8437ac268d13066dd0e7bf857866052ed78ade44
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_single
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
91     __m128           minushalf = _mm_set1_ps(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
98     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     invsqrta         = fr->invsqrta;
125     dvda             = fr->dvda;
126     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
127     gbtab            = fr->gbtab->data;
128     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
161
162         fix0             = _mm_setzero_ps();
163         fiy0             = _mm_setzero_ps();
164         fiz0             = _mm_setzero_ps();
165
166         /* Load parameters for i particles */
167         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
168         isai0            = _mm_load1_ps(invsqrta+inr+0);
169         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_ps();
173         vgbsum           = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175         dvdasum          = _mm_setzero_ps();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               x+j_coord_offsetC,x+j_coord_offsetD,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_ps(ix0,jx0);
198             dy00             = _mm_sub_ps(iy0,jy0);
199             dz00             = _mm_sub_ps(iz0,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
203
204             rinv00           = sse41_invsqrt_f(rsq00);
205
206             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
210                                                               charge+jnrC+0,charge+jnrD+0);
211             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
212                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
213             vdwjidx0A        = 2*vdwtype[jnrA+0];
214             vdwjidx0B        = 2*vdwtype[jnrB+0];
215             vdwjidx0C        = 2*vdwtype[jnrC+0];
216             vdwjidx0D        = 2*vdwtype[jnrD+0];
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             r00              = _mm_mul_ps(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm_mul_ps(iq0,jq0);
226             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
227                                          vdwparam+vdwioffset0+vdwjidx0B,
228                                          vdwparam+vdwioffset0+vdwjidx0C,
229                                          vdwparam+vdwioffset0+vdwjidx0D,
230                                          &c6_00,&c12_00);
231
232             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
233             isaprod          = _mm_mul_ps(isai0,isaj0);
234             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
235             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
236
237             /* Calculate generalized born table index - this is a separate table from the normal one,
238              * but we use the same procedure by multiplying r with scale and truncating to integer.
239              */
240             rt               = _mm_mul_ps(r00,gbscale);
241             gbitab           = _mm_cvttps_epi32(rt);
242             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
243             gbitab           = _mm_slli_epi32(gbitab,2);
244             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
245             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
246             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
247             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
248             _MM_TRANSPOSE4_PS(Y,F,G,H);
249             Heps             = _mm_mul_ps(gbeps,H);
250             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
251             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
252             vgb              = _mm_mul_ps(gbqqfactor,VV);
253
254             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
255             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
256             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
257             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
258             fjptrA           = dvda+jnrA;
259             fjptrB           = dvda+jnrB;
260             fjptrC           = dvda+jnrC;
261             fjptrD           = dvda+jnrD;
262             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
263             velec            = _mm_mul_ps(qq00,rinv00);
264             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
265
266             /* LENNARD-JONES DISPERSION/REPULSION */
267
268             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
269             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
270             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
271             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
272             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velecsum         = _mm_add_ps(velecsum,velec);
276             vgbsum           = _mm_add_ps(vgbsum,vgb);
277             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
278
279             fscal            = _mm_add_ps(felec,fvdw);
280
281             /* Calculate temporary vectorial force */
282             tx               = _mm_mul_ps(fscal,dx00);
283             ty               = _mm_mul_ps(fscal,dy00);
284             tz               = _mm_mul_ps(fscal,dz00);
285
286             /* Update vectorial force */
287             fix0             = _mm_add_ps(fix0,tx);
288             fiy0             = _mm_add_ps(fiy0,ty);
289             fiz0             = _mm_add_ps(fiz0,tz);
290
291             fjptrA             = f+j_coord_offsetA;
292             fjptrB             = f+j_coord_offsetB;
293             fjptrC             = f+j_coord_offsetC;
294             fjptrD             = f+j_coord_offsetD;
295             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
296
297             /* Inner loop uses 71 flops */
298         }
299
300         if(jidx<j_index_end)
301         {
302
303             /* Get j neighbor index, and coordinate index */
304             jnrlistA         = jjnr[jidx];
305             jnrlistB         = jjnr[jidx+1];
306             jnrlistC         = jjnr[jidx+2];
307             jnrlistD         = jjnr[jidx+3];
308             /* Sign of each element will be negative for non-real atoms.
