ffa993baa39015d24730c7166084c318dd020b9d
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse4_1_single
52  * Electrostatics interaction: None
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     int              nvdwtype;
89     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
93     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
94     __m128           c6grid_00;
95     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
96     real             *vdwgridparam;
97     __m128           one_half  = _mm_set1_ps(0.5);
98     __m128           minus_one = _mm_set1_ps(-1.0);
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117     vdwgridparam     = fr->ljpme_c6grid;
118     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
119     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
120     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
121
122     rcutoff_scalar   = fr->rvdw;
123     rcutoff          = _mm_set1_ps(rcutoff_scalar);
124     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
125
126     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
127     rvdw             = _mm_set1_ps(fr->rvdw);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
160
161         fix0             = _mm_setzero_ps();
162         fiy0             = _mm_setzero_ps();
163         fiz0             = _mm_setzero_ps();
164
165         /* Load parameters for i particles */
166         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
167
168         /* Reset potential sums */
169         vvdwsum          = _mm_setzero_ps();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               x+j_coord_offsetC,x+j_coord_offsetD,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_ps(ix0,jx0);
192             dy00             = _mm_sub_ps(iy0,jy0);
193             dz00             = _mm_sub_ps(iz0,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
197
198             rinv00           = gmx_mm_invsqrt_ps(rsq00);
199
200             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
201
202             /* Load parameters for j particles */
203             vdwjidx0A        = 2*vdwtype[jnrA+0];
204             vdwjidx0B        = 2*vdwtype[jnrB+0];
205             vdwjidx0C        = 2*vdwtype[jnrC+0];
206             vdwjidx0D        = 2*vdwtype[jnrD+0];
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             if (gmx_mm_any_lt(rsq00,rcutoff2))
213             {
214
215             r00              = _mm_mul_ps(rsq00,rinv00);
216
217             /* Compute parameters for interactions between i and j atoms */
218             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
219                                          vdwparam+vdwioffset0+vdwjidx0B,
220                                          vdwparam+vdwioffset0+vdwjidx0C,
221                                          vdwparam+vdwioffset0+vdwjidx0D,
222                                          &c6_00,&c12_00);
223
224             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
225                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
226                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
227                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
228
229             /* Analytical LJ-PME */
230             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
231             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
232             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
233             exponent         = gmx_simd_exp_r(ewcljrsq);
234             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
235             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
236             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
237             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
238             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
239             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
240                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
241             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
242             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
243
244             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
248             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
249
250             fscal            = fvdw;
251
252             fscal            = _mm_and_ps(fscal,cutoff_mask);
253
254             /* Calculate temporary vectorial force */
255             tx               = _mm_mul_ps(fscal,dx00);
256             ty               = _mm_mul_ps(fscal,dy00);
257             tz               = _mm_mul_ps(fscal,dz00);
258
259             /* Update vectorial force */
260             fix0             = _mm_add_ps(fix0,tx);
261             fiy0             = _mm_add_ps(fiy0,ty);
262             fiz0             = _mm_add_ps(fiz0,tz);
263
264             fjptrA             = f+j_coord_offsetA;
265             fjptrB             = f+j_coord_offsetB;
266             fjptrC             = f+j_coord_offsetC;
267             fjptrD             = f+j_coord_offsetD;
268             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
269
270             }
271
272             /* Inner loop uses 62 flops */
273         }
274
275         if(jidx<j_index_end)
276         {
277
278             /* Get j neighbor index, and coordinate index */
279             jnrlistA         = jjnr[jidx];
280             jnrlistB         = jjnr[jidx+1];
281             jnrlistC         = jjnr[jidx+2];
282             jnrlistD         = jjnr[jidx+3];
283             /* Sign of each element will be negative for non-real atoms.
