a17ccc3bbc69d6fc2e10ffdda957d5c0f2001ecb
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecGB_VdwNone_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse4_1_single
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          gbitab;
91     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
92     __m128           minushalf = _mm_set1_ps(-0.5);
93     real             *invsqrta,*dvda,*gbtab;
94     __m128i          vfitab;
95     __m128i          ifour       = _mm_set1_epi32(4);
96     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
97     real             *vftab;
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     invsqrta         = fr->invsqrta;
117     dvda             = fr->dvda;
118     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
119     gbtab            = fr->gbtab.data;
120     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm_setzero_ps();
155         fiy0             = _mm_setzero_ps();
156         fiz0             = _mm_setzero_ps();
157
158         /* Load parameters for i particles */
159         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
160         isai0            = _mm_load1_ps(invsqrta+inr+0);
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_ps();
164         vgbsum           = _mm_setzero_ps();
165         dvdasum          = _mm_setzero_ps();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178             j_coord_offsetC  = DIM*jnrC;
179             j_coord_offsetD  = DIM*jnrD;
180
181             /* load j atom coordinates */
182             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               x+j_coord_offsetC,x+j_coord_offsetD,
184                                               &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm_sub_ps(ix0,jx0);
188             dy00             = _mm_sub_ps(iy0,jy0);
189             dz00             = _mm_sub_ps(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
193
194             rinv00           = gmx_mm_invsqrt_ps(rsq00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
198                                                               charge+jnrC+0,charge+jnrD+0);
199             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
200                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
201
202             /**************************
203              * CALCULATE INTERACTIONS *
204              **************************/
205
206             r00              = _mm_mul_ps(rsq00,rinv00);
207
208             /* Compute parameters for interactions between i and j atoms */
209             qq00             = _mm_mul_ps(iq0,jq0);
210
211             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
212             isaprod          = _mm_mul_ps(isai0,isaj0);
213             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
214             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
215
216             /* Calculate generalized born table index - this is a separate table from the normal one,
217              * but we use the same procedure by multiplying r with scale and truncating to integer.
218              */
219             rt               = _mm_mul_ps(r00,gbscale);
220             gbitab           = _mm_cvttps_epi32(rt);
221             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
222             gbitab           = _mm_slli_epi32(gbitab,2);
223             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
224             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
225             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
226             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
227             _MM_TRANSPOSE4_PS(Y,F,G,H);
228             Heps             = _mm_mul_ps(gbeps,H);
229             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
230             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
231             vgb              = _mm_mul_ps(gbqqfactor,VV);
232
233             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
234             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
235             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
236             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
237             fjptrA           = dvda+jnrA;
238             fjptrB           = dvda+jnrB;
239             fjptrC           = dvda+jnrC;
240             fjptrD           = dvda+jnrD;
241             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
242             velec            = _mm_mul_ps(qq00,rinv00);
243             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             velecsum         = _mm_add_ps(velecsum,velec);
247             vgbsum           = _mm_add_ps(vgbsum,vgb);
248
249             fscal            = felec;
250
251             /* Calculate temporary vectorial force */
252             tx               = _mm_mul_ps(fscal,dx00);
253             ty               = _mm_mul_ps(fscal,dy00);
254             tz               = _mm_mul_ps(fscal,dz00);
255
256             /* Update vectorial force */
257             fix0             = _mm_add_ps(fix0,tx);
258             fiy0             = _mm_add_ps(fiy0,ty);
259             fiz0             = _mm_add_ps(fiz0,tz);
260
261             fjptrA             = f+j_coord_offsetA;
262             fjptrB             = f+j_coord_offsetB;
263             fjptrC             = f+j_coord_offsetC;
264             fjptrD             = f+j_coord_offsetD;
265             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
266
267             /* Inner loop uses 58 flops */
268         }
269
270         if(jidx<j_index_end)
271         {
272
273             /* Get j neighbor index, and coordinate index */
274             jnrlistA         = jjnr[jidx];
275             jnrlistB         = jjnr[jidx+1];
276             jnrlistC         = jjnr[jidx+2];
277             jnrlistD         = jjnr[jidx+3];
278             /* Sign of each element will be negative for non-real atoms.
