mm_andnot_ps(dummy_mask,velec);
412             velecsum         = _mm_add_ps(velecsum,velec);
413             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
414             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
415             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
416
417             fscal            = _mm_add_ps(felec,fvdw);
418
419             fscal            = _mm_and_ps(fscal,cutoff_mask);
420
421             fscal            = _mm_andnot_ps(dummy_mask,fscal);
422
423             /* Calculate temporary vectorial force */
424             tx               = _mm_mul_ps(fscal,dx00);
425             ty               = _mm_mul_ps(fscal,dy00);
426             tz               = _mm_mul_ps(fscal,dz00);
427
428             /* Update vectorial force */
429             fix0             = _mm_add_ps(fix0,tx);
430             fiy0             = _mm_add_ps(fiy0,ty);
431             fiz0             = _mm_add_ps(fiz0,tz);
432
433             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
434             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
435             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
436             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
437             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
438
439             }
440
441             /* Inner loop uses 73 flops */
442         }
443
444         /* End of innermost loop */
445
446         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
447                                               f+i_coord_offset,fshift+i_shift_offset);
448
449         ggid                        = gid[iidx];
450         /* Update potential energies */
451         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
452         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
453
454         /* Increment number of inner iterations */
455         inneriter                  += j_index_end - j_index_start;
456
457         /* Outer loop uses 9 flops */
458     }
459
460     /* Increment number of outer iterations */
461     outeriter        += nri;
462
463     /* Update outer/inner flops */
464
465     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
466 }
467 /*
468  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse4_1_single
469  * Electrostatics interaction: ReactionField
470  * VdW interaction:            CubicSplineTable
471  * Geometry:                   Particle-Particle
472  * Calculate force/pot:        Force
473  */
474 void
475 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse4_1_single
476                     (t_nblist                    * gmx_restrict       nlist,
477                      rvec                        * gmx_restrict          xx,
478                      rvec                        * gmx_restrict          ff,
479                      struct t_forcerec           * gmx_restrict          fr,
480                      t_mdatoms                   * gmx_restrict     mdatoms,
481                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
482                      t_nrnb                      * gmx_restrict        nrnb)
483 {
484     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
485      * just 0 for non-waters.
486      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
487      * jnr indices corresponding to data put in the four positions in the SIMD register.
488      */
489     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
490     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
491     int              jnrA,jnrB,jnrC,jnrD;
492     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
493     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
494     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
495     real             rcutoff_scalar;
496     real             *shiftvec,*fshift,*x,*f;
497     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
498     real             scratch[4*DIM];
499     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
500     int              vdwioffset0;
501     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
502     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
503     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
504     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
505     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
506     real             *charge;
507     int              nvdwtype;
508     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
509     int              *vdwtype;
510     real             *vdwparam;
511     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
512     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
513     __m128i          vfitab;
514     __m128i          ifour       = _mm_set1_epi32(4);
515     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
516     real             *vftab;
517     __m128           dummy_mask,cutoff_mask;
518     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
519     __m128           one     = _mm_set1_ps(1.0);
520     __m128           two     = _mm_set1_ps(2.0);
521     x                = xx[0];
522     f                = ff[0];
523
524     nri              = nlist->nri;
525     iinr             = nlist->iinr;
526     jindex           = nlist->jindex;
527     jjnr             = nlist->jjnr;
528     shiftidx         = nlist->shift;
529     gid              = nlist->gid;
530     shiftvec         = fr->shift_vec[0];
531     fshift           = fr->fshift[0];
532     facel            = _mm_set1_ps(fr->ic->epsfac);
533     charge           = mdatoms->chargeA;
534     krf              = _mm_set1_ps(fr->ic->k_rf);
535     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
536     crf              = _mm_set1_ps(fr->ic->c_rf);
537     nvdwtype         = fr->ntype;
538     vdwparam         = fr->nbfp;
539     vdwtype          = mdatoms->typeA;
540
541     vftab            = kernel_data->table_vdw->data;
542     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
543
544     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
545     rcutoff_scalar   = fr->ic->rcoulomb;
546     rcutoff          = _mm_set1_ps(rcutoff_scalar);
547     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
548
549     /* Avoid stupid compiler warnings */
550     jnrA = jnrB = jnrC = jnrD = 0;
551     j_coord_offsetA = 0;
552     j_coord_offsetB = 0;
553     j_coord_offsetC = 0;
554     j_coord_offsetD = 0;
555
556     outeriter        = 0;
557     inneriter        = 0;
558
559     for(iidx=0;iidx<4*DIM;iidx++)
560     {
561         scratch[iidx] = 0.0;
562     }
563
564     /* Start outer loop over neighborlists */
565     for(iidx=0; iidx<nri; iidx++)
566     {