284              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
285              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
286              */
287             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
288             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
289             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
290             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
291             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
292             j_coord_offsetA  = DIM*jnrA;
293             j_coord_offsetB  = DIM*jnrB;
294             j_coord_offsetC  = DIM*jnrC;
295             j_coord_offsetD  = DIM*jnrD;
296
297             /* load j atom coordinates */
298             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
299                                               x+j_coord_offsetC,x+j_coord_offsetD,
300                                               &jx0,&jy0,&jz0);
301
302             /* Calculate displacement vector */
303             dx00             = _mm_sub_ps(ix0,jx0);
304             dy00             = _mm_sub_ps(iy0,jy0);
305             dz00             = _mm_sub_ps(iz0,jz0);
306
307             /* Calculate squared distance and things based on it */
308             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
309
310             rinv00           = gmx_mm_invsqrt_ps(rsq00);
311
312             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
313
314             /* Load parameters for j particles */
315             vdwjidx0A        = 2*vdwtype[jnrA+0];
316             vdwjidx0B        = 2*vdwtype[jnrB+0];
317             vdwjidx0C        = 2*vdwtype[jnrC+0];
318             vdwjidx0D        = 2*vdwtype[jnrD+0];
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             if (gmx_mm_any_lt(rsq00,rcutoff2))
325             {
326
327             r00              = _mm_mul_ps(rsq00,rinv00);
328             r00              = _mm_andnot_ps(dummy_mask,r00);
329
330             /* Compute parameters for interactions between i and j atoms */
331             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
332                                          vdwparam+vdwioffset0+vdwjidx0B,
333                                          vdwparam+vdwioffset0+vdwjidx0C,
334                                          vdwparam+vdwioffset0+vdwjidx0D,
335                                          &c6_00,&c12_00);
336
337             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
338                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
339                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
340                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
341
342             /* Analytical LJ-PME */
343             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
344             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
345             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
346             exponent         = gmx_simd_exp_r(ewcljrsq);
347             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
348             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
349             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
350             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
351             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
352             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
353                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
354             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
355             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
356
357             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
361             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
362             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
363
364             fscal            = fvdw;
365
366             fscal            = _mm_and_ps(fscal,cutoff_mask);
367
368             fscal            = _mm_andnot_ps(dummy_mask,fscal);
369
370             /* Calculate temporary vectorial force */
371             tx               = _mm_mul_ps(fscal,dx00);
372             ty               = _mm_mul_ps(fscal,dy00);
373             tz               = _mm_mul_ps(fscal,dz00);
374
375             /* Update vectorial force */
376             fix0             = _mm_add_ps(fix0,tx);
377             fiy0             = _mm_add_ps(fiy0,ty);
378             fiz0             = _mm_add_ps(fiz0,tz);
379
380             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
381             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
382             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
383             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
384             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
385
386             }
387
388             /* Inner loop uses 63 flops */
389         }
390
391         /* End of innermost loop */
392
393         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
394                                               f+i_coord_offset,fshift+i_shift_offset);
395
396         ggid                        = gid[iidx];
397         /* Update potential energies */
398         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
399
400         /* Increment number of inner iterations */
401         inneriter                  += j_index_end - j_index_start;
402
403         /* Outer loop uses 7 flops */
404     }
405
406     /* Increment number of outer iterations */
407     outeriter        += nri;
408
409     /* Update outer/inner flops */
410
411     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*63);
412 }
413 /*
414  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse4_1_single
415  * Electrostatics interaction: None
416  * VdW interaction:            LJEwald
417  * Geometry:                   Particle-Particle
418  * Calculate force/pot:        Force
419  */
420 void
421 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse4_1_single
422                     (t_nblist                    * gmx_restrict       nlist,
423                      rvec                        * gmx_restrict          xx,
424                      rvec                        * gmx_restrict          ff,
425                      t_forcerec                  * gmx_restrict          fr,
426                      t_mdatoms                   * gmx_restrict     mdatoms,
427                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
428                      t_nrnb                      * gmx_restrict        nrnb)
429 {
430     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
431      * just 0 for non-waters.
432      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
433      * jnr indices corresponding to data put in the four positions in the SIMD register.
