Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse4_1_single
51  * Electrostatics interaction: None
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     int              nvdwtype;
88     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
92     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
93     __m128           dummy_mask,cutoff_mask;
94     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
95     __m128           one     = _mm_set1_ps(1.0);
96     __m128           two     = _mm_set1_ps(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     rcutoff_scalar   = fr->ic->rvdw;
113     rcutoff          = _mm_set1_ps(rcutoff_scalar);
114     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
115
116     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
117     rvdw             = _mm_set1_ps(fr->ic->rvdw);
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = jnrC = jnrD = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123     j_coord_offsetC = 0;
124     j_coord_offsetD = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     for(iidx=0;iidx<4*DIM;iidx++)
130     {
131         scratch[iidx] = 0.0;
132     }
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
150
151         fix0             = _mm_setzero_ps();
152         fiy0             = _mm_setzero_ps();
153         fiz0             = _mm_setzero_ps();
154
155         /* Load parameters for i particles */
156         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         vvdwsum          = _mm_setzero_ps();
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
163         {
164
165             /* Get j neighbor index, and coordinate index */
166             jnrA             = jjnr[jidx];
167             jnrB             = jjnr[jidx+1];
168             jnrC             = jjnr[jidx+2];
169             jnrD             = jjnr[jidx+3];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172             j_coord_offsetC  = DIM*jnrC;
173             j_coord_offsetD  = DIM*jnrD;
174
175             /* load j atom coordinates */
176             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
177                                               x+j_coord_offsetC,x+j_coord_offsetD,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_ps(ix0,jx0);
182             dy00             = _mm_sub_ps(iy0,jy0);
183             dz00             = _mm_sub_ps(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
187
188             rinvsq00         = sse41_inv_f(rsq00);
189
190             /* Load parameters for j particles */
191             vdwjidx0A        = 2*vdwtype[jnrA+0];
192             vdwjidx0B        = 2*vdwtype[jnrB+0];
193             vdwjidx0C        = 2*vdwtype[jnrC+0];
194             vdwjidx0D        = 2*vdwtype[jnrD+0];
195
196             /**************************
197              * CALCULATE INTERACTIONS *
198              **************************/
199
200             if (gmx_mm_any_lt(rsq00,rcutoff2))
201             {
202
203             /* Compute parameters for interactions between i and j atoms */
204             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
205                                          vdwparam+vdwioffset0+vdwjidx0B,
206                                          vdwparam+vdwioffset0+vdwjidx0C,
207                                          vdwparam+vdwioffset0+vdwjidx0D,
208                                          &c6_00,&c12_00);
209
210             /* LENNARD-JONES DISPERSION/REPULSION */
211
212             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
213             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
214             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
215             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
216                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
217             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
218
219             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
220
221             /* Update potential sum for this i atom from the interaction with this j atom. */
222             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
223             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
224
225             fscal            = fvdw;
226
227             fscal            = _mm_and_ps(fscal,cutoff_mask);
228
229             /* Calculate temporary vectorial force */
230             tx               = _mm_mul_ps(fscal,dx00);
231             ty               = _mm_mul_ps(fscal,dy00);
232             tz               = _mm_mul_ps(fscal,dz00);
233
234             /* Update vectorial force */
235             fix0             = _mm_add_ps(fix0,tx);
236             fiy0             = _mm_add_ps(fiy0,ty);
237             fiz0             = _mm_add_ps(fiz0,tz);
238
239             fjptrA             = f+j_coord_offsetA;
240             fjptrB             = f+j_coord_offsetB;
241             fjptrC             = f+j_coord_offsetC;
242             fjptrD             = f+j_coord_offsetD;
243             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
244
245             }
246
247             /* Inner loop uses 41 flops */
248         }
249
250         if(jidx<j_index_end)
251         {
252
253             /* Get j neighbor index, and coordinate index */
254             jnrlistA         = jjnr[jidx];
255             jnrlistB         = jjnr[jidx+1];
256             jnrlistC         = jjnr[jidx+2];
257             jnrlistD         = jjnr[jidx+3];
258             /* Sign of each element will be negative for non-real atoms.
