Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_single
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          gbitab;
91     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
92     __m128           minushalf = _mm_set1_ps(-0.5);
93     real             *invsqrta,*dvda,*gbtab;
94     int              nvdwtype;
95     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
99     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
100     __m128i          vfitab;
101     __m128i          ifour       = _mm_set1_epi32(4);
102     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
103     real             *vftab;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     invsqrta         = fr->invsqrta;
126     dvda             = fr->dvda;
127     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
128     gbtab            = fr->gbtab.data;
129     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162
163         fix0             = _mm_setzero_ps();
164         fiy0             = _mm_setzero_ps();
165         fiz0             = _mm_setzero_ps();
166
167         /* Load parameters for i particles */
168         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
169         isai0            = _mm_load1_ps(invsqrta+inr+0);
170         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174         vgbsum           = _mm_setzero_ps();
175         vvdwsum          = _mm_setzero_ps();
176         dvdasum          = _mm_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               x+j_coord_offsetC,x+j_coord_offsetD,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_ps(ix0,jx0);
199             dy00             = _mm_sub_ps(iy0,jy0);
200             dz00             = _mm_sub_ps(iz0,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206
207             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211                                                               charge+jnrC+0,charge+jnrD+0);
212             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
213                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216             vdwjidx0C        = 2*vdwtype[jnrC+0];
217             vdwjidx0D        = 2*vdwtype[jnrD+0];
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             r00              = _mm_mul_ps(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_ps(iq0,jq0);
227             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
228                                          vdwparam+vdwioffset0+vdwjidx0B,
229                                          vdwparam+vdwioffset0+vdwjidx0C,
230                                          vdwparam+vdwioffset0+vdwjidx0D,
231                                          &c6_00,&c12_00);
232
233             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
234             isaprod          = _mm_mul_ps(isai0,isaj0);
235             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
236             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
237
238             /* Calculate generalized born table index - this is a separate table from the normal one,
239              * but we use the same procedure by multiplying r with scale and truncating to integer.
240              */
241             rt               = _mm_mul_ps(r00,gbscale);
242             gbitab           = _mm_cvttps_epi32(rt);
243             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
244             gbitab           = _mm_slli_epi32(gbitab,2);
245             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
246             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
247             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
248             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
249             _MM_TRANSPOSE4_PS(Y,F,G,H);
250             Heps             = _mm_mul_ps(gbeps,H);
251             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
252             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
253             vgb              = _mm_mul_ps(gbqqfactor,VV);
254
255             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
256             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
257             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
258             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
259             fjptrA           = dvda+jnrA;
260             fjptrB           = dvda+jnrB;
261             fjptrC           = dvda+jnrC;
262             fjptrD           = dvda+jnrD;
263             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
264             velec            = _mm_mul_ps(qq00,rinv00);
265             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
266
267             /* LENNARD-JONES DISPERSION/REPULSION */
268
269             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
270             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
271             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
272             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
273             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velecsum         = _mm_add_ps(velecsum,velec);
277             vgbsum           = _mm_add_ps(vgbsum,vgb);
278             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
279
280             fscal            = _mm_add_ps(felec,fvdw);
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm_mul_ps(fscal,dx00);
284             ty               = _mm_mul_ps(fscal,dy00);
285             tz               = _mm_mul_ps(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm_add_ps(fix0,tx);
289             fiy0             = _mm_add_ps(fiy0,ty);
290             fiz0             = _mm_add_ps(fiz0,tz);
291
292             fjptrA             = f+j_coord_offsetA;
293             fjptrB             = f+j_coord_offsetB;
294             fjptrC             = f+j_coord_offsetC;
295             fjptrD             = f+j_coord_offsetD;
296             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
297
298             /* Inner loop uses 71 flops */
299         }
300
301         if(jidx<j_index_end)
302         {
303
304             /* Get j neighbor index, and coordinate index */
305             jnrlistA         = jjnr[jidx];
306             jnrlistB         = jjnr[jidx+1];
307             jnrlistC         = jjnr[jidx+2];
308             jnrlistD         = jjnr[jidx+3];
309             /* Sign of each element will be negative for non-real atoms.