567         /* Load shift vector for this list */
568         i_shift_offset   = DIM*shiftidx[iidx];
569
570         /* Load limits for loop over neighbors */
571         j_index_start    = jindex[iidx];
572         j_index_end      = jindex[iidx+1];
573
574         /* Get outer coordinate index */
575         inr              = iinr[iidx];
576         i_coord_offset   = DIM*inr;
577
578         /* Load i particle coords and add shift vector */
579         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
580
581         fix0             = _mm_setzero_ps();
582         fiy0             = _mm_setzero_ps();
583         fiz0             = _mm_setzero_ps();
584
585         /* Load parameters for i particles */
586         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
587         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
588
589         /* Start inner kernel loop */
590         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
591         {
592
593             /* Get j neighbor index, and coordinate index */
594             jnrA             = jjnr[jidx];
595             jnrB             = jjnr[jidx+1];
596             jnrC             = jjnr[jidx+2];
597             jnrD             = jjnr[jidx+3];
598             j_coord_offsetA  = DIM*jnrA;
599             j_coord_offsetB  = DIM*jnrB;
600             j_coord_offsetC  = DIM*jnrC;
601             j_coord_offsetD  = DIM*jnrD;
602
603             /* load j atom coordinates */
604             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
605                                               x+j_coord_offsetC,x+j_coord_offsetD,
606                                               &jx0,&jy0,&jz0);
607
608             /* Calculate displacement vector */
609             dx00             = _mm_sub_ps(ix0,jx0);
610             dy00             = _mm_sub_ps(iy0,jy0);
611             dz00             = _mm_sub_ps(iz0,jz0);
612
613             /* Calculate squared distance and things based on it */
614             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
615
616             rinv00           = sse41_invsqrt_f(rsq00);
617
618             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
619
620             /* Load parameters for j particles */
621             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
622                                                               charge+jnrC+0,charge+jnrD+0);
623             vdwjidx0A        = 2*vdwtype[jnrA+0];
624             vdwjidx0B        = 2*vdwtype[jnrB+0];
625             vdwjidx0C        = 2*vdwtype[jnrC+0];
626             vdwjidx0D        = 2*vdwtype[jnrD+0];
627
628             /**************************
629              * CALCULATE INTERACTIONS *
630              **************************/
631
632             if (gmx_mm_any_lt(rsq00,rcutoff2))
633             {
634
635             r00              = _mm_mul_ps(rsq00,rinv00);
636
637             /* Compute parameters for interactions between i and j atoms */
638             qq00             = _mm_mul_ps(iq0,jq0);
639             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
640                                          vdwparam+vdwioffset0+vdwjidx0B,
641                                          vdwparam+vdwioffset0+vdwjidx0C,
642                                          vdwparam+vdwioffset0+vdwjidx0D,
643                                          &c6_00,&c12_00);
644
645             /* Calculate table index by multiplying r with table scale and truncate to integer */
646             rt               = _mm_mul_ps(r00,vftabscale);
647             vfitab           = _mm_cvttps_epi32(rt);
648             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
649             vfitab           = _mm_slli_epi32(vfitab,3);
650
651             /* REACTION-FIELD ELECTROSTATICS */
652             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
653
654             /* CUBIC SPLINE TABLE DISPERSION */
655             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
656             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
657             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
658             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
659             _MM_TRANSPOSE4_PS(Y,F,G,H);
660             Heps             = _mm_mul_ps(vfeps,H);
661             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
662             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
663             fvdw6            = _mm_mul_ps(c6_00,FF);
664
665             /* CUBIC SPLINE TABLE REPULSION */
666             vfitab           = _mm_add_epi32(vfitab,ifour);
667             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
668             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
669             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
670             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
671             _MM_TRANSPOSE4_PS(Y,F,G,H);
672             Heps             = _mm_mul_ps(vfeps,H);
673             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
674             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
675             fvdw12           = _mm_mul_ps(c12_00,FF);
676             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
677
678             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
679
680             fscal            = _mm_add_ps(felec,fvdw);
681
682             fscal            = _mm_and_ps(fscal,cutoff_mask);
683
684             /* Calculate temporary vectorial force */
685             tx               = _mm_mul_ps(fscal,dx00);
686             ty               = _mm_mul_ps(fscal,dy00);
687             tz               = _mm_mul_ps(fscal,dz00);
688
689             /* Update vectorial force */
690             fix0             = _mm_add_ps(fix0,tx);
691             fiy0             = _mm_add_ps(fiy0,ty);
692             fiz0             = _mm_add_ps(fiz0,tz);
693
694             fjptrA             = f+j_coord_offsetA;
695             fjptrB             = f+j_coord_offsetB;
696             fjptrC             = f+j_coord_offsetC;
697             fjptrD             = f+j_coord_offsetD;
698             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
699
700             }
701
702             /* Inner loop uses 57 flops */
703         }
704
705         if(jidx<j_index_end)
706         {
707
708             /* Get j neighbor index, and coordinate index */
709             jnrlistA         = jjnr[jidx];
710             jnrlistB         = jjnr[jidx+1];
711             jnrlistC         = jjnr[jidx+2];
712             jnrlistD         = jjnr[jidx+3];
713             /* Sign of each element will be negative for non-real atoms.