259              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
260              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
261              */
262             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
263             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
264             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
265             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
266             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
267             j_coord_offsetA  = DIM*jnrA;
268             j_coord_offsetB  = DIM*jnrB;
269             j_coord_offsetC  = DIM*jnrC;
270             j_coord_offsetD  = DIM*jnrD;
271
272             /* load j atom coordinates */
273             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
274                                               x+j_coord_offsetC,x+j_coord_offsetD,
275                                               &jx0,&jy0,&jz0);
276
277             /* Calculate displacement vector */
278             dx00             = _mm_sub_ps(ix0,jx0);
279             dy00             = _mm_sub_ps(iy0,jy0);
280             dz00             = _mm_sub_ps(iz0,jz0);
281
282             /* Calculate squared distance and things based on it */
283             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
284
285             rinvsq00         = sse41_inv_f(rsq00);
286
287             /* Load parameters for j particles */
288             vdwjidx0A        = 2*vdwtype[jnrA+0];
289             vdwjidx0B        = 2*vdwtype[jnrB+0];
290             vdwjidx0C        = 2*vdwtype[jnrC+0];
291             vdwjidx0D        = 2*vdwtype[jnrD+0];
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             if (gmx_mm_any_lt(rsq00,rcutoff2))
298             {
299
300             /* Compute parameters for interactions between i and j atoms */
301             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
302                                          vdwparam+vdwioffset0+vdwjidx0B,
303                                          vdwparam+vdwioffset0+vdwjidx0C,
304                                          vdwparam+vdwioffset0+vdwjidx0D,
305                                          &c6_00,&c12_00);
306
307             /* LENNARD-JONES DISPERSION/REPULSION */
308
309             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
310             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
311             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
312             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
313                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
314             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
315
316             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
320             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
321             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
322
323             fscal            = fvdw;
324
325             fscal            = _mm_and_ps(fscal,cutoff_mask);
326
327             fscal            = _mm_andnot_ps(dummy_mask,fscal);
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm_mul_ps(fscal,dx00);
331             ty               = _mm_mul_ps(fscal,dy00);
332             tz               = _mm_mul_ps(fscal,dz00);
333
334             /* Update vectorial force */
335             fix0             = _mm_add_ps(fix0,tx);
336             fiy0             = _mm_add_ps(fiy0,ty);
337             fiz0             = _mm_add_ps(fiz0,tz);
338
339             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
340             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
341             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
342             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
343             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
344
345             }
346
347             /* Inner loop uses 41 flops */
348         }
349
350         /* End of innermost loop */
351
352         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
353                                               f+i_coord_offset,fshift+i_shift_offset);
354
355         ggid                        = gid[iidx];
356         /* Update potential energies */
357         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
358
359         /* Increment number of inner iterations */
360         inneriter                  += j_index_end - j_index_start;
361
362         /* Outer loop uses 7 flops */
363     }
364
365     /* Increment number of outer iterations */
366     outeriter        += nri;
367
368     /* Update outer/inner flops */
369
370     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*41);
371 }
372 /*
373  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse4_1_single
374  * Electrostatics interaction: None
375  * VdW interaction:            LennardJones
376  * Geometry:                   Particle-Particle
377  * Calculate force/pot:        Force
378  */
379 void
380 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse4_1_single
381                     (t_nblist                    * gmx_restrict       nlist,
382                      rvec                        * gmx_restrict          xx,
383                      rvec                        * gmx_restrict          ff,
384                      struct t_forcerec           * gmx_restrict          fr,
385                      t_mdatoms                   * gmx_restrict     mdatoms,
386                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
387                      t_nrnb                      * gmx_restrict        nrnb)
388 {
389     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
390      * just 0 for non-waters.
391      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
392      * jnr indices corresponding to data put in the four positions in the SIMD register.