434      */
435     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
436     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
437     int              jnrA,jnrB,jnrC,jnrD;
438     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
439     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
440     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
441     real             rcutoff_scalar;
442     real             *shiftvec,*fshift,*x,*f;
443     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
444     real             scratch[4*DIM];
445     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
446     int              vdwioffset0;
447     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
448     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
449     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
450     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
451     int              nvdwtype;
452     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
453     int              *vdwtype;
454     real             *vdwparam;
455     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
456     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
457     __m128           c6grid_00;
458     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
459     real             *vdwgridparam;
460     __m128           one_half  = _mm_set1_ps(0.5);
461     __m128           minus_one = _mm_set1_ps(-1.0);
462     __m128           dummy_mask,cutoff_mask;
463     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
464     __m128           one     = _mm_set1_ps(1.0);
465     __m128           two     = _mm_set1_ps(2.0);
466     x                = xx[0];
467     f                = ff[0];
468
469     nri              = nlist->nri;
470     iinr             = nlist->iinr;
471     jindex           = nlist->jindex;
472     jjnr             = nlist->jjnr;
473     shiftidx         = nlist->shift;
474     gid              = nlist->gid;
475     shiftvec         = fr->shift_vec[0];
476     fshift           = fr->fshift[0];
477     nvdwtype         = fr->ntype;
478     vdwparam         = fr->nbfp;
479     vdwtype          = mdatoms->typeA;
480     vdwgridparam     = fr->ljpme_c6grid;
481     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
482     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
483     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
484
485     rcutoff_scalar   = fr->rvdw;
486     rcutoff          = _mm_set1_ps(rcutoff_scalar);
487     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
488
489     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
490     rvdw             = _mm_set1_ps(fr->rvdw);
491
492     /* Avoid stupid compiler warnings */
493     jnrA = jnrB = jnrC = jnrD = 0;
494     j_coord_offsetA = 0;
495     j_coord_offsetB = 0;
496     j_coord_offsetC = 0;
497     j_coord_offsetD = 0;
498
499     outeriter        = 0;
500     inneriter        = 0;
501
502     for(iidx=0;iidx<4*DIM;iidx++)
503     {
504         scratch[iidx] = 0.0;
505     }
506
507     /* Start outer loop over neighborlists */
508     for(iidx=0; iidx<nri; iidx++)
509     {
510         /* Load shift vector for this list */
511         i_shift_offset   = DIM*shiftidx[iidx];
512
513         /* Load limits for loop over neighbors */
514         j_index_start    = jindex[iidx];
515         j_index_end      = jindex[iidx+1];
516
517         /* Get outer coordinate index */
518         inr              = iinr[iidx];
519         i_coord_offset   = DIM*inr;
520
521         /* Load i particle coords and add shift vector */
522         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
523
524         fix0             = _mm_setzero_ps();
525         fiy0             = _mm_setzero_ps();
526         fiz0             = _mm_setzero_ps();
527
528         /* Load parameters for i particles */
529         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
530
531         /* Start inner kernel loop */
532         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
533         {
534
535             /* Get j neighbor index, and coordinate index */
536             jnrA             = jjnr[jidx];
537             jnrB             = jjnr[jidx+1];
538             jnrC             = jjnr[jidx+2];
539             jnrD             = jjnr[jidx+3];
540             j_coord_offsetA  = DIM*jnrA;
541             j_coord_offsetB  = DIM*jnrB;
542             j_coord_offsetC  = DIM*jnrC;
543             j_coord_offsetD  = DIM*jnrD;
544
545             /* load j atom coordinates */
546             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
547                                               x+j_coord_offsetC,x+j_coord_offsetD,
548                                               &jx0,&jy0,&jz0);
549
550             /* Calculate displacement vector */
551             dx00             = _mm_sub_ps(ix0,jx0);
552             dy00             = _mm_sub_ps(iy0,jy0);
553             dz00             = _mm_sub_ps(iz0,jz0);
554
555             /* Calculate squared distance and things based on it */
556             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
557
558             rinv00           = gmx_mm_invsqrt_ps(rsq00);
559
560             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
561
562             /* Load parameters for j particles */
563             vdwjidx0A        = 2*vdwtype[jnrA+0];
564             vdwjidx0B        = 2*vdwtype[jnrB+0];
565             vdwjidx0C        = 2*vdwtype[jnrC+0];
566             vdwjidx0D        = 2*vdwtype[jnrD+0];
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             if (gmx_mm_any_lt(rsq00,rcutoff2))
573             {
574
575             r00              = _mm_mul_ps(rsq00,rinv00);
576
577             /* Compute parameters for interactions between i and j atoms */
578             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
579                                          vdwparam+vdwioffset0+vdwjidx0B,
580                                          vdwparam+vdwioffset0+vdwjidx0C,
581                                          vdwparam+vdwioffset0+vdwjidx0D,
582                                          &c6_00,&c12_00);
583
584             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
585                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
586                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
587                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
588
589             /* Analytical LJ-PME */
590             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
591             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
592             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
593             exponent         = gmx_simd_exp_r(ewcljrsq);
594             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
595             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
596             /* f6A = 6 * C6grid * (1 - poly) */
597             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
598             /* f6B = C6grid * exponent * beta^6 */
599             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
600             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
601             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
602
603             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
604
605             fscal            = fvdw;
606
607             fscal            = _mm_and_ps(fscal,cutoff_mask);
608
609             /* Calculate temporary vectorial force */
610             tx               = _mm_mul_ps(fscal,dx00);
611             ty               = _mm_mul_ps(fscal,dy00);
612             tz               = _mm_mul_ps(fscal,dz00);
613
614             /* Update vectorial force */
615             fix0             = _mm_add_ps(fix0,tx);
616             fiy0             = _mm_add_ps(fiy0,ty);
617             fiz0             = _mm_add_ps(fiz0,tz);
618
619             fjptrA             = f+j_coord_offsetA;
620             fjptrB             = f+j_coord_offsetB;
621             fjptrC             = f+j_coord_offsetC;
622             fjptrD             = f+j_coord_offsetD;
623             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
624
625             }
626
627             /* Inner loop uses 49 flops */
628         }
629
630         if(jidx<j_index_end)
631         {
632
633             /* Get j neighbor index, and coordinate index */
634             jnrlistA         = jjnr[jidx];
635             jnrlistB         = jjnr[jidx+1];
636             jnrlistC         = jjnr[jidx+2];
637             jnrlistD         = jjnr[jidx+3];
638             /* Sign of each element will be negative for non-real atoms.