309              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
310              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
311              */
312             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
313             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
314             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
315             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
316             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
317             j_coord_offsetA  = DIM*jnrA;
318             j_coord_offsetB  = DIM*jnrB;
319             j_coord_offsetC  = DIM*jnrC;
320             j_coord_offsetD  = DIM*jnrD;
321
322             /* load j atom coordinates */
323             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
324                                               x+j_coord_offsetC,x+j_coord_offsetD,
325                                               &jx0,&jy0,&jz0);
326
327             /* Calculate displacement vector */
328             dx00             = _mm_sub_ps(ix0,jx0);
329             dy00             = _mm_sub_ps(iy0,jy0);
330             dz00             = _mm_sub_ps(iz0,jz0);
331
332             /* Calculate squared distance and things based on it */
333             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
334
335             rinv00           = sse41_invsqrt_f(rsq00);
336
337             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
338
339             /* Load parameters for j particles */
340             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
341                                                               charge+jnrC+0,charge+jnrD+0);
342             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
343                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
344             vdwjidx0A        = 2*vdwtype[jnrA+0];
345             vdwjidx0B        = 2*vdwtype[jnrB+0];
346             vdwjidx0C        = 2*vdwtype[jnrC+0];
347             vdwjidx0D        = 2*vdwtype[jnrD+0];
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             r00              = _mm_mul_ps(rsq00,rinv00);
354             r00              = _mm_andnot_ps(dummy_mask,r00);
355
356             /* Compute parameters for interactions between i and j atoms */
357             qq00             = _mm_mul_ps(iq0,jq0);
358             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
359                                          vdwparam+vdwioffset0+vdwjidx0B,
360                                          vdwparam+vdwioffset0+vdwjidx0C,
361                                          vdwparam+vdwioffset0+vdwjidx0D,
362                                          &c6_00,&c12_00);
363
364             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
365             isaprod          = _mm_mul_ps(isai0,isaj0);
366             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
367             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
368
369             /* Calculate generalized born table index - this is a separate table from the normal one,
370              * but we use the same procedure by multiplying r with scale and truncating to integer.
371              */
372             rt               = _mm_mul_ps(r00,gbscale);
373             gbitab           = _mm_cvttps_epi32(rt);
374             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
375             gbitab           = _mm_slli_epi32(gbitab,2);
376             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
377             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
378             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
379             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
380             _MM_TRANSPOSE4_PS(Y,F,G,H);
381             Heps             = _mm_mul_ps(gbeps,H);
382             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
383             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
384             vgb              = _mm_mul_ps(gbqqfactor,VV);
385
386             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
387             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
388             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
389             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
390             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
391             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
392             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
393             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
394             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
395             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
396             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
397             velec            = _mm_mul_ps(qq00,rinv00);
398             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
399
400             /* LENNARD-JONES DISPERSION/REPULSION */
401
402             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
403             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
404             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
405             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
406             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
407
408             /* Update potential sum for this i atom from the interaction with this j atom. */
409             velec            = _mm_andnot_ps(dummy_mask,velec);
410             velecsum         = _mm_add_ps(velecsum,velec);
411             vgb              = _mm_andnot_ps(dummy_mask,vgb);
412             vgbsum           = _mm_add_ps(vgbsum,vgb);
413             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
414             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
415
416             fscal            = _mm_add_ps(felec,fvdw);
417
418             fscal            = _mm_andnot_ps(dummy_mask,fscal);
419
420             /* Calculate temporary vectorial force */
421             tx               = _mm_mul_ps(fscal,dx00);
422             ty               = _mm_mul_ps(fscal,dy00);
423             tz               = _mm_mul_ps(fscal,dz00);
424
425             /* Update vectorial force */
426             fix0             = _mm_add_ps(fix0,tx);
427             fiy0             = _mm_add_ps(fiy0,ty);
428             fiz0             = _mm_add_ps(fiz0,tz);
429
430             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
431             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
432             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
433             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
434             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
435
436             /* Inner loop uses 72 flops */
437         }
438
439         /* End of innermost loop */
440
441         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
442                                               f+i_coord_offset,fshift+i_shift_offset);
443
444         ggid                        = gid[iidx];
445         /* Update potential energies */
446         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
447         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
448         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
449         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
450         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
451
452         /* Increment number of inner iterations */
453         inneriter                  += j_index_end - j_index_start;
454
455         /* Outer loop uses 10 flops */
456     }
457
458     /* Increment number of outer iterations */
459     outeriter        += nri;
460
461     /* Update outer/inner flops */
462
463     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*72);
464 }
465 /*
466  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_single
467  * Electrostatics interaction: GeneralizedBorn
468  * VdW interaction:            LennardJones
469  * Geometry:                   Particle-Particle
470  * Calculate force/pot:        Force
471  */
472 void
473 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_single
474                     (t_nblist                    * gmx_restrict       nlist,
475                      rvec                        * gmx_restrict          xx,
476                      rvec                        * gmx_restrict          ff,
477                      struct t_forcerec           * gmx_restrict          fr,
478                      t_mdatoms                   * gmx_restrict     mdatoms,
479                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
480                      t_nrnb                      * gmx_restrict        nrnb)
481 {
482     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
483      * just 0 for non-waters.
