Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse4_1_single
54  * Electrostatics interaction: None
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           c6grid_00;
97     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98     real             *vdwgridparam;
99     __m128           one_half  = _mm_set1_ps(0.5);
100     __m128           minus_one = _mm_set1_ps(-1.0);
101     __m128           dummy_mask,cutoff_mask;
102     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103     __m128           one     = _mm_set1_ps(1.0);
104     __m128           two     = _mm_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119     vdwgridparam     = fr->ljpme_c6grid;
120     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
121     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
122     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
123
124     rcutoff_scalar   = fr->rvdw;
125     rcutoff          = _mm_set1_ps(rcutoff_scalar);
126     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
127
128     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
129     rvdw             = _mm_set1_ps(fr->rvdw);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162
163         fix0             = _mm_setzero_ps();
164         fiy0             = _mm_setzero_ps();
165         fiz0             = _mm_setzero_ps();
166
167         /* Load parameters for i particles */
168         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
169
170         /* Reset potential sums */
171         vvdwsum          = _mm_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               x+j_coord_offsetC,x+j_coord_offsetD,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_ps(ix0,jx0);
194             dy00             = _mm_sub_ps(iy0,jy0);
195             dz00             = _mm_sub_ps(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
199
200             rinv00           = gmx_mm_invsqrt_ps(rsq00);
201
202             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             vdwjidx0A        = 2*vdwtype[jnrA+0];
206             vdwjidx0B        = 2*vdwtype[jnrB+0];
207             vdwjidx0C        = 2*vdwtype[jnrC+0];
208             vdwjidx0D        = 2*vdwtype[jnrD+0];
209
210             /**************************
211              * CALCULATE INTERACTIONS *
212              **************************/
213
214             if (gmx_mm_any_lt(rsq00,rcutoff2))
215             {
216
217             r00              = _mm_mul_ps(rsq00,rinv00);
218
219             /* Compute parameters for interactions between i and j atoms */
220             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,
222                                          vdwparam+vdwioffset0+vdwjidx0C,
223                                          vdwparam+vdwioffset0+vdwjidx0D,
224                                          &c6_00,&c12_00);
225
226             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
227                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
228                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
229                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
230
231             /* Analytical LJ-PME */
232             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
233             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
234             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
235             exponent         = gmx_simd_exp_r(ewcljrsq);
236             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
237             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
238             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
239             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
240             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
241             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
242                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
243             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
244             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
245
246             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
250             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
251
252             fscal            = fvdw;
253
254             fscal            = _mm_and_ps(fscal,cutoff_mask);
255
256             /* Calculate temporary vectorial force */
257             tx               = _mm_mul_ps(fscal,dx00);
258             ty               = _mm_mul_ps(fscal,dy00);
259             tz               = _mm_mul_ps(fscal,dz00);
260
261             /* Update vectorial force */
262             fix0             = _mm_add_ps(fix0,tx);
263             fiy0             = _mm_add_ps(fiy0,ty);
264             fiz0             = _mm_add_ps(fiz0,tz);
265
266             fjptrA             = f+j_coord_offsetA;
267             fjptrB             = f+j_coord_offsetB;
268             fjptrC             = f+j_coord_offsetC;
269             fjptrD             = f+j_coord_offsetD;
270             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
271
272             }
273
274             /* Inner loop uses 62 flops */
275         }
276
277         if(jidx<j_index_end)
278         {
279
280             /* Get j neighbor index, and coordinate index */
281             jnrlistA         = jjnr[jidx];
282             jnrlistB         = jjnr[jidx+1];
283             jnrlistC         = jjnr[jidx+2];
284             jnrlistD         = jjnr[jidx+3];
285             /* Sign of each element will be negative for non-real atoms.
