f3390379e89e71c9287fb7e87dd436da9bae8834
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse4_1_single
52  * Electrostatics interaction: None
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     int              nvdwtype;
89     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
93     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
94     __m128           c6grid_00;
95     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
96     real             *vdwgridparam;
97     __m128           one_half  = _mm_set1_ps(0.5);
98     __m128           minus_one = _mm_set1_ps(-1.0);
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117     vdwgridparam     = fr->ljpme_c6grid;
118     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
119     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
120     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm_setzero_ps();
155         fiy0             = _mm_setzero_ps();
156         fiz0             = _mm_setzero_ps();
157
158         /* Load parameters for i particles */
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         vvdwsum          = _mm_setzero_ps();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               x+j_coord_offsetC,x+j_coord_offsetD,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_ps(ix0,jx0);
185             dy00             = _mm_sub_ps(iy0,jy0);
186             dz00             = _mm_sub_ps(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
190
191             rinv00           = gmx_mm_invsqrt_ps(rsq00);
192
193             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198             vdwjidx0C        = 2*vdwtype[jnrC+0];
199             vdwjidx0D        = 2*vdwtype[jnrD+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _mm_mul_ps(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
209                                          vdwparam+vdwioffset0+vdwjidx0B,
210                                          vdwparam+vdwioffset0+vdwjidx0C,
211                                          vdwparam+vdwioffset0+vdwjidx0D,
212                                          &c6_00,&c12_00);
213
214             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
215                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
216                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
217                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
218
219             /* Analytical LJ-PME */
220             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
221             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
222             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
223             exponent         = gmx_simd_exp_r(ewcljrsq);
224             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
225             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
226             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
227             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
228             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
229             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
230             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
231             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
232
233             /* Update potential sum for this i atom from the interaction with this j atom. */
234             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
235
236             fscal            = fvdw;
237
238             /* Calculate temporary vectorial force */
239             tx               = _mm_mul_ps(fscal,dx00);
240             ty               = _mm_mul_ps(fscal,dy00);
241             tz               = _mm_mul_ps(fscal,dz00);
242
243             /* Update vectorial force */
244             fix0             = _mm_add_ps(fix0,tx);
245             fiy0             = _mm_add_ps(fiy0,ty);
246             fiz0             = _mm_add_ps(fiz0,tz);
247
248             fjptrA             = f+j_coord_offsetA;
249             fjptrB             = f+j_coord_offsetB;
250             fjptrC             = f+j_coord_offsetC;
251             fjptrD             = f+j_coord_offsetD;
252             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
253
254             /* Inner loop uses 51 flops */
255         }
256
257         if(jidx<j_index_end)
258         {
259
260             /* Get j neighbor index, and coordinate index */
261             jnrlistA         = jjnr[jidx];
262             jnrlistB         = jjnr[jidx+1];
263             jnrlistC         = jjnr[jidx+2];
264             jnrlistD         = jjnr[jidx+3];
265             /* Sign of each element will be negative for non-real atoms.
