Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse4_1_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          gbitab;
77     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
78     __m128           minushalf = _mm_set1_ps(-0.5);
79     real             *invsqrta,*dvda,*gbtab;
80     int              nvdwtype;
81     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
82     int              *vdwtype;
83     real             *vdwparam;
84     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
85     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
86     __m128i          vfitab;
87     __m128i          ifour       = _mm_set1_epi32(4);
88     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
89     real             *vftab;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     vftab            = kernel_data->table_vdw->data;
112     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
113
114     invsqrta         = fr->invsqrta;
115     dvda             = fr->dvda;
116     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
117     gbtab            = fr->gbtab.data;
118     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = jnrC = jnrD = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124     j_coord_offsetC = 0;
125     j_coord_offsetD = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     for(iidx=0;iidx<4*DIM;iidx++)
131     {
132         scratch[iidx] = 0.0;
133     }
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _mm_setzero_ps();
153         fiy0             = _mm_setzero_ps();
154         fiz0             = _mm_setzero_ps();
155
156         /* Load parameters for i particles */
157         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
158         isai0            = _mm_load1_ps(invsqrta+inr+0);
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         velecsum         = _mm_setzero_ps();
163         vgbsum           = _mm_setzero_ps();
164         vvdwsum          = _mm_setzero_ps();
165         dvdasum          = _mm_setzero_ps();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178             j_coord_offsetC  = DIM*jnrC;
179             j_coord_offsetD  = DIM*jnrD;
180
181             /* load j atom coordinates */
182             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               x+j_coord_offsetC,x+j_coord_offsetD,
184                                               &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm_sub_ps(ix0,jx0);
188             dy00             = _mm_sub_ps(iy0,jy0);
189             dz00             = _mm_sub_ps(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
193
194             rinv00           = gmx_mm_invsqrt_ps(rsq00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
198                                                               charge+jnrC+0,charge+jnrD+0);
199             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
200                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
201             vdwjidx0A        = 2*vdwtype[jnrA+0];
202             vdwjidx0B        = 2*vdwtype[jnrB+0];
203             vdwjidx0C        = 2*vdwtype[jnrC+0];
204             vdwjidx0D        = 2*vdwtype[jnrD+0];
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             r00              = _mm_mul_ps(rsq00,rinv00);
211
212             /* Compute parameters for interactions between i and j atoms */
213             qq00             = _mm_mul_ps(iq0,jq0);
214             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
215                                          vdwparam+vdwioffset0+vdwjidx0B,
216                                          vdwparam+vdwioffset0+vdwjidx0C,
217                                          vdwparam+vdwioffset0+vdwjidx0D,
218                                          &c6_00,&c12_00);
219
220             /* Calculate table index by multiplying r with table scale and truncate to integer */
221             rt               = _mm_mul_ps(r00,vftabscale);
222             vfitab           = _mm_cvttps_epi32(rt);
223             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
224             vfitab           = _mm_slli_epi32(vfitab,3);
225
226             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
227             isaprod          = _mm_mul_ps(isai0,isaj0);
228             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
229             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
230
231             /* Calculate generalized born table index - this is a separate table from the normal one,
232              * but we use the same procedure by multiplying r with scale and truncating to integer.
233              */
234             rt               = _mm_mul_ps(r00,gbscale);
235             gbitab           = _mm_cvttps_epi32(rt);
236             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
237             gbitab           = _mm_slli_epi32(gbitab,2);
238             