286              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
287              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
288              */
289             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
290             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
291             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
292             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
293             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
294             j_coord_offsetA  = DIM*jnrA;
295             j_coord_offsetB  = DIM*jnrB;
296             j_coord_offsetC  = DIM*jnrC;
297             j_coord_offsetD  = DIM*jnrD;
298
299             /* load j atom coordinates */
300             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
301                                               x+j_coord_offsetC,x+j_coord_offsetD,
302                                               &jx0,&jy0,&jz0);
303
304             /* Calculate displacement vector */
305             dx00             = _mm_sub_ps(ix0,jx0);
306             dy00             = _mm_sub_ps(iy0,jy0);
307             dz00             = _mm_sub_ps(iz0,jz0);
308
309             /* Calculate squared distance and things based on it */
310             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
311
312             rinv00           = gmx_mm_invsqrt_ps(rsq00);
313
314             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
315
316             /* Load parameters for j particles */
317             vdwjidx0A        = 2*vdwtype[jnrA+0];
318             vdwjidx0B        = 2*vdwtype[jnrB+0];
319             vdwjidx0C        = 2*vdwtype[jnrC+0];
320             vdwjidx0D        = 2*vdwtype[jnrD+0];
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             if (gmx_mm_any_lt(rsq00,rcutoff2))
327             {
328
329             r00              = _mm_mul_ps(rsq00,rinv00);
330             r00              = _mm_andnot_ps(dummy_mask,r00);
331
332             /* Compute parameters for interactions between i and j atoms */
333             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
334                                          vdwparam+vdwioffset0+vdwjidx0B,
335                                          vdwparam+vdwioffset0+vdwjidx0C,
336                                          vdwparam+vdwioffset0+vdwjidx0D,
337                                          &c6_00,&c12_00);
338
339             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
340                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
341                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
342                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
343
344             /* Analytical LJ-PME */
345             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
346             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
347             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
348             exponent         = gmx_simd_exp_r(ewcljrsq);
349             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
350             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
351             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
352             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
353             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
354             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
355                                _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
356             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
357             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
358
359             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
363             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
364             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
365
366             fscal            = fvdw;
367
368             fscal            = _mm_and_ps(fscal,cutoff_mask);
369
370             fscal            = _mm_andnot_ps(dummy_mask,fscal);
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm_mul_ps(fscal,dx00);
374             ty               = _mm_mul_ps(fscal,dy00);
375             tz               = _mm_mul_ps(fscal,dz00);
376
377             /* Update vectorial force */
378             fix0             = _mm_add_ps(fix0,tx);
379             fiy0             = _mm_add_ps(fiy0,ty);
380             fiz0             = _mm_add_ps(fiz0,tz);
381
382             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
383             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
384             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
385             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
386             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
387
388             }
389
390             /* Inner loop uses 63 flops */
391         }
392
393         /* End of innermost loop */
394
395         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
396                                               f+i_coord_offset,fshift+i_shift_offset);
397
398         ggid                        = gid[iidx];
399         /* Update potential energies */
400         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
401
402         /* Increment number of inner iterations */
403         inneriter                  += j_index_end - j_index_start;
404
405         /* Outer loop uses 7 flops */
406     }
407
408     /* Increment number of outer iterations */
409     outeriter        += nri;
410
411     /* Update outer/inner flops */
412
413     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*63);
414 }
415 /*
416  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse4_1_single
417  * Electrostatics interaction: None
418  * VdW interaction:            LJEwald
419  * Geometry:                   Particle-Particle
420  * Calculate force/pot:        Force
421  */
422 void
423 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse4_1_single
424                     (t_nblist                    * gmx_restrict       nlist,
425                      rvec                        * gmx_restrict          xx,
426                      rvec                        * gmx_restrict          ff,
427                      t_forcerec                  * gmx_restrict          fr,
428                      t_mdatoms                   * gmx_restrict     mdatoms,
429                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
430                      t_nrnb                      * gmx_restrict        nrnb)
431 {
432     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
433      * just 0 for non-waters.
434      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
435      * jnr indices corresponding to data put in the four positions in the SIMD register.