484      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
485      * jnr indices corresponding to data put in the four positions in the SIMD register.
486      */
487     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
488     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
489     int              jnrA,jnrB,jnrC,jnrD;
490     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
491     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
492     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
493     real             rcutoff_scalar;
494     real             *shiftvec,*fshift,*x,*f;
495     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
496     real             scratch[4*DIM];
497     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
498     int              vdwioffset0;
499     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
500     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
501     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
502     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
503     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
504     real             *charge;
505     __m128i          gbitab;
506     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
507     __m128           minushalf = _mm_set1_ps(-0.5);
508     real             *invsqrta,*dvda,*gbtab;
509     int              nvdwtype;
510     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
511     int              *vdwtype;
512     real             *vdwparam;
513     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
514     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
515     __m128i          vfitab;
516     __m128i          ifour       = _mm_set1_epi32(4);
517     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
518     real             *vftab;
519     __m128           dummy_mask,cutoff_mask;
520     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
521     __m128           one     = _mm_set1_ps(1.0);
522     __m128           two     = _mm_set1_ps(2.0);
523     x                = xx[0];
524     f                = ff[0];
525
526     nri              = nlist->nri;
527     iinr             = nlist->iinr;
528     jindex           = nlist->jindex;
529     jjnr             = nlist->jjnr;
530     shiftidx         = nlist->shift;
531     gid              = nlist->gid;
532     shiftvec         = fr->shift_vec[0];
533     fshift           = fr->fshift[0];
534     facel            = _mm_set1_ps(fr->ic->epsfac);
535     charge           = mdatoms->chargeA;
536     nvdwtype         = fr->ntype;
537     vdwparam         = fr->nbfp;
538     vdwtype          = mdatoms->typeA;
539
540     invsqrta         = fr->invsqrta;
541     dvda             = fr->dvda;
542     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
543     gbtab            = fr->gbtab->data;
544     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
545
546     /* Avoid stupid compiler warnings */
547     jnrA = jnrB = jnrC = jnrD = 0;
548     j_coord_offsetA = 0;
549     j_coord_offsetB = 0;
550     j_coord_offsetC = 0;
551     j_coord_offsetD = 0;
552
553     outeriter        = 0;
554     inneriter        = 0;
555
556     for(iidx=0;iidx<4*DIM;iidx++)
557     {
558         scratch[iidx] = 0.0;
559     }
560
561     /* Start outer loop over neighborlists */
562     for(iidx=0; iidx<nri; iidx++)
563     {
564         /* Load shift vector for this list */
565         i_shift_offset   = DIM*shiftidx[iidx];
566
567         /* Load limits for loop over neighbors */
568         j_index_start    = jindex[iidx];
569         j_index_end      = jindex[iidx+1];
570
571         /* Get outer coordinate index */
572         inr              = iinr[iidx];
573         i_coord_offset   = DIM*inr;
574
575         /* Load i particle coords and add shift vector */
576         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
577
578         fix0             = _mm_setzero_ps();
579         fiy0             = _mm_setzero_ps();
580         fiz0             = _mm_setzero_ps();
581
582         /* Load parameters for i particles */
583         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
584         isai0            = _mm_load1_ps(invsqrta+inr+0);
585         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
586
587         dvdasum          = _mm_setzero_ps();
588
589         /* Start inner kernel loop */
590         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
591         {
592
593             /* Get j neighbor index, and coordinate index */
594             jnrA             = jjnr[jidx];
595             jnrB             = jjnr[jidx+1];
596             jnrC             = jjnr[jidx+2];
597             jnrD             = jjnr[jidx+3];
598             j_coord_offsetA  = DIM*jnrA;
599             j_coord_offsetB  = DIM*jnrB;
600             j_coord_offsetC  = DIM*jnrC;
601             j_coord_offsetD  = DIM*jnrD;
602
603             /* load j atom coordinates */
604             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
605                                               x+j_coord_offsetC,x+j_coord_offsetD,
606                                               &jx0,&jy0,&jz0);
607
608             /* Calculate displacement vector */