639              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
640              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
641              */
642             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
643             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
644             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
645             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
646             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
647             j_coord_offsetA  = DIM*jnrA;
648             j_coord_offsetB  = DIM*jnrB;
649             j_coord_offsetC  = DIM*jnrC;
650             j_coord_offsetD  = DIM*jnrD;
651
652             /* load j atom coordinates */
653             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
654                                               x+j_coord_offsetC,x+j_coord_offsetD,
655                                               &jx0,&jy0,&jz0);
656
657             /* Calculate displacement vector */
658             dx00             = _mm_sub_ps(ix0,jx0);
659             dy00             = _mm_sub_ps(iy0,jy0);
660             dz00             = _mm_sub_ps(iz0,jz0);
661
662             /* Calculate squared distance and things based on it */
663             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
664
665             rinv00           = gmx_mm_invsqrt_ps(rsq00);
666
667             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
668
669             /* Load parameters for j particles */
670             vdwjidx0A        = 2*vdwtype[jnrA+0];
671             vdwjidx0B        = 2*vdwtype[jnrB+0];
672             vdwjidx0C        = 2*vdwtype[jnrC+0];
673             vdwjidx0D        = 2*vdwtype[jnrD+0];
674
675             /**************************
676              * CALCULATE INTERACTIONS *
677              **************************/
678
679             if (gmx_mm_any_lt(rsq00,rcutoff2))
680             {
681
682             r00              = _mm_mul_ps(rsq00,rinv00);
683             r00              = _mm_andnot_ps(dummy_mask,r00);
684
685             /* Compute parameters for interactions between i and j atoms */
686             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
687                                          vdwparam+vdwioffset0+vdwjidx0B,
688                                          vdwparam+vdwioffset0+vdwjidx0C,
689                                          vdwparam+vdwioffset0+vdwjidx0D,
690                                          &c6_00,&c12_00);
691
692             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
693                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
694                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
695                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
696
697             /* Analytical LJ-PME */
698             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
699             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
700             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
701             exponent         = gmx_simd_exp_r(ewcljrsq);
702             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
703             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
704             /* f6A = 6 * C6grid * (1 - poly) */
705             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
706             /* f6B = C6grid * exponent * beta^6 */
707             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
708             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
709             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
710
711             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
712
713             fscal            = fvdw;
714
715             fscal            = _mm_and_ps(fscal,cutoff_mask);
716
717             fscal            = _mm_andnot_ps(dummy_mask,fscal);
718
719             /* Calculate temporary vectorial force */
720             tx               = _mm_mul_ps(fscal,dx00);
721             ty               = _mm_mul_ps(fscal,dy00);
722             tz               = _mm_mul_ps(fscal,dz00);
723
724             /* Update vectorial force */
725             fix0             = _mm_add_ps(fix0,tx);
726             fiy0             = _mm_add_ps(fiy0,ty);
727             fiz0             = _mm_add_ps(fiz0,tz);
728
729             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
730             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
731             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
732             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
733             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
734
735             }
736
737             /* Inner loop uses 50 flops */
738         }
739
740         /* End of innermost loop */
741
742         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
743                                               f+i_coord_offset,fshift+i_shift_offset);
744
745         /* Increment number of inner iterations */
746         inneriter                  += j_index_end - j_index_start;
747
748         /* Outer loop uses 6 flops */
749     }
750
751     /* Increment number of outer iterations */
752     outeriter        += nri;
753
754     /* Update outer/inner flops */
755
756     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*50);
757 }