436      */
437     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
438     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
439     int              jnrA,jnrB,jnrC,jnrD;
440     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
441     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
442     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
443     real             rcutoff_scalar;
444     real             *shiftvec,*fshift,*x,*f;
445     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
446     real             scratch[4*DIM];
447     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
448     int              vdwioffset0;
449     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
450     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
451     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
452     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
453     int              nvdwtype;
454     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
455     int              *vdwtype;
456     real             *vdwparam;
457     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
458     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
459     __m128           c6grid_00;
460     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
461     real             *vdwgridparam;
462     __m128           one_half  = _mm_set1_ps(0.5);
463     __m128           minus_one = _mm_set1_ps(-1.0);
464     __m128           dummy_mask,cutoff_mask;
465     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
466     __m128           one     = _mm_set1_ps(1.0);
467     __m128           two     = _mm_set1_ps(2.0);
468     x                = xx[0];
469     f                = ff[0];
470
471     nri              = nlist->nri;
472     iinr             = nlist->iinr;
473     jindex           = nlist->jindex;
474     jjnr             = nlist->jjnr;
475     shiftidx         = nlist->shift;
476     gid              = nlist->gid;
477     shiftvec         = fr->shift_vec[0];
478     fshift           = fr->fshift[0];
479     nvdwtype         = fr->ntype;
480     vdwparam         = fr->nbfp;
481     vdwtype          = mdatoms->typeA;
482     vdwgridparam     = fr->ljpme_c6grid;
483     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
484     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
485     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
486
487     rcutoff_scalar   = fr->rvdw;
488     rcutoff          = _mm_set1_ps(rcutoff_scalar);
489     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
490
491     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
492     rvdw             = _mm_set1_ps(fr->rvdw);
493
494     /* Avoid stupid compiler warnings */
495     jnrA = jnrB = jnrC = jnrD = 0;
496     j_coord_offsetA = 0;
497     j_coord_offsetB = 0;
498     j_coord_offsetC = 0;
499     j_coord_offsetD = 0;
500
501     outeriter        = 0;
502     inneriter        = 0;
503
504     for(iidx=0;iidx<4*DIM;iidx++)
505     {
506         scratch[iidx] = 0.0;
507     }
508
509     /* Start outer loop over neighborlists */
510     for(iidx=0; iidx<nri; iidx++)
511     {
512         /* Load shift vector for this list */
513         i_shift_offset   = DIM*shiftidx[iidx];
514
515         /* Load limits for loop over neighbors */
516         j_index_start    = jindex[iidx];
517         j_index_end      = jindex[iidx+1];
518
519         /* Get outer coordinate index */
520         inr              = iinr[iidx];
521         i_coord_offset   = DIM*inr;
522
523         /* Load i particle coords and add shift vector */
524         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
525
526         fix0             = _mm_setzero_ps();
527         fiy0             = _mm_setzero_ps();
528         fiz0             = _mm_setzero_ps();
529
530         /* Load parameters for i particles */
531         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
532
533         /* Start inner kernel loop */
534         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
535         {
536
537             /* Get j neighbor index, and coordinate index */
538             jnrA             = jjnr[jidx];
539             jnrB             = jjnr[jidx+1];
540             jnrC             = jjnr[jidx+2];
541             jnrD             = jjnr[jidx+3];
542             j_coord_offsetA  = DIM*jnrA;
543             j_coord_offsetB  = DIM*jnrB;
544             j_coord_offsetC  = DIM*jnrC;
545             j_coord_offsetD  = DIM*jnrD;
546
547             /* load j atom coordinates */
548             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
549                                               x+j_coord_offsetC,x+j_coord_offsetD,
550                                               &jx0,&jy0,&jz0);
551
552             /* Calculate displacement vector */
553             dx00             = _mm_sub_ps(ix0,jx0);
554             dy00             = _mm_sub_ps(iy0,jy0);
555             dz00             = _mm_sub_ps(iz0,jz0);
556
557             /* Calculate squared distance and things based on it */
558             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
559
560             rinv00           = gmx_mm_invsqrt_ps(rsq00);
561
562             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
563
564             /* Load parameters for j particles */
565             vdwjidx0A        = 2*vdwtype[jnrA+0];
566             vdwjidx0B        = 2*vdwtype[jnrB+0];
567             vdwjidx0C        = 2*vdwtype[jnrC+0];
568             vdwjidx0D        = 2*vdwtype[jnrD+0];
569
570             /**************************
571              * CALCULATE INTERACTIONS *
572              **************************/
573
574             if (gmx_mm_any_lt(rsq00,rcutoff2))
575             {
576
577             r00              = _mm_mul_ps(rsq00,rinv00);
578
579             /* Compute parameters for interactions between i and j atoms */
580             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
581                                          vdwparam+vdwioffset0+vdwjidx0B,
582                                          vdwparam+vdwioffset0+vdwjidx0C,
583                                          vdwparam+vdwioffset0+vdwjidx0D,
584                                          &c6_00,&c12_00);
585
586             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
587                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
588                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
589                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
590
591             /* Analytical LJ-PME */
592             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
593             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
594             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
595             exponent         = gmx_simd_exp_r(ewcljrsq);
596             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
597             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
598             /* f6A = 6 * C6grid * (1 - poly) */
599             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
600             /* f6B = C6grid * exponent * beta^6 */
601             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
602             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
603             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
604
605             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
606
607             fscal            = fvdw;
608
609             fscal            = _mm_and_ps(fscal,cutoff_mask);
610
611             /* Calculate temporary vectorial force */
612             tx               = _mm_mul_ps(fscal,dx00);
613             ty               = _mm_mul_ps(fscal,dy00);
614             tz               = _mm_mul_ps(fscal,dz00);
615
616             /* Update vectorial force */
617             fix0             = _mm_add_ps(fix0,tx);
618             fiy0             = _mm_add_ps(fiy0,ty);
619             fiz0             = _mm_add_ps(fiz0,tz);
620
621             fjptrA             = f+j_coord_offsetA;
622             fjptrB             = f+j_coord_offsetB;
623             fjptrC             = f+j_coord_offsetC;
624             fjptrD             = f+j_coord_offsetD;
625             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
626
627             }
628
629             /* Inner loop uses 49 flops */
630         }
631
632         if(jidx<j_index_end)
633         {
634
635             /* Get j neighbor index, and coordinate index */
636             jnrlistA         = jjnr[jidx];
637             jnrlistB         = jjnr[jidx+1];
638             jnrlistC         = jjnr[jidx+2];
639             jnrlistD         = jjnr[jidx+3];
640             /* Sign of each element will be negative for non-real atoms.