609             dx00             = _mm_sub_ps(ix0,jx0);
610             dy00             = _mm_sub_ps(iy0,jy0);
611             dz00             = _mm_sub_ps(iz0,jz0);
612
613             /* Calculate squared distance and things based on it */
614             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
615
616             rinv00           = sse41_invsqrt_f(rsq00);
617
618             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
619
620             /* Load parameters for j particles */
621             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
622                                                               charge+jnrC+0,charge+jnrD+0);
623             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
624                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
625             vdwjidx0A        = 2*vdwtype[jnrA+0];
626             vdwjidx0B        = 2*vdwtype[jnrB+0];
627             vdwjidx0C        = 2*vdwtype[jnrC+0];
628             vdwjidx0D        = 2*vdwtype[jnrD+0];
629
630             /**************************
631              * CALCULATE INTERACTIONS *
632              **************************/
633
634             r00              = _mm_mul_ps(rsq00,rinv00);
635
636             /* Compute parameters for interactions between i and j atoms */
637             qq00             = _mm_mul_ps(iq0,jq0);
638             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
639                                          vdwparam+vdwioffset0+vdwjidx0B,
640                                          vdwparam+vdwioffset0+vdwjidx0C,
641                                          vdwparam+vdwioffset0+vdwjidx0D,
642                                          &c6_00,&c12_00);
643
644             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
645             isaprod          = _mm_mul_ps(isai0,isaj0);
646             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
647             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
648
649             /* Calculate generalized born table index - this is a separate table from the normal one,
650              * but we use the same procedure by multiplying r with scale and truncating to integer.
651              */
652             rt               = _mm_mul_ps(r00,gbscale);
653             gbitab           = _mm_cvttps_epi32(rt);
654             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
655             gbitab           = _mm_slli_epi32(gbitab,2);
656             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
657             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
658             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
659             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
660             _MM_TRANSPOSE4_PS(Y,F,G,H);
661             Heps             = _mm_mul_ps(gbeps,H);
662             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
663             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
664             vgb              = _mm_mul_ps(gbqqfactor,VV);
665
666             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
667             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
668             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
669             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
670             fjptrA           = dvda+jnrA;
671             fjptrB           = dvda+jnrB;
672             fjptrC           = dvda+jnrC;
673             fjptrD           = dvda+jnrD;
674             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
675             velec            = _mm_mul_ps(qq00,rinv00);
676             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
677
678             /* LENNARD-JONES DISPERSION/REPULSION */
679
680             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
681             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
682
683             fscal            = _mm_add_ps(felec,fvdw);
684
685             /* Calculate temporary vectorial force */
686             tx               = _mm_mul_ps(fscal,dx00);
687             ty               = _mm_mul_ps(fscal,dy00);
688             tz               = _mm_mul_ps(fscal,dz00);
689
690             /* Update vectorial force */
691             fix0             = _mm_add_ps(fix0,tx);
692             fiy0             = _mm_add_ps(fiy0,ty);
693             fiz0             = _mm_add_ps(fiz0,tz);
694
695             fjptrA             = f+j_coord_offsetA;
696             fjptrB             = f+j_coord_offsetB;
697             fjptrC             = f+j_coord_offsetC;
698             fjptrD             = f+j_coord_offsetD;
699             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
700
701             /* Inner loop uses 64 flops */
702         }
703
704         if(jidx<j_index_end)
705         {
706
707             /* Get j neighbor index, and coordinate index */
708             jnrlistA         = jjnr[jidx];
709             jnrlistB         = jjnr[jidx+1];
710             jnrlistC         = jjnr[jidx+2];
711             jnrlistD         = jjnr[jidx+3];
712             /* Sign of each element will be negative for non-real atoms.