279              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
280              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
281              */
282             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
283             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
284             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
285             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
286             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
287             j_coord_offsetA  = DIM*jnrA;
288             j_coord_offsetB  = DIM*jnrB;
289             j_coord_offsetC  = DIM*jnrC;
290             j_coord_offsetD  = DIM*jnrD;
291
292             /* load j atom coordinates */
293             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
294                                               x+j_coord_offsetC,x+j_coord_offsetD,
295                                               &jx0,&jy0,&jz0);
296
297             /* Calculate displacement vector */
298             dx00             = _mm_sub_ps(ix0,jx0);
299             dy00             = _mm_sub_ps(iy0,jy0);
300             dz00             = _mm_sub_ps(iz0,jz0);
301
302             /* Calculate squared distance and things based on it */
303             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
304
305             rinv00           = gmx_mm_invsqrt_ps(rsq00);
306
307             /* Load parameters for j particles */
308             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
309                                                               charge+jnrC+0,charge+jnrD+0);
310             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
311                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             r00              = _mm_mul_ps(rsq00,rinv00);
318             r00              = _mm_andnot_ps(dummy_mask,r00);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq00             = _mm_mul_ps(iq0,jq0);
322
323             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
324             isaprod          = _mm_mul_ps(isai0,isaj0);
325             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
326             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
327
328             /* Calculate generalized born table index - this is a separate table from the normal one,
329              * but we use the same procedure by multiplying r with scale and truncating to integer.
330              */
331             rt               = _mm_mul_ps(r00,gbscale);
332             gbitab           = _mm_cvttps_epi32(rt);
333             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
334             gbitab           = _mm_slli_epi32(gbitab,2);
335             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
336             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
337             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
338             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
339             _MM_TRANSPOSE4_PS(Y,F,G,H);
340             Heps             = _mm_mul_ps(gbeps,H);
341             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
342             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
343             vgb              = _mm_mul_ps(gbqqfactor,VV);
344
345             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
346             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
347             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
348             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
349             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
350             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
351             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
352             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
353             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
354             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
355             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
356             velec            = _mm_mul_ps(qq00,rinv00);
357             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velec            = _mm_andnot_ps(dummy_mask,velec);
361             velecsum         = _mm_add_ps(velecsum,velec);
362             vgb              = _mm_andnot_ps(dummy_mask,vgb);
363             vgbsum           = _mm_add_ps(vgbsum,vgb);
364
365             fscal            = felec;
366
367             fscal            = _mm_andnot_ps(dummy_mask,fscal);
368
369             /* Calculate temporary vectorial force */
370             tx               = _mm_mul_ps(fscal,dx00);
371             ty               = _mm_mul_ps(fscal,dy00);
372             tz               = _mm_mul_ps(fscal,dz00);
373
374             /* Update vectorial force */
375             fix0             = _mm_add_ps(fix0,tx);
376             fiy0             = _mm_add_ps(fiy0,ty);
377             fiz0             = _mm_add_ps(fiz0,tz);
378
379             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
380             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
381             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
382             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
383             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
384
385             /* Inner loop uses 59 flops */
386         }
387
388         /* End of innermost loop */
389
390         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
391                                               f+i_coord_offset,fshift+i_shift_offset);
392
393         ggid                        = gid[iidx];
394         /* Update potential energies */
395         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
396         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
397         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
398         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
399
400         /* Increment number of inner iterations */
401         inneriter                  += j_index_end - j_index_start;
402
403         /* Outer loop uses 9 flops */
404     }
405
406     /* Increment number of outer iterations */
407     outeriter        += nri;
408
409     /* Update outer/inner flops */
410
411     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*59);
412 }
413 /*
414  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse4_1_single
415  * Electrostatics interaction: GeneralizedBorn
416  * VdW interaction:            None
417  * Geometry:                   Particle-Particle
418  * Calculate force/pot:        Force
419  */
420 void
421 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_sse4_1_single
422                     (t_nblist                    * gmx_restrict       nlist,
423                      rvec                        * gmx_restrict          xx,
424                      rvec                        * gmx_restrict          ff,
425                      t_forcerec                  * gmx_restrict          fr,
426                      t_mdatoms                   * gmx_restrict     mdatoms,
427                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
428                      t_nrnb                      * gmx_restrict        nrnb)
429 {
430     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
431      * just 0 for non-waters.
432      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
433      * jnr indices corresponding to data put in the four positions in the SIMD register.
