Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse4_1_single
54  * Electrostatics interaction: None
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           c6grid_00;
97     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98     real             *vdwgridparam;
99     __m128           one_half  = _mm_set1_ps(0.5);
100     __m128           minus_one = _mm_set1_ps(-1.0);
101     __m128           dummy_mask,cutoff_mask;
102     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103     __m128           one     = _mm_set1_ps(1.0);
104     __m128           two     = _mm_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119     vdwgridparam     = fr->ljpme_c6grid;
120     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
121     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
122     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm_setzero_ps();
157         fiy0             = _mm_setzero_ps();
158         fiz0             = _mm_setzero_ps();
159
160         /* Load parameters for i particles */
161         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         vvdwsum          = _mm_setzero_ps();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             jnrC             = jjnr[jidx+2];
174             jnrD             = jjnr[jidx+3];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             j_coord_offsetC  = DIM*jnrC;
178             j_coord_offsetD  = DIM*jnrD;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               x+j_coord_offsetC,x+j_coord_offsetD,
183                                               &jx0,&jy0,&jz0);
184
185             /* Calculate displacement vector */
186             dx00             = _mm_sub_ps(ix0,jx0);
187             dy00             = _mm_sub_ps(iy0,jy0);
188             dz00             = _mm_sub_ps(iz0,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
192
193             rinv00           = gmx_mm_invsqrt_ps(rsq00);
194
195             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
196
197             /* Load parameters for j particles */
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200             vdwjidx0C        = 2*vdwtype[jnrC+0];
201             vdwjidx0D        = 2*vdwtype[jnrD+0];
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             r00              = _mm_mul_ps(rsq00,rinv00);
208
209             /* Compute parameters for interactions between i and j atoms */
210             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
211                                          vdwparam+vdwioffset0+vdwjidx0B,
212                                          vdwparam+vdwioffset0+vdwjidx0C,
213                                          vdwparam+vdwioffset0+vdwjidx0D,
214                                          &c6_00,&c12_00);
215
216             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
217                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
218                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
219                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
220
221             /* Analytical LJ-PME */
222             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
223             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
224             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
225             exponent         = gmx_simd_exp_r(ewcljrsq);
226             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
227             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
228             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
229             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
230             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
231             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
232             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
233             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
234
235             /* Update potential sum for this i atom from the interaction with this j atom. */
236             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
237
238             fscal            = fvdw;
239
240             /* Calculate temporary vectorial force */
241             tx               = _mm_mul_ps(fscal,dx00);
242             ty               = _mm_mul_ps(fscal,dy00);
243             tz               = _mm_mul_ps(fscal,dz00);
244
245             /* Update vectorial force */
246             fix0             = _mm_add_ps(fix0,tx);
247             fiy0             = _mm_add_ps(fiy0,ty);
248             fiz0             = _mm_add_ps(fiz0,tz);
249
250             fjptrA             = f+j_coord_offsetA;
251             fjptrB             = f+j_coord_offsetB;
252             fjptrC             = f+j_coord_offsetC;
253             fjptrD             = f+j_coord_offsetD;
254             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
255
256             /* Inner loop uses 51 flops */
257         }
258
259         if(jidx<j_index_end)
260         {
261
262             /* Get j neighbor index, and coordinate index */
263             jnrlistA         = jjnr[jidx];
264             jnrlistB         = jjnr[jidx+1];
265             jnrlistC         = jjnr[jidx+2];
266             jnrlistD         = jjnr[jidx+3];
267             /* Sign of each element will be negative for non-real atoms.