714              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
715              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
716              */
717             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
718             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
719             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
720             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
721             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
722             j_coord_offsetA  = DIM*jnrA;
723             j_coord_offsetB  = DIM*jnrB;
724             j_coord_offsetC  = DIM*jnrC;
725             j_coord_offsetD  = DIM*jnrD;
726
727             /* load j atom coordinates */
728             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
729                                               x+j_coord_offsetC,x+j_coord_offsetD,
730                                               &jx0,&jy0,&jz0);
731
732             /* Calculate displacement vector */
733             dx00             = _mm_sub_ps(ix0,jx0);
734             dy00             = _mm_sub_ps(iy0,jy0);
735             dz00             = _mm_sub_ps(iz0,jz0);
736
737             /* Calculate squared distance and things based on it */
738             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
739
740             rinv00           = sse41_invsqrt_f(rsq00);
741
742             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
743
744             /* Load parameters for j particles */
745             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
746                                                               charge+jnrC+0,charge+jnrD+0);
747             vdwjidx0A        = 2*vdwtype[jnrA+0];
748             vdwjidx0B        = 2*vdwtype[jnrB+0];
749             vdwjidx0C        = 2*vdwtype[jnrC+0];
750             vdwjidx0D        = 2*vdwtype[jnrD+0];
751
752             /**************************
753              * CALCULATE INTERACTIONS *
754              **************************/
755
756             if (gmx_mm_any_lt(rsq00,rcutoff2))
757             {
758
759             r00              = _mm_mul_ps(rsq00,rinv00);
760             r00              = _mm_andnot_ps(dummy_mask,r00);
761
762             /* Compute parameters for interactions between i and j atoms */
763             qq00             = _mm_mul_ps(iq0,jq0);
764             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
765                                          vdwparam+vdwioffset0+vdwjidx0B,
766                                          vdwparam+vdwioffset0+vdwjidx0C,
767                                          vdwparam+vdwioffset0+vdwjidx0D,
768                                          &c6_00,&c12_00);
769
770             /* Calculate table index by multiplying r with table scale and truncate to integer */
771             rt               = _mm_mul_ps(r00,vftabscale);
772             vfitab           = _mm_cvttps_epi32(rt);
773             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
774             vfitab           = _mm_slli_epi32(vfitab,3);
775
776             /* REACTION-FIELD ELECTROSTATICS */
777             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
778
779             /* CUBIC SPLINE TABLE DISPERSION */
780             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
781             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
782             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
783             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
784             _MM_TRANSPOSE4_PS(Y,F,G,H);
785             Heps             = _mm_mul_ps(vfeps,H);
786             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
787             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
788             fvdw6            = _mm_mul_ps(c6_00,FF);
789
790             /* CUBIC SPLINE TABLE REPULSION */
791             vfitab           = _mm_add_epi32(vfitab,ifour);
792             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
793             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
794             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
795             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
796             _MM_TRANSPOSE4_PS(Y,F,G,H);
797             Heps             = _mm_mul_ps(vfeps,H);
798             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
799             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
800             fvdw12           = _mm_mul_ps(c12_00,FF);
801             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
802
803             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
804
805             fscal            = _mm_add_ps(felec,fvdw);
806
807             fscal            = _mm_and_ps(fscal,cutoff_mask);
808
809             fscal            = _mm_andnot_ps(dummy_mask,fscal);
810
811             /* Calculate temporary vectorial force */
812             tx               = _mm_mul_ps(fscal,dx00);
813             ty               = _mm_mul_ps(fscal,dy00);
814             tz               = _mm_mul_ps(fscal,dz00);
815
816             /* Update vectorial force */
817             fix0             = _mm_add_ps(fix0,tx);
818             fiy0             = _mm_add_ps(fiy0,ty);
819             fiz0             = _mm_add_ps(fiz0,tz);
820
821             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
822             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
823             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
824             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
825             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
826
827             }
828
829             /* Inner loop uses 58 flops */
830         }
831
832         /* End of innermost loop */
833
834         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
835                                               f+i_coord_offset,fshift+i_shift_offset);
836
837         /* Increment number of inner iterations */
838         inneriter                  += j_index_end - j_index_start;
839
840         /* Outer loop uses 7 flops */
841     }
842
843     /* Increment number of outer iterations */
844     outeriter        += nri;
845
846     /* Update outer/inner flops */
847
848     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
849 }