434      */
435     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
436     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
437     int              jnrA,jnrB,jnrC,jnrD;
438     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
439     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
440     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
441     real             rcutoff_scalar;
442     real             *shiftvec,*fshift,*x,*f;
443     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
444     real             scratch[4*DIM];
445     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
446     int              vdwioffset0;
447     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
448     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
449     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
450     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
451     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
452     real             *charge;
453     __m128i          gbitab;
454     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
455     __m128           minushalf = _mm_set1_ps(-0.5);
456     real             *invsqrta,*dvda,*gbtab;
457     __m128i          vfitab;
458     __m128i          ifour       = _mm_set1_epi32(4);
459     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
460     real             *vftab;
461     __m128           dummy_mask,cutoff_mask;
462     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
463     __m128           one     = _mm_set1_ps(1.0);
464     __m128           two     = _mm_set1_ps(2.0);
465     x                = xx[0];
466     f                = ff[0];
467
468     nri              = nlist->nri;
469     iinr             = nlist->iinr;
470     jindex           = nlist->jindex;
471     jjnr             = nlist->jjnr;
472     shiftidx         = nlist->shift;
473     gid              = nlist->gid;
474     shiftvec         = fr->shift_vec[0];
475     fshift           = fr->fshift[0];
476     facel            = _mm_set1_ps(fr->epsfac);
477     charge           = mdatoms->chargeA;
478
479     invsqrta         = fr->invsqrta;
480     dvda             = fr->dvda;
481     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
482     gbtab            = fr->gbtab.data;
483     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
484
485     /* Avoid stupid compiler warnings */
486     jnrA = jnrB = jnrC = jnrD = 0;
487     j_coord_offsetA = 0;
488     j_coord_offsetB = 0;
489     j_coord_offsetC = 0;
490     j_coord_offsetD = 0;
491
492     outeriter        = 0;
493     inneriter        = 0;
494
495     for(iidx=0;iidx<4*DIM;iidx++)
496     {
497         scratch[iidx] = 0.0;
498     }
499
500     /* Start outer loop over neighborlists */
501     for(iidx=0; iidx<nri; iidx++)
502     {
503         /* Load shift vector for this list */
504         i_shift_offset   = DIM*shiftidx[iidx];
505
506         /* Load limits for loop over neighbors */
507         j_index_start    = jindex[iidx];
508         j_index_end      = jindex[iidx+1];
509
510         /* Get outer coordinate index */
511         inr              = iinr[iidx];
512         i_coord_offset   = DIM*inr;
513
514         /* Load i particle coords and add shift vector */
515         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
516
517         fix0             = _mm_setzero_ps();
518         fiy0             = _mm_setzero_ps();
519         fiz0             = _mm_setzero_ps();
520
521         /* Load parameters for i particles */
522         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
523         isai0            = _mm_load1_ps(invsqrta+inr+0);
524
525         dvdasum          = _mm_setzero_ps();
526
527         /* Start inner kernel loop */
528         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
529         {
530
531             /* Get j neighbor index, and coordinate index */
532             jnrA             = jjnr[jidx];
533             jnrB             = jjnr[jidx+1];
534             jnrC             = jjnr[jidx+2];
535             jnrD             = jjnr[jidx+3];
536             j_coord_offsetA  = DIM*jnrA;
537             j_coord_offsetB  = DIM*jnrB;
538             j_coord_offsetC  = DIM*jnrC;
539             j_coord_offsetD  = DIM*jnrD;
540
541             /* load j atom coordinates */
542             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
543                                               x+j_coord_offsetC,x+j_coord_offsetD,
544                                               &jx0,&jy0,&jz0);
545
546             /* Calculate displacement vector */
547             dx00             = _mm_sub_ps(ix0,jx0);
548             dy00             = _mm_sub_ps(iy0,jy0);
549             dz00             = _mm_sub_ps(iz0,jz0);
550
551             /* Calculate squared distance and things based on it */
552             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
553
554             rinv00           = gmx_mm_invsqrt_ps(rsq00);
555
556             /* Load parameters for j particles */
557             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
558                                                               charge+jnrC+0,charge+jnrD+0);
559             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
560                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             r00              = _mm_mul_ps(rsq00,rinv00);
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq00             = _mm_mul_ps(iq0,jq0);
570
571             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
572             isaprod          = _mm_mul_ps(isai0,isaj0);
573             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
574             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
575
576             /* Calculate generalized born table index - this is a separate table from the normal one,
577              * but we use the same procedure by multiplying r with scale and truncating to integer.