266              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
267              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
268              */
269             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
270             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
271             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
272             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
273             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
274             j_coord_offsetA  = DIM*jnrA;
275             j_coord_offsetB  = DIM*jnrB;
276             j_coord_offsetC  = DIM*jnrC;
277             j_coord_offsetD  = DIM*jnrD;
278
279             /* load j atom coordinates */
280             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
281                                               x+j_coord_offsetC,x+j_coord_offsetD,
282                                               &jx0,&jy0,&jz0);
283
284             /* Calculate displacement vector */
285             dx00             = _mm_sub_ps(ix0,jx0);
286             dy00             = _mm_sub_ps(iy0,jy0);
287             dz00             = _mm_sub_ps(iz0,jz0);
288
289             /* Calculate squared distance and things based on it */
290             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
291
292             rinv00           = gmx_mm_invsqrt_ps(rsq00);
293
294             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
295
296             /* Load parameters for j particles */
297             vdwjidx0A        = 2*vdwtype[jnrA+0];
298             vdwjidx0B        = 2*vdwtype[jnrB+0];
299             vdwjidx0C        = 2*vdwtype[jnrC+0];
300             vdwjidx0D        = 2*vdwtype[jnrD+0];
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             r00              = _mm_mul_ps(rsq00,rinv00);
307             r00              = _mm_andnot_ps(dummy_mask,r00);
308
309             /* Compute parameters for interactions between i and j atoms */
310             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
311                                          vdwparam+vdwioffset0+vdwjidx0B,
312                                          vdwparam+vdwioffset0+vdwjidx0C,
313                                          vdwparam+vdwioffset0+vdwjidx0D,
314                                          &c6_00,&c12_00);
315
316             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
317                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
318                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
319                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
320
321             /* Analytical LJ-PME */
322             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
323             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
324             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
325             exponent         = gmx_simd_exp_r(ewcljrsq);
326             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
327             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
328             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
329             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
330             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
331             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
332             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
333             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
337             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
338
339             fscal            = fvdw;
340
341             fscal            = _mm_andnot_ps(dummy_mask,fscal);
342
343             /* Calculate temporary vectorial force */
344             tx               = _mm_mul_ps(fscal,dx00);
345             ty               = _mm_mul_ps(fscal,dy00);
346             tz               = _mm_mul_ps(fscal,dz00);
347
348             /* Update vectorial force */
349             fix0             = _mm_add_ps(fix0,tx);
350             fiy0             = _mm_add_ps(fiy0,ty);
351             fiz0             = _mm_add_ps(fiz0,tz);
352
353             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
354             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
355             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
356             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
357             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
358
359             /* Inner loop uses 52 flops */
360         }
361
362         /* End of innermost loop */
363
364         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
365                                               f+i_coord_offset,fshift+i_shift_offset);
366
367         ggid                        = gid[iidx];
368         /* Update potential energies */
369         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
370
371         /* Increment number of inner iterations */
372         inneriter                  += j_index_end - j_index_start;
373
374         /* Outer loop uses 7 flops */
375     }
376
377     /* Increment number of outer iterations */
378     outeriter        += nri;
379
380     /* Update outer/inner flops */
381
382     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*52);
383 }
384 /*
385  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse4_1_single
386  * Electrostatics interaction: None
387  * VdW interaction:            LJEwald
388  * Geometry:                   Particle-Particle
389  * Calculate force/pot:        Force
390  */
391 void
392 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse4_1_single
393                     (t_nblist                    * gmx_restrict       nlist,
394                      rvec                        * gmx_restrict          xx,
395                      rvec                        * gmx_restrict          ff,
396                      t_forcerec                  * gmx_restrict          fr,
397                      t_mdatoms                   * gmx_restrict     mdatoms,
398                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
399                      t_nrnb                      * gmx_restrict        nrnb)
400 {
401     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
402      * just 0 for non-waters.
403      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
404      * jnr indices corresponding to data put in the four positions in the SIMD register.
405      */
406     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
407     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
408     int              jnrA,jnrB,jnrC,jnrD;
409     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
410     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
411     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
412     real             rcutoff_scalar;
413     real             *shiftvec,*fshift,*x,*f;
414     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
415     real             scratch[4*DIM];
416     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
417     int              vdwioffset0;
418     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
419     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
420     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