641              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
642              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
643              */
644             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
645             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
646             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
647             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
648             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
649             j_coord_offsetA  = DIM*jnrA;
650             j_coord_offsetB  = DIM*jnrB;
651             j_coord_offsetC  = DIM*jnrC;
652             j_coord_offsetD  = DIM*jnrD;
653
654             /* load j atom coordinates */
655             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
656                                               x+j_coord_offsetC,x+j_coord_offsetD,
657                                               &jx0,&jy0,&jz0);
658
659             /* Calculate displacement vector */
660             dx00             = _mm_sub_ps(ix0,jx0);
661             dy00             = _mm_sub_ps(iy0,jy0);
662             dz00             = _mm_sub_ps(iz0,jz0);
663
664             /* Calculate squared distance and things based on it */
665             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
666
667             rinv00           = gmx_mm_invsqrt_ps(rsq00);
668
669             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
670
671             /* Load parameters for j particles */
672             vdwjidx0A        = 2*vdwtype[jnrA+0];
673             vdwjidx0B        = 2*vdwtype[jnrB+0];
674             vdwjidx0C        = 2*vdwtype[jnrC+0];
675             vdwjidx0D        = 2*vdwtype[jnrD+0];
676
677             /**************************
678              * CALCULATE INTERACTIONS *
679              **************************/
680
681             if (gmx_mm_any_lt(rsq00,rcutoff2))
682             {
683
684             r00              = _mm_mul_ps(rsq00,rinv00);
685             r00              = _mm_andnot_ps(dummy_mask,r00);
686
687             /* Compute parameters for interactions between i and j atoms */
688             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
689                                          vdwparam+vdwioffset0+vdwjidx0B,
690                                          vdwparam+vdwioffset0+vdwjidx0C,
691                                          vdwparam+vdwioffset0+vdwjidx0D,
692                                          &c6_00,&c12_00);
693
694             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
695                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
696                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
697                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
698
699             /* Analytical LJ-PME */
700             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
701             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
702             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
703             exponent         = gmx_simd_exp_r(ewcljrsq);
704             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
705             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
706             /* f6A = 6 * C6grid * (1 - poly) */
707             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
708             /* f6B = C6grid * exponent * beta^6 */
709             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
710             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
711             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
712
713             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
714
715             fscal            = fvdw;
716
717             fscal            = _mm_and_ps(fscal,cutoff_mask);
718
719             fscal            = _mm_andnot_ps(dummy_mask,fscal);
720
721             /* Calculate temporary vectorial force */
722             tx               = _mm_mul_ps(fscal,dx00);
723             ty               = _mm_mul_ps(fscal,dy00);
724             tz               = _mm_mul_ps(fscal,dz00);
725
726             /* Update vectorial force */
727             fix0             = _mm_add_ps(fix0,tx);
728             fiy0             = _mm_add_ps(fiy0,ty);
729             fiz0             = _mm_add_ps(fiz0,tz);
730
731             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
732             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
733             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
734             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
735             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
736
737             }
738
739             /* Inner loop uses 50 flops */
740         }
741
742         /* End of innermost loop */
743
744         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
745                                               f+i_coord_offset,fshift+i_shift_offset);
746
747         /* Increment number of inner iterations */
748         inneriter                  += j_index_end - j_index_start;
749
750         /* Outer loop uses 6 flops */
751     }
752
753     /* Increment number of outer iterations */
754     outeriter        += nri;
755
756     /* Update outer/inner flops */
757
758     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*50);
759 }