268              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
269              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
270              */
271             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
272             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
273             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
274             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
275             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
276             j_coord_offsetA  = DIM*jnrA;
277             j_coord_offsetB  = DIM*jnrB;
278             j_coord_offsetC  = DIM*jnrC;
279             j_coord_offsetD  = DIM*jnrD;
280
281             /* load j atom coordinates */
282             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
283                                               x+j_coord_offsetC,x+j_coord_offsetD,
284                                               &jx0,&jy0,&jz0);
285
286             /* Calculate displacement vector */
287             dx00             = _mm_sub_ps(ix0,jx0);
288             dy00             = _mm_sub_ps(iy0,jy0);
289             dz00             = _mm_sub_ps(iz0,jz0);
290
291             /* Calculate squared distance and things based on it */
292             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
293
294             rinv00           = gmx_mm_invsqrt_ps(rsq00);
295
296             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
297
298             /* Load parameters for j particles */
299             vdwjidx0A        = 2*vdwtype[jnrA+0];
300             vdwjidx0B        = 2*vdwtype[jnrB+0];
301             vdwjidx0C        = 2*vdwtype[jnrC+0];
302             vdwjidx0D        = 2*vdwtype[jnrD+0];
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             r00              = _mm_mul_ps(rsq00,rinv00);
309             r00              = _mm_andnot_ps(dummy_mask,r00);
310
311             /* Compute parameters for interactions between i and j atoms */
312             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
313                                          vdwparam+vdwioffset0+vdwjidx0B,
314                                          vdwparam+vdwioffset0+vdwjidx0C,
315                                          vdwparam+vdwioffset0+vdwjidx0D,
316                                          &c6_00,&c12_00);
317
318             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
319                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
320                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
321                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
322
323             /* Analytical LJ-PME */
324             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
325             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
326             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
327             exponent         = gmx_simd_exp_r(ewcljrsq);
328             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
329             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
330             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
331             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
332             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
333             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
334             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
335             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
339             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
340
341             fscal            = fvdw;
342
343             fscal            = _mm_andnot_ps(dummy_mask,fscal);
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm_mul_ps(fscal,dx00);
347             ty               = _mm_mul_ps(fscal,dy00);
348             tz               = _mm_mul_ps(fscal,dz00);
349
350             /* Update vectorial force */
351             fix0             = _mm_add_ps(fix0,tx);
352             fiy0             = _mm_add_ps(fiy0,ty);
353             fiz0             = _mm_add_ps(fiz0,tz);
354
355             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
356             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
357             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
358             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
359             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
360
361             /* Inner loop uses 52 flops */
362         }
363
364         /* End of innermost loop */
365
366         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
367                                               f+i_coord_offset,fshift+i_shift_offset);
368
369         ggid                        = gid[iidx];
370         /* Update potential energies */
371         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
372
373         /* Increment number of inner iterations */
374         inneriter                  += j_index_end - j_index_start;
375
376         /* Outer loop uses 7 flops */
377     }
378
379     /* Increment number of outer iterations */
380     outeriter        += nri;
381
382     /* Update outer/inner flops */
383
384     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*52);
385 }
386 /*
387  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse4_1_single
388  * Electrostatics interaction: None
389  * VdW interaction:            LJEwald
390  * Geometry:                   Particle-Particle
391  * Calculate force/pot:        Force
392  */
393 void
394 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse4_1_single
395                     (t_nblist                    * gmx_restrict       nlist,
396                      rvec                        * gmx_restrict          xx,
397                      rvec                        * gmx_restrict          ff,
398                      t_forcerec                  * gmx_restrict          fr,
399                      t_mdatoms                   * gmx_restrict     mdatoms,
400                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
401                      t_nrnb                      * gmx_restrict        nrnb)
402 {
403     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
404      * just 0 for non-waters.
405      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
406      * jnr indices corresponding to data put in the four positions in the SIMD register.