310              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
311              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
312              */
313             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
314             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
315             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
316             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
317             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
318             j_coord_offsetA  = DIM*jnrA;
319             j_coord_offsetB  = DIM*jnrB;
320             j_coord_offsetC  = DIM*jnrC;
321             j_coord_offsetD  = DIM*jnrD;
322
323             /* load j atom coordinates */
324             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
325                                               x+j_coord_offsetC,x+j_coord_offsetD,
326                                               &jx0,&jy0,&jz0);
327
328             /* Calculate displacement vector */
329             dx00             = _mm_sub_ps(ix0,jx0);
330             dy00             = _mm_sub_ps(iy0,jy0);
331             dz00             = _mm_sub_ps(iz0,jz0);
332
333             /* Calculate squared distance and things based on it */
334             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
335
336             rinv00           = gmx_mm_invsqrt_ps(rsq00);
337
338             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
339
340             /* Load parameters for j particles */
341             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
342                                                               charge+jnrC+0,charge+jnrD+0);
343             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
344                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
345             vdwjidx0A        = 2*vdwtype[jnrA+0];
346             vdwjidx0B        = 2*vdwtype[jnrB+0];
347             vdwjidx0C        = 2*vdwtype[jnrC+0];
348             vdwjidx0D        = 2*vdwtype[jnrD+0];
349
350             /**************************
351              * CALCULATE INTERACTIONS *
352              **************************/
353
354             r00              = _mm_mul_ps(rsq00,rinv00);
355             r00              = _mm_andnot_ps(dummy_mask,r00);
356
357             /* Compute parameters for interactions between i and j atoms */
358             qq00             = _mm_mul_ps(iq0,jq0);
359             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
360                                          vdwparam+vdwioffset0+vdwjidx0B,
361                                          vdwparam+vdwioffset0+vdwjidx0C,
362                                          vdwparam+vdwioffset0+vdwjidx0D,
363                                          &c6_00,&c12_00);
364
365             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
366             isaprod          = _mm_mul_ps(isai0,isaj0);
367             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
368             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
369
370             /* Calculate generalized born table index - this is a separate table from the normal one,
371              * but we use the same procedure by multiplying r with scale and truncating to integer.
372              */
373             rt               = _mm_mul_ps(r00,gbscale);
374             gbitab           = _mm_cvttps_epi32(rt);
375             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
376             gbitab           = _mm_slli_epi32(gbitab,2);
377             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
378             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
379             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
380             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
381             _MM_TRANSPOSE4_PS(Y,F,G,H);
382             Heps             = _mm_mul_ps(gbeps,H);
383             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
384             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
385             vgb              = _mm_mul_ps(gbqqfactor,VV);
386
387             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
388             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
389             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
390             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
391             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
392             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
393             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
394             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
395             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
396             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
397             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
398             velec            = _mm_mul_ps(qq00,rinv00);
399             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
400
401             /* LENNARD-JONES DISPERSION/REPULSION */
402
403             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
404             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
405             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
406             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
407             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velec            = _mm_andnot_ps(dummy_mask,velec);
411             velecsum         = _mm_add_ps(velecsum,velec);
412             vgb              = _mm_andnot_ps(dummy_mask,vgb);
413             vgbsum           = _mm_add_ps(vgbsum,vgb);
414             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
415             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
416
417             fscal            = _mm_add_ps(felec,fvdw);
418
419             fscal            = _mm_andnot_ps(dummy_mask,fscal);
420
421             /* Calculate temporary vectorial force */
422             tx               = _mm_mul_ps(fscal,dx00);
423             ty               = _mm_mul_ps(fscal,dy00);
424             tz               = _mm_mul_ps(fscal,dz00);
425
426             /* Update vectorial force */
427             fix0             = _mm_add_ps(fix0,tx);
428             fiy0             = _mm_add_ps(fiy0,ty);
429             fiz0             = _mm_add_ps(fiz0,tz);
430
431             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
432             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
433             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
434             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
435             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
436
437             /* Inner loop uses 72 flops */
438         }
439
440         /* End of innermost loop */
441
442         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
443                                               f+i_coord_offset,fshift+i_shift_offset);
444
445         ggid                        = gid[iidx];
446         /* Update potential energies */
447         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
448         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
449         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
450         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
451         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
452
453         /* Increment number of inner iterations */
454         inneriter                  += j_index_end - j_index_start;
455
456         /* Outer loop uses 10 flops */
457     }
458
459     /* Increment number of outer iterations */
460     outeriter        += nri;
461
462     /* Update outer/inner flops */
463
464     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*72);
465 }
466 /*
467  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_single
468  * Electrostatics interaction: GeneralizedBorn
469  * VdW interaction:            LennardJones
470  * Geometry:                   Particle-Particle
471  * Calculate force/pot:        Force
472  */
473 void
474 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_single
475                     (t_nblist                    * gmx_restrict       nlist,
476                      rvec                        * gmx_restrict          xx,
477                      rvec                        * gmx_restrict          ff,
478                      t_forcerec                  * gmx_restrict          fr,
479                      t_mdatoms                   * gmx_restrict     mdatoms,
480                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
481                      t_nrnb                      * gmx_restrict        nrnb)
482 {
483     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
484      * just 0 for non-waters.