421     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
422     int              nvdwtype;
423     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
424     int              *vdwtype;
425     real             *vdwparam;
426     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
427     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
428     __m128           c6grid_00;
429     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
430     real             *vdwgridparam;
431     __m128           one_half  = _mm_set1_ps(0.5);
432     __m128           minus_one = _mm_set1_ps(-1.0);
433     __m128           dummy_mask,cutoff_mask;
434     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
435     __m128           one     = _mm_set1_ps(1.0);
436     __m128           two     = _mm_set1_ps(2.0);
437     x                = xx[0];
438     f                = ff[0];
439
440     nri              = nlist->nri;
441     iinr             = nlist->iinr;
442     jindex           = nlist->jindex;
443     jjnr             = nlist->jjnr;
444     shiftidx         = nlist->shift;
445     gid              = nlist->gid;
446     shiftvec         = fr->shift_vec[0];
447     fshift           = fr->fshift[0];
448     nvdwtype         = fr->ntype;
449     vdwparam         = fr->nbfp;
450     vdwtype          = mdatoms->typeA;
451     vdwgridparam     = fr->ljpme_c6grid;
452     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
453     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
454     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
455
456     /* Avoid stupid compiler warnings */
457     jnrA = jnrB = jnrC = jnrD = 0;
458     j_coord_offsetA = 0;
459     j_coord_offsetB = 0;
460     j_coord_offsetC = 0;
461     j_coord_offsetD = 0;
462
463     outeriter        = 0;
464     inneriter        = 0;
465
466     for(iidx=0;iidx<4*DIM;iidx++)
467     {
468         scratch[iidx] = 0.0;
469     }
470
471     /* Start outer loop over neighborlists */
472     for(iidx=0; iidx<nri; iidx++)
473     {
474         /* Load shift vector for this list */
475         i_shift_offset   = DIM*shiftidx[iidx];
476
477         /* Load limits for loop over neighbors */
478         j_index_start    = jindex[iidx];
479         j_index_end      = jindex[iidx+1];
480
481         /* Get outer coordinate index */
482         inr              = iinr[iidx];
483         i_coord_offset   = DIM*inr;
484
485         /* Load i particle coords and add shift vector */
486         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
487
488         fix0             = _mm_setzero_ps();
489         fiy0             = _mm_setzero_ps();
490         fiz0             = _mm_setzero_ps();
491
492         /* Load parameters for i particles */
493         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
494
495         /* Start inner kernel loop */
496         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
497         {
498
499             /* Get j neighbor index, and coordinate index */
500             jnrA             = jjnr[jidx];
501             jnrB             = jjnr[jidx+1];
502             jnrC             = jjnr[jidx+2];
503             jnrD             = jjnr[jidx+3];
504             j_coord_offsetA  = DIM*jnrA;
505             j_coord_offsetB  = DIM*jnrB;
506             j_coord_offsetC  = DIM*jnrC;
507             j_coord_offsetD  = DIM*jnrD;
508
509             /* load j atom coordinates */
510             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
511                                               x+j_coord_offsetC,x+j_coord_offsetD,
512                                               &jx0,&jy0,&jz0);
513
514             /* Calculate displacement vector */
515             dx00             = _mm_sub_ps(ix0,jx0);
516             dy00             = _mm_sub_ps(iy0,jy0);
517             dz00             = _mm_sub_ps(iz0,jz0);
518
519             /* Calculate squared distance and things based on it */
520             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
521
522             rinv00           = gmx_mm_invsqrt_ps(rsq00);
523
524             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
525
526             /* Load parameters for j particles */
527             vdwjidx0A        = 2*vdwtype[jnrA+0];
528             vdwjidx0B        = 2*vdwtype[jnrB+0];
529             vdwjidx0C        = 2*vdwtype[jnrC+0];
530             vdwjidx0D        = 2*vdwtype[jnrD+0];
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             r00              = _mm_mul_ps(rsq00,rinv00);
537
538             /* Compute parameters for interactions between i and j atoms */
539             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
540                                          vdwparam+vdwioffset0+vdwjidx0B,
541                                          vdwparam+vdwioffset0+vdwjidx0C,
542                                          vdwparam+vdwioffset0+vdwjidx0D,
543                                          &c6_00,&c12_00);
544
545             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
546                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
547                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
548                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
549
550             /* Analytical LJ-PME */
551             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
552             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
553             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
554             exponent         = gmx_simd_exp_r(ewcljrsq);
555             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
556             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
557             /* f6A = 6 * C6grid * (1 - poly) */
558             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
559             /* f6B = C6grid * exponent * beta^6 */
560             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
561             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
562             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
563
564             fscal            = fvdw;
565
566             /* Calculate temporary vectorial force */
567             tx               = _mm_mul_ps(fscal,dx00);
568             ty               = _mm_mul_ps(fscal,dy00);
569             tz               = _mm_mul_ps(fscal,dz00);
570
571             /* Update vectorial force */
572             fix0             = _mm_add_ps(fix0,tx);
573             fiy0             = _mm_add_ps(fiy0,ty);
574             fiz0             = _mm_add_ps(fiz0,tz);
575
576             fjptrA             = f+j_coord_offsetA;
577             fjptrB             = f+j_coord_offsetB;
578             fjptrC             = f+j_coord_offsetC;
579             fjptrD             = f+j_coord_offsetD;
580             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
581
582             /* Inner loop uses 46 flops */
583         }
584
585         if(jidx<j_index_end)
586         {
587
588             /* Get j neighbor index, and coordinate index */
589             jnrlistA         = jjnr[jidx];
590             jnrlistB         = jjnr[jidx+1];
591             jnrlistC         = jjnr[jidx+2];
592             jnrlistD         = jjnr[jidx+3];
593             /* Sign of each element will be negative for non-real atoms.