407      */
408     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
409     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
410     int              jnrA,jnrB,jnrC,jnrD;
411     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
412     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
413     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
414     real             rcutoff_scalar;
415     real             *shiftvec,*fshift,*x,*f;
416     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
417     real             scratch[4*DIM];
418     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
419     int              vdwioffset0;
420     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
421     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
422     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
423     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
424     int              nvdwtype;
425     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
426     int              *vdwtype;
427     real             *vdwparam;
428     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
429     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
430     __m128           c6grid_00;
431     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
432     real             *vdwgridparam;
433     __m128           one_half  = _mm_set1_ps(0.5);
434     __m128           minus_one = _mm_set1_ps(-1.0);
435     __m128           dummy_mask,cutoff_mask;
436     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
437     __m128           one     = _mm_set1_ps(1.0);
438     __m128           two     = _mm_set1_ps(2.0);
439     x                = xx[0];
440     f                = ff[0];
441
442     nri              = nlist->nri;
443     iinr             = nlist->iinr;
444     jindex           = nlist->jindex;
445     jjnr             = nlist->jjnr;
446     shiftidx         = nlist->shift;
447     gid              = nlist->gid;
448     shiftvec         = fr->shift_vec[0];
449     fshift           = fr->fshift[0];
450     nvdwtype         = fr->ntype;
451     vdwparam         = fr->nbfp;
452     vdwtype          = mdatoms->typeA;
453     vdwgridparam     = fr->ljpme_c6grid;
454     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
455     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
456     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
457
458     /* Avoid stupid compiler warnings */
459     jnrA = jnrB = jnrC = jnrD = 0;
460     j_coord_offsetA = 0;
461     j_coord_offsetB = 0;
462     j_coord_offsetC = 0;
463     j_coord_offsetD = 0;
464
465     outeriter        = 0;
466     inneriter        = 0;
467
468     for(iidx=0;iidx<4*DIM;iidx++)
469     {
470         scratch[iidx] = 0.0;
471     }
472
473     /* Start outer loop over neighborlists */
474     for(iidx=0; iidx<nri; iidx++)
475     {
476         /* Load shift vector for this list */
477         i_shift_offset   = DIM*shiftidx[iidx];
478
479         /* Load limits for loop over neighbors */
480         j_index_start    = jindex[iidx];
481         j_index_end      = jindex[iidx+1];
482
483         /* Get outer coordinate index */
484         inr              = iinr[iidx];
485         i_coord_offset   = DIM*inr;
486
487         /* Load i particle coords and add shift vector */
488         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
489
490         fix0             = _mm_setzero_ps();
491         fiy0             = _mm_setzero_ps();
492         fiz0             = _mm_setzero_ps();
493
494         /* Load parameters for i particles */
495         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
496
497         /* Start inner kernel loop */
498         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
499         {
500
501             /* Get j neighbor index, and coordinate index */
502             jnrA             = jjnr[jidx];
503             jnrB             = jjnr[jidx+1];
504             jnrC             = jjnr[jidx+2];
505             jnrD             = jjnr[jidx+3];
506             j_coord_offsetA  = DIM*jnrA;
507             j_coord_offsetB  = DIM*jnrB;
508             j_coord_offsetC  = DIM*jnrC;
509             j_coord_offsetD  = DIM*jnrD;
510
511             /* load j atom coordinates */
512             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
513                                               x+j_coord_offsetC,x+j_coord_offsetD,
514                                               &jx0,&jy0,&jz0);
515
516             /* Calculate displacement vector */
517             dx00             = _mm_sub_ps(ix0,jx0);
518             dy00             = _mm_sub_ps(iy0,jy0);
519             dz00             = _mm_sub_ps(iz0,jz0);
520
521             /* Calculate squared distance and things based on it */
522             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
523
524             rinv00           = gmx_mm_invsqrt_ps(rsq00);
525
526             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
527
528             /* Load parameters for j particles */
529             vdwjidx0A        = 2*vdwtype[jnrA+0];
530             vdwjidx0B        = 2*vdwtype[jnrB+0];
531             vdwjidx0C        = 2*vdwtype[jnrC+0];
532             vdwjidx0D        = 2*vdwtype[jnrD+0];
533
534             /**************************
535              * CALCULATE INTERACTIONS *
536              **************************/
537
538             r00              = _mm_mul_ps(rsq00,rinv00);
539
540             /* Compute parameters for interactions between i and j atoms */
541             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
542                                          vdwparam+vdwioffset0+vdwjidx0B,
543                                          vdwparam+vdwioffset0+vdwjidx0C,
544                                          vdwparam+vdwioffset0+vdwjidx0D,
545                                          &c6_00,&c12_00);
546
547             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
548                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
549                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
550                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
551
552             /* Analytical LJ-PME */
553             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
554             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
555             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
556             exponent         = gmx_simd_exp_r(ewcljrsq);
557             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
558             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
559             /* f6A = 6 * C6grid * (1 - poly) */
560             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
561             /* f6B = C6grid * exponent * beta^6 */
562             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
563             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
564             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
565
566             fscal            = fvdw;
567
568             /* Calculate temporary vectorial force */
569             tx               = _mm_mul_ps(fscal,dx00);
570             ty               = _mm_mul_ps(fscal,dy00);
571             tz               = _mm_mul_ps(fscal,dz00);
572
573             /* Update vectorial force */
574             fix0             = _mm_add_ps(fix0,tx);
575             fiy0             = _mm_add_ps(fiy0,ty);
576             fiz0             = _mm_add_ps(fiz0,tz);
577
578             fjptrA             = f+j_coord_offsetA;
579             fjptrB             = f+j_coord_offsetB;
580             fjptrC             = f+j_coord_offsetC;
581             fjptrD             = f+j_coord_offsetD;
582             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
583
584             /* Inner loop uses 46 flops */
585         }
586
587         if(jidx<j_index_end)
588         {
589
590             /* Get j neighbor index, and coordinate index */
591             jnrlistA         = jjnr[jidx];
592             jnrlistB         = jjnr[jidx+1];
593             jnrlistC         = jjnr[jidx+2];
594             jnrlistD         = jjnr[jidx+3];
595             /* Sign of each element will be negative for non-real atoms.