485      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
486      * jnr indices corresponding to data put in the four positions in the SIMD register.
487      */
488     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
489     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
490     int              jnrA,jnrB,jnrC,jnrD;
491     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
492     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
493     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
494     real             rcutoff_scalar;
495     real             *shiftvec,*fshift,*x,*f;
496     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
497     real             scratch[4*DIM];
498     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
499     int              vdwioffset0;
500     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
501     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
502     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
503     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
504     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
505     real             *charge;
506     __m128i          gbitab;
507     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
508     __m128           minushalf = _mm_set1_ps(-0.5);
509     real             *invsqrta,*dvda,*gbtab;
510     int              nvdwtype;
511     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
512     int              *vdwtype;
513     real             *vdwparam;
514     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
515     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
516     __m128i          vfitab;
517     __m128i          ifour       = _mm_set1_epi32(4);
518     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
519     real             *vftab;
520     __m128           dummy_mask,cutoff_mask;
521     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
522     __m128           one     = _mm_set1_ps(1.0);
523     __m128           two     = _mm_set1_ps(2.0);
524     x                = xx[0];
525     f                = ff[0];
526
527     nri              = nlist->nri;
528     iinr             = nlist->iinr;
529     jindex           = nlist->jindex;
530     jjnr             = nlist->jjnr;
531     shiftidx         = nlist->shift;
532     gid              = nlist->gid;
533     shiftvec         = fr->shift_vec[0];
534     fshift           = fr->fshift[0];
535     facel            = _mm_set1_ps(fr->epsfac);
536     charge           = mdatoms->chargeA;
537     nvdwtype         = fr->ntype;
538     vdwparam         = fr->nbfp;
539     vdwtype          = mdatoms->typeA;
540
541     invsqrta         = fr->invsqrta;
542     dvda             = fr->dvda;
543     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
544     gbtab            = fr->gbtab.data;
545     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
546
547     /* Avoid stupid compiler warnings */
548     jnrA = jnrB = jnrC = jnrD = 0;
549     j_coord_offsetA = 0;
550     j_coord_offsetB = 0;
551     j_coord_offsetC = 0;
552     j_coord_offsetD = 0;
553
554     outeriter        = 0;
555     inneriter        = 0;
556
557     for(iidx=0;iidx<4*DIM;iidx++)
558     {
559         scratch[iidx] = 0.0;
560     }
561
562     /* Start outer loop over neighborlists */
563     for(iidx=0; iidx<nri; iidx++)
564     {
565         /* Load shift vector for this list */
566         i_shift_offset   = DIM*shiftidx[iidx];
567
568         /* Load limits for loop over neighbors */
569         j_index_start    = jindex[iidx];
570         j_index_end      = jindex[iidx+1];
571
572         /* Get outer coordinate index */
573         inr              = iinr[iidx];
574         i_coord_offset   = DIM*inr;
575
576         /* Load i particle coords and add shift vector */
577         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
578
579         fix0             = _mm_setzero_ps();
580         fiy0             = _mm_setzero_ps();
581         fiz0             = _mm_setzero_ps();
582
583         /* Load parameters for i particles */
584         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
585         isai0            = _mm_load1_ps(invsqrta+inr+0);
586         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
587
588         dvdasum          = _mm_setzero_ps();
589
590         /* Start inner kernel loop */
591         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
592         {
593
594             /* Get j neighbor index, and coordinate index */
595             jnrA             = jjnr[jidx];
596             jnrB             = jjnr[jidx+1];
597             jnrC             = jjnr[jidx+2];
598             jnrD             = jjnr[jidx+3];
599             j_coord_offsetA  = DIM*jnrA;
600             j_coord_offsetB  = DIM*jnrB;
601             j_coord_offsetC  = DIM*jnrC;
602             j_coord_offsetD  = DIM*jnrD;
603
604             /* load j atom coordinates */
605             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
606                                               x+j_coord_offsetC,x+j_coord_offsetD,
607                                               &jx0,&jy0,&jz0);
608
609             /* Calculate displacement vector */