594              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
595              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
596              */
597             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
598             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
599             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
600             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
601             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
602             j_coord_offsetA  = DIM*jnrA;
603             j_coord_offsetB  = DIM*jnrB;
604             j_coord_offsetC  = DIM*jnrC;
605             j_coord_offsetD  = DIM*jnrD;
606
607             /* load j atom coordinates */
608             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
609                                               x+j_coord_offsetC,x+j_coord_offsetD,
610                                               &jx0,&jy0,&jz0);
611
612             /* Calculate displacement vector */
613             dx00             = _mm_sub_ps(ix0,jx0);
614             dy00             = _mm_sub_ps(iy0,jy0);
615             dz00             = _mm_sub_ps(iz0,jz0);
616
617             /* Calculate squared distance and things based on it */
618             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
619
620             rinv00           = gmx_mm_invsqrt_ps(rsq00);
621
622             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
623
624             /* Load parameters for j particles */
625             vdwjidx0A        = 2*vdwtype[jnrA+0];
626             vdwjidx0B        = 2*vdwtype[jnrB+0];
627             vdwjidx0C        = 2*vdwtype[jnrC+0];
628             vdwjidx0D        = 2*vdwtype[jnrD+0];
629
630             /**************************
631              * CALCULATE INTERACTIONS *
632              **************************/
633
634             r00              = _mm_mul_ps(rsq00,rinv00);
635             r00              = _mm_andnot_ps(dummy_mask,r00);
636
637             /* Compute parameters for interactions between i and j atoms */
638             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
639                                          vdwparam+vdwioffset0+vdwjidx0B,
640                                          vdwparam+vdwioffset0+vdwjidx0C,
641                                          vdwparam+vdwioffset0+vdwjidx0D,
642                                          &c6_00,&c12_00);
643
644             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
645                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
646                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
647                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
648
649             /* Analytical LJ-PME */
650             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
651             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
652             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
653             exponent         = gmx_simd_exp_r(ewcljrsq);
654             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
655             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
656             /* f6A = 6 * C6grid * (1 - poly) */
657             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
658             /* f6B = C6grid * exponent * beta^6 */
659             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
660             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
661             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
662
663             fscal            = fvdw;
664
665             fscal            = _mm_andnot_ps(dummy_mask,fscal);
666
667             /* Calculate temporary vectorial force */
668             tx               = _mm_mul_ps(fscal,dx00);
669             ty               = _mm_mul_ps(fscal,dy00);
670             tz               = _mm_mul_ps(fscal,dz00);
671
672             /* Update vectorial force */
673             fix0             = _mm_add_ps(fix0,tx);
674             fiy0             = _mm_add_ps(fiy0,ty);
675             fiz0             = _mm_add_ps(fiz0,tz);
676
677             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
678             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
679             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
680             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
681             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
682
683             /* Inner loop uses 47 flops */
684         }
685
686         /* End of innermost loop */
687
688         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
689                                               f+i_coord_offset,fshift+i_shift_offset);
690
691         /* Increment number of inner iterations */
692         inneriter                  += j_index_end - j_index_start;
693
694         /* Outer loop uses 6 flops */
695     }
696
697     /* Increment number of outer iterations */
698     outeriter        += nri;
699
700     /* Update outer/inner flops */
701
702     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*47);
703 }