393      */
394     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
395     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
396     int              jnrA,jnrB,jnrC,jnrD;
397     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
398     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
399     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
400     real             rcutoff_scalar;
401     real             *shiftvec,*fshift,*x,*f;
402     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
403     real             scratch[4*DIM];
404     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
405     int              vdwioffset0;
406     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
407     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
408     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
409     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
410     int              nvdwtype;
411     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
412     int              *vdwtype;
413     real             *vdwparam;
414     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
415     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
416     __m128           dummy_mask,cutoff_mask;
417     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
418     __m128           one     = _mm_set1_ps(1.0);
419     __m128           two     = _mm_set1_ps(2.0);
420     x                = xx[0];
421     f                = ff[0];
422
423     nri              = nlist->nri;
424     iinr             = nlist->iinr;
425     jindex           = nlist->jindex;
426     jjnr             = nlist->jjnr;
427     shiftidx         = nlist->shift;
428     gid              = nlist->gid;
429     shiftvec         = fr->shift_vec[0];
430     fshift           = fr->fshift[0];
431     nvdwtype         = fr->ntype;
432     vdwparam         = fr->nbfp;
433     vdwtype          = mdatoms->typeA;
434
435     rcutoff_scalar   = fr->ic->rvdw;
436     rcutoff          = _mm_set1_ps(rcutoff_scalar);
437     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
438
439     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
440     rvdw             = _mm_set1_ps(fr->ic->rvdw);
441
442     /* Avoid stupid compiler warnings */
443     jnrA = jnrB = jnrC = jnrD = 0;
444     j_coord_offsetA = 0;
445     j_coord_offsetB = 0;
446     j_coord_offsetC = 0;
447     j_coord_offsetD = 0;
448
449     outeriter        = 0;
450     inneriter        = 0;
451
452     for(iidx=0;iidx<4*DIM;iidx++)
453     {
454         scratch[iidx] = 0.0;
455     }
456
457     /* Start outer loop over neighborlists */
458     for(iidx=0; iidx<nri; iidx++)
459     {
460         /* Load shift vector for this list */
461         i_shift_offset   = DIM*shiftidx[iidx];
462
463         /* Load limits for loop over neighbors */
464         j_index_start    = jindex[iidx];
465         j_index_end      = jindex[iidx+1];
466
467         /* Get outer coordinate index */
468         inr              = iinr[iidx];
469         i_coord_offset   = DIM*inr;
470
471         /* Load i particle coords and add shift vector */
472         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
473
474         fix0             = _mm_setzero_ps();
475         fiy0             = _mm_setzero_ps();
476         fiz0             = _mm_setzero_ps();
477
478         /* Load parameters for i particles */
479         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
480
481         /* Start inner kernel loop */
482         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
483         {
484
485             /* Get j neighbor index, and coordinate index */
486             jnrA             = jjnr[jidx];
487             jnrB             = jjnr[jidx+1];
488             jnrC             = jjnr[jidx+2];
489             jnrD             = jjnr[jidx+3];
490             j_coord_offsetA  = DIM*jnrA;
491             j_coord_offsetB  = DIM*jnrB;
492             j_coord_offsetC  = DIM*jnrC;
493             j_coord_offsetD  = DIM*jnrD;
494
495             /* load j atom coordinates */
496             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
497                                               x+j_coord_offsetC,x+j_coord_offsetD,
498                                               &jx0,&jy0,&jz0);
499
500             /* Calculate displacement vector */
501             dx00             = _mm_sub_ps(ix0,jx0);
502             dy00             = _mm_sub_ps(iy0,jy0);
503             dz00             = _mm_sub_ps(iz0,jz0);
504
505             /* Calculate squared distance and things based on it */
506             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
507
508             rinvsq00         = sse41_inv_f(rsq00);
509
510             /* Load parameters for j particles */
511             vdwjidx0A        = 2*vdwtype[jnrA+0];
512             vdwjidx0B        = 2*vdwtype[jnrB+0];
513             vdwjidx0C        = 2*vdwtype[jnrC+0];
514             vdwjidx0D        = 2*vdwtype[jnrD+0];
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             if (gmx_mm_any_lt(rsq00,rcutoff2))
521             {
522
523             /* Compute parameters for interactions between i and j atoms */
524             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
525                                          vdwparam+vdwioffset0+vdwjidx0B,
526                                          vdwparam+vdwioffset0+vdwjidx0C,
527                                          vdwparam+vdwioffset0+vdwjidx0D,
528                                          &c6_00,&c12_00);
529
530             /* LENNARD-JONES DISPERSION/REPULSION */
531
532             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
533             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
534
535             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
536
537             fscal            = fvdw;
538
539             fscal            = _mm_and_ps(fscal,cutoff_mask);
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm_mul_ps(fscal,dx00);
543             ty               = _mm_mul_ps(fscal,dy00);
544             tz               = _mm_mul_ps(fscal,dz00);
545
546             /* Update vectorial force */
547             fix0             = _mm_add_ps(fix0,tx);
548             fiy0             = _mm_add_ps(fiy0,ty);
549             fiz0             = _mm_add_ps(fiz0,tz);
550
551             fjptrA             = f+j_coord_offsetA;
552             fjptrB             = f+j_coord_offsetB;
553             fjptrC             = f+j_coord_offsetC;
554             fjptrD             = f+j_coord_offsetD;
555             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
556
557             }
558
559             /* Inner loop uses 30 flops */
560         }
561
562         if(jidx<j_index_end)
563         {
564
565             /* Get j neighbor index, and coordinate index */
566             jnrlistA         = jjnr[jidx];
567             jnrlistB         = jjnr[jidx+1];
568             jnrlistC         = jjnr[jidx+2];
569             jnrlistD         = jjnr[jidx+3];
570             /* Sign of each element will be negative for non-real atoms.