610             dx00             = _mm_sub_ps(ix0,jx0);
611             dy00             = _mm_sub_ps(iy0,jy0);
612             dz00             = _mm_sub_ps(iz0,jz0);
613
614             /* Calculate squared distance and things based on it */
615             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
616
617             rinv00           = gmx_mm_invsqrt_ps(rsq00);
618
619             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
620
621             /* Load parameters for j particles */
622             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
623                                                               charge+jnrC+0,charge+jnrD+0);
624             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
625                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
626             vdwjidx0A        = 2*vdwtype[jnrA+0];
627             vdwjidx0B        = 2*vdwtype[jnrB+0];
628             vdwjidx0C        = 2*vdwtype[jnrC+0];
629             vdwjidx0D        = 2*vdwtype[jnrD+0];
630
631             /**************************
632              * CALCULATE INTERACTIONS *
633              **************************/
634
635             r00              = _mm_mul_ps(rsq00,rinv00);
636
637             /* Compute parameters for interactions between i and j atoms */
638             qq00             = _mm_mul_ps(iq0,jq0);
639             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
640                                          vdwparam+vdwioffset0+vdwjidx0B,
641                                          vdwparam+vdwioffset0+vdwjidx0C,
642                                          vdwparam+vdwioffset0+vdwjidx0D,
643                                          &c6_00,&c12_00);
644
645             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
646             isaprod          = _mm_mul_ps(isai0,isaj0);
647             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
648             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
649
650             /* Calculate generalized born table index - this is a separate table from the normal one,
651              * but we use the same procedure by multiplying r with scale and truncating to integer.
652              */
653             rt               = _mm_mul_ps(r00,gbscale);
654             gbitab           = _mm_cvttps_epi32(rt);
655             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
656             gbitab           = _mm_slli_epi32(gbitab,2);
657             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
658             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
659             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
660             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
661             _MM_TRANSPOSE4_PS(Y,F,G,H);
662             Heps             = _mm_mul_ps(gbeps,H);
663             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
664             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
665             vgb              = _mm_mul_ps(gbqqfactor,VV);
666
667             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
668             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
669             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
670             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
671             fjptrA           = dvda+jnrA;
672             fjptrB           = dvda+jnrB;
673             fjptrC           = dvda+jnrC;
674             fjptrD           = dvda+jnrD;
675             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
676             velec            = _mm_mul_ps(qq00,rinv00);
677             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
678
679             /* LENNARD-JONES DISPERSION/REPULSION */
680
681             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
682             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
683
684             fscal            = _mm_add_ps(felec,fvdw);
685
686             /* Calculate temporary vectorial force */
687             tx               = _mm_mul_ps(fscal,dx00);
688             ty               = _mm_mul_ps(fscal,dy00);
689             tz               = _mm_mul_ps(fscal,dz00);
690
691             /* Update vectorial force */
692             fix0             = _mm_add_ps(fix0,tx);
693             fiy0             = _mm_add_ps(fiy0,ty);
694             fiz0             = _mm_add_ps(fiz0,tz);
695
696             fjptrA             = f+j_coord_offsetA;
697             fjptrB             = f+j_coord_offsetB;
698             fjptrC             = f+j_coord_offsetC;
699             fjptrD             = f+j_coord_offsetD;
700             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
701
702             /* Inner loop uses 64 flops */
703         }
704
705         if(jidx<j_index_end)
706         {
707
708             /* Get j neighbor index, and coordinate index */
709             jnrlistA         = jjnr[jidx];
710             jnrlistB         = jjnr[jidx+1];
711             jnrlistC         = jjnr[jidx+2];
712             jnrlistD         = jjnr[jidx+3];
713             /* Sign of each element will be negative for non-real atoms.