596              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
597              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
598              */
599             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
600             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
601             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
602             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
603             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
604             j_coord_offsetA  = DIM*jnrA;
605             j_coord_offsetB  = DIM*jnrB;
606             j_coord_offsetC  = DIM*jnrC;
607             j_coord_offsetD  = DIM*jnrD;
608
609             /* load j atom coordinates */
610             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
611                                               x+j_coord_offsetC,x+j_coord_offsetD,
612                                               &jx0,&jy0,&jz0);
613
614             /* Calculate displacement vector */
615             dx00             = _mm_sub_ps(ix0,jx0);
616             dy00             = _mm_sub_ps(iy0,jy0);
617             dz00             = _mm_sub_ps(iz0,jz0);
618
619             /* Calculate squared distance and things based on it */
620             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
621
622             rinv00           = gmx_mm_invsqrt_ps(rsq00);
623
624             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
625
626             /* Load parameters for j particles */
627             vdwjidx0A        = 2*vdwtype[jnrA+0];
628             vdwjidx0B        = 2*vdwtype[jnrB+0];
629             vdwjidx0C        = 2*vdwtype[jnrC+0];
630             vdwjidx0D        = 2*vdwtype[jnrD+0];
631
632             /**************************
633              * CALCULATE INTERACTIONS *
634              **************************/
635
636             r00              = _mm_mul_ps(rsq00,rinv00);
637             r00              = _mm_andnot_ps(dummy_mask,r00);
638
639             /* Compute parameters for interactions between i and j atoms */
640             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
641                                          vdwparam+vdwioffset0+vdwjidx0B,
642                                          vdwparam+vdwioffset0+vdwjidx0C,
643                                          vdwparam+vdwioffset0+vdwjidx0D,
644                                          &c6_00,&c12_00);
645
646             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
647                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
648                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
649                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
650
651             /* Analytical LJ-PME */
652             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
653             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
654             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
655             exponent         = gmx_simd_exp_r(ewcljrsq);
656             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
657             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
658             /* f6A = 6 * C6grid * (1 - poly) */
659             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
660             /* f6B = C6grid * exponent * beta^6 */
661             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
662             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
663             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
664
665             fscal            = fvdw;
666
667             fscal            = _mm_andnot_ps(dummy_mask,fscal);
668
669             /* Calculate temporary vectorial force */
670             tx               = _mm_mul_ps(fscal,dx00);
671             ty               = _mm_mul_ps(fscal,dy00);
672             tz               = _mm_mul_ps(fscal,dz00);
673
674             /* Update vectorial force */
675             fix0             = _mm_add_ps(fix0,tx);
676             fiy0             = _mm_add_ps(fiy0,ty);
677             fiz0             = _mm_add_ps(fiz0,tz);
678
679             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
680             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
681             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
682             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
683             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
684
685             /* Inner loop uses 47 flops */
686         }
687
688         /* End of innermost loop */
689
690         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
691                                               f+i_coord_offset,fshift+i_shift_offset);
692
693         /* Increment number of inner iterations */
694         inneriter                  += j_index_end - j_index_start;
695
696         /* Outer loop uses 6 flops */
697     }
698
699     /* Increment number of outer iterations */
700     outeriter        += nri;
701
702     /* Update outer/inner flops */
703
704     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*47);
705 }