571              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
572              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
573              */
574             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
575             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
576             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
577             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
578             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
579             j_coord_offsetA  = DIM*jnrA;
580             j_coord_offsetB  = DIM*jnrB;
581             j_coord_offsetC  = DIM*jnrC;
582             j_coord_offsetD  = DIM*jnrD;
583
584             /* load j atom coordinates */
585             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
586                                               x+j_coord_offsetC,x+j_coord_offsetD,
587                                               &jx0,&jy0,&jz0);
588
589             /* Calculate displacement vector */
590             dx00             = _mm_sub_ps(ix0,jx0);
591             dy00             = _mm_sub_ps(iy0,jy0);
592             dz00             = _mm_sub_ps(iz0,jz0);
593
594             /* Calculate squared distance and things based on it */
595             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
596
597             rinvsq00         = sse41_inv_f(rsq00);
598
599             /* Load parameters for j particles */
600             vdwjidx0A        = 2*vdwtype[jnrA+0];
601             vdwjidx0B        = 2*vdwtype[jnrB+0];
602             vdwjidx0C        = 2*vdwtype[jnrC+0];
603             vdwjidx0D        = 2*vdwtype[jnrD+0];
604
605             /**************************
606              * CALCULATE INTERACTIONS *
607              **************************/
608
609             if (gmx_mm_any_lt(rsq00,rcutoff2))
610             {
611
612             /* Compute parameters for interactions between i and j atoms */
613             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
614                                          vdwparam+vdwioffset0+vdwjidx0B,
615                                          vdwparam+vdwioffset0+vdwjidx0C,
616                                          vdwparam+vdwioffset0+vdwjidx0D,
617                                          &c6_00,&c12_00);
618
619             /* LENNARD-JONES DISPERSION/REPULSION */
620
621             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
622             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
623
624             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
625
626             fscal            = fvdw;
627
628             fscal            = _mm_and_ps(fscal,cutoff_mask);
629
630             fscal            = _mm_andnot_ps(dummy_mask,fscal);
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm_mul_ps(fscal,dx00);
634             ty               = _mm_mul_ps(fscal,dy00);
635             tz               = _mm_mul_ps(fscal,dz00);
636
637             /* Update vectorial force */
638             fix0             = _mm_add_ps(fix0,tx);
639             fiy0             = _mm_add_ps(fiy0,ty);
640             fiz0             = _mm_add_ps(fiz0,tz);
641
642             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
643             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
644             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
645             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
646             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
647
648             }
649
650             /* Inner loop uses 30 flops */
651         }
652
653         /* End of innermost loop */
654
655         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
656                                               f+i_coord_offset,fshift+i_shift_offset);
657
658         /* Increment number of inner iterations */
659         inneriter                  += j_index_end - j_index_start;
660
661         /* Outer loop uses 6 flops */
662     }
663
664     /* Increment number of outer iterations */
665     outeriter        += nri;
666
667     /* Update outer/inner flops */
668
669     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30);
670 }