714              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
715              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
716              */
717             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
718             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
719             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
720             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
721             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
722             j_coord_offsetA  = DIM*jnrA;
723             j_coord_offsetB  = DIM*jnrB;
724             j_coord_offsetC  = DIM*jnrC;
725             j_coord_offsetD  = DIM*jnrD;
726
727             /* load j atom coordinates */
728             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
729                                               x+j_coord_offsetC,x+j_coord_offsetD,
730                                               &jx0,&jy0,&jz0);
731
732             /* Calculate displacement vector */
733             dx00             = _mm_sub_ps(ix0,jx0);
734             dy00             = _mm_sub_ps(iy0,jy0);
735             dz00             = _mm_sub_ps(iz0,jz0);
736
737             /* Calculate squared distance and things based on it */
738             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
739
740             rinv00           = gmx_mm_invsqrt_ps(rsq00);
741
742             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
743
744             /* Load parameters for j particles */
745             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
746                                                               charge+jnrC+0,charge+jnrD+0);
747             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
748                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
749             vdwjidx0A        = 2*vdwtype[jnrA+0];
750             vdwjidx0B        = 2*vdwtype[jnrB+0];
751             vdwjidx0C        = 2*vdwtype[jnrC+0];
752             vdwjidx0D        = 2*vdwtype[jnrD+0];
753
754             /**************************
755              * CALCULATE INTERACTIONS *
756              **************************/
757
758             r00              = _mm_mul_ps(rsq00,rinv00);
759             r00              = _mm_andnot_ps(dummy_mask,r00);
760
761             /* Compute parameters for interactions between i and j atoms */
762             qq00             = _mm_mul_ps(iq0,jq0);
763             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
764                                          vdwparam+vdwioffset0+vdwjidx0B,
765                                          vdwparam+vdwioffset0+vdwjidx0C,
766                                          vdwparam+vdwioffset0+vdwjidx0D,
767                                          &c6_00,&c12_00);
768
769             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
770             isaprod          = _mm_mul_ps(isai0,isaj0);
771             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
772             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
773
774             /* Calculate generalized born table index - this is a separate table from the normal one,
775              * but we use the same procedure by multiplying r with scale and truncating to integer.
776              */
777             rt               = _mm_mul_ps(r00,gbscale);
778             gbitab           = _mm_cvttps_epi32(rt);
779             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
780             gbitab           = _mm_slli_epi32(gbitab,2);
781             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
782             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
783             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
784             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
785             _MM_TRANSPOSE4_PS(Y,F,G,H);
786             Heps             = _mm_mul_ps(gbeps,H);
787             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
788             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
789             vgb              = _mm_mul_ps(gbqqfactor,VV);
790
791             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
792             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
793             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
794             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
795             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
796             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
797             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
798             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
799             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
800             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
801             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
802             velec            = _mm_mul_ps(qq00,rinv00);
803             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
804
805             /* LENNARD-JONES DISPERSION/REPULSION */
806
807             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
808             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
809
810             fscal            = _mm_add_ps(felec,fvdw);
811
812             fscal            = _mm_andnot_ps(dummy_mask,fscal);
813
814             /* Calculate temporary vectorial force */
815             tx               = _mm_mul_ps(fscal,dx00);
816             ty               = _mm_mul_ps(fscal,dy00);
817             tz               = _mm_mul_ps(fscal,dz00);
818
819             /* Update vectorial force */
820             fix0             = _mm_add_ps(fix0,tx);
821             fiy0             = _mm_add_ps(fiy0,ty);
822             fiz0             = _mm_add_ps(fiz0,tz);
823
824             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
825             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
826             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
827             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
828             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
829
830             /* Inner loop uses 65 flops */
831         }
832
833         /* End of innermost loop */
834
835         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
836                                               f+i_coord_offset,fshift+i_shift_offset);
837
838         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
839         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
840
841         /* Increment number of inner iterations */
842         inneriter                  += j_index_end - j_index_start;
843
844         /* Outer loop uses 7 flops */
845     }
846
847     /* Increment number of outer iterations */
848     outeriter        += nri;
849
850     /* Update outer/inner flops */
851
852     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65);
853 }