578              */
579             rt               = _mm_mul_ps(r00,gbscale);
580             gbitab           = _mm_cvttps_epi32(rt);
581             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
582             gbitab           = _mm_slli_epi32(gbitab,2);
583             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
584             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
585             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
586             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
587             _MM_TRANSPOSE4_PS(Y,F,G,H);
588             Heps             = _mm_mul_ps(gbeps,H);
589             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
590             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
591             vgb              = _mm_mul_ps(gbqqfactor,VV);
592
593             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
594             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
595             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
596             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
597             fjptrA           = dvda+jnrA;
598             fjptrB           = dvda+jnrB;
599             fjptrC           = dvda+jnrC;
600             fjptrD           = dvda+jnrD;
601             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
602             velec            = _mm_mul_ps(qq00,rinv00);
603             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
604
605             fscal            = felec;
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm_mul_ps(fscal,dx00);
609             ty               = _mm_mul_ps(fscal,dy00);
610             tz               = _mm_mul_ps(fscal,dz00);
611
612             /* Update vectorial force */
613             fix0             = _mm_add_ps(fix0,tx);
614             fiy0             = _mm_add_ps(fiy0,ty);
615             fiz0             = _mm_add_ps(fiz0,tz);
616
617             fjptrA             = f+j_coord_offsetA;
618             fjptrB             = f+j_coord_offsetB;
619             fjptrC             = f+j_coord_offsetC;
620             fjptrD             = f+j_coord_offsetD;
621             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
622
623             /* Inner loop uses 56 flops */
624         }
625
626         if(jidx<j_index_end)
627         {
628
629             /* Get j neighbor index, and coordinate index */
630             jnrlistA         = jjnr[jidx];
631             jnrlistB         = jjnr[jidx+1];
632             jnrlistC         = jjnr[jidx+2];
633             jnrlistD         = jjnr[jidx+3];
634             /* Sign of each element will be negative for non-real atoms.
635              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
636              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
637              */
638             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
639             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
640             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
641             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
642             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
643             j_coord_offsetA  = DIM*jnrA;
644             j_coord_offsetB  = DIM*jnrB;
645             j_coord_offsetC  = DIM*jnrC;
646             j_coord_offsetD  = DIM*jnrD;
647
648             /* load j atom coordinates */
649             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
650                                               x+j_coord_offsetC,x+j_coord_offsetD,
651                                               &jx0,&jy0,&jz0);
652
653             /* Calculate displacement vector */
654             dx00             = _mm_sub_ps(ix0,jx0);
655             dy00             = _mm_sub_ps(iy0,jy0);
656             dz00             = _mm_sub_ps(iz0,jz0);
657
658             /* Calculate squared distance and things based on it */
659             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
660
661             rinv00           = gmx_mm_invsqrt_ps(rsq00);
662
663             /* Load parameters for j particles */
664             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
665                                                               charge+jnrC+0,charge+jnrD+0);
666             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
667                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
668
669             /**************************
670              * CALCULATE INTERACTIONS *
671              **************************/
672
673             r00              = _mm_mul_ps(rsq00,rinv00);
674             r00              = _mm_andnot_ps(dummy_mask,r00);
675
676             /* Compute parameters for interactions between i and j atoms */
677             qq00             = _mm_mul_ps(iq0,jq0);
678
679             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
680             isaprod          = _mm_mul_ps(isai0,isaj0);
681             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
682             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
683
684             /* Calculate generalized born table index - this is a separate table from the normal one,
685              * but we use the same procedure by multiplying r with scale and truncating to integer.
686              */
687             rt               = _mm_mul_ps(r00,gbscale);
688             gbitab           = _mm_cvttps_epi32(rt);
689             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
690             gbitab           = _mm_slli_epi32(gbitab,2);
691             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
692             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
693             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
694             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
695             _MM_TRANSPOSE4_PS(Y,F,G,H);
696             Heps             = _mm_mul_ps(gbeps,H);
697             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
698             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
699             vgb              = _mm_mul_ps(gbqqfactor,VV);
700
701             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
702             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
703             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
704             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
705             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
706             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
707             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
708             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
709             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
710             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
711             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
712             velec            = _mm_mul_ps(qq00,rinv00);
713             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
714
715             fscal            = felec;
716
717             fscal            = _mm_andnot_ps(dummy_mask,fscal);
718
719             /* Calculate temporary vectorial force */
720             tx               = _mm_mul_ps(fscal,dx00);
721             ty               = _mm_mul_ps(fscal,dy00);
722             tz               = _mm_mul_ps(fscal,dz00);
723
724             /* Update vectorial force */
725             fix0             = _mm_add_ps(fix0,tx);
726             fiy0             = _mm_add_ps(fiy0,ty);
727             fiz0             = _mm_add_ps(fiz0,tz);
728
729             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
730             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
731             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
732             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
733             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
734
735             /* Inner loop uses 57 flops */
736         }
737
738         /* End of innermost loop */
739
740         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
741                                               f+i_coord_offset,fshift+i_shift_offset);
742
743         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
744         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
745
746         /* Increment number of inner iterations */
747         inneriter                  += j_index_end - j_index_start;
748
749         /* Outer loop uses 7 flops */
750     }
751
752     /* Increment number of outer iterations */
753     outeriter        += nri;
754
755     /* Update outer/inner flops */
756
757     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*57);
758 }