713              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
714              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
715              */
716             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
717             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
718             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
719             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
720             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
721             j_coord_offsetA  = DIM*jnrA;
722             j_coord_offsetB  = DIM*jnrB;
723             j_coord_offsetC  = DIM*jnrC;
724             j_coord_offsetD  = DIM*jnrD;
725
726             /* load j atom coordinates */
727             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
728                                               x+j_coord_offsetC,x+j_coord_offsetD,
729                                               &jx0,&jy0,&jz0);
730
731             /* Calculate displacement vector */
732             dx00             = _mm_sub_ps(ix0,jx0);
733             dy00             = _mm_sub_ps(iy0,jy0);
734             dz00             = _mm_sub_ps(iz0,jz0);
735
736             /* Calculate squared distance and things based on it */
737             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
738
739             rinv00           = sse41_invsqrt_f(rsq00);
740
741             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
742
743             /* Load parameters for j particles */
744             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
745                                                               charge+jnrC+0,charge+jnrD+0);
746             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
747                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
748             vdwjidx0A        = 2*vdwtype[jnrA+0];
749             vdwjidx0B        = 2*vdwtype[jnrB+0];
750             vdwjidx0C        = 2*vdwtype[jnrC+0];
751             vdwjidx0D        = 2*vdwtype[jnrD+0];
752
753             /**************************
754              * CALCULATE INTERACTIONS *
755              **************************/
756
757             r00              = _mm_mul_ps(rsq00,rinv00);
758             r00              = _mm_andnot_ps(dummy_mask,r00);
759
760             /* Compute parameters for interactions between i and j atoms */
761             qq00             = _mm_mul_ps(iq0,jq0);
762             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
763                                          vdwparam+vdwioffset0+vdwjidx0B,
764                                          vdwparam+vdwioffset0+vdwjidx0C,
765                                          vdwparam+vdwioffset0+vdwjidx0D,
766                                          &c6_00,&c12_00);
767
768             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
769             isaprod          = _mm_mul_ps(isai0,isaj0);
770             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
771             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
772
773             /* Calculate generalized born table index - this is a separate table from the normal one,
774              * but we use the same procedure by multiplying r with scale and truncating to integer.
775              */
776             rt               = _mm_mul_ps(r00,gbscale);
777             gbitab           = _mm_cvttps_epi32(rt);
778             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
779             gbitab           = _mm_slli_epi32(gbitab,2);
780             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
781             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
782             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
783             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
784             _MM_TRANSPOSE4_PS(Y,F,G,H);
785             Heps             = _mm_mul_ps(gbeps,H);
786             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
787             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
788             vgb              = _mm_mul_ps(gbqqfactor,VV);
789
790             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
791             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
792             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
793             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
794             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
795             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
796             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
797             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
798             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
799             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
800             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
801             velec            = _mm_mul_ps(qq00,rinv00);
802             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
803
804             /* LENNARD-JONES DISPERSION/REPULSION */
805
806             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
807             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
808
809             fscal            = _mm_add_ps(felec,fvdw);
810
811             fscal            = _mm_andnot_ps(dummy_mask,fscal);
812
813             /* Calculate temporary vectorial force */
814             tx               = _mm_mul_ps(fscal,dx00);
815             ty               = _mm_mul_ps(fscal,dy00);
816             tz               = _mm_mul_ps(fscal,dz00);
817
818             /* Update vectorial force */
819             fix0             = _mm_add_ps(fix0,tx);
820             fiy0             = _mm_add_ps(fiy0,ty);
821             fiz0             = _mm_add_ps(fiz0,tz);
822
823             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
824             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
825             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
826             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
827             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
828
829             /* Inner loop uses 65 flops */
830         }
831
832         /* End of innermost loop */
833
834         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
835                                               f+i_coord_offset,fshift+i_shift_offset);
836
837         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
838         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
839
840         /* Increment number of inner iterations */
841         inneriter                  += j_index_end - j_index_start;
842
843         /* Outer loop uses 7 flops */
844     }
845
846     /* Increment number of outer iterations */
847     outeriter        += nri;
848
849     /* Update outer/inner flops */
850
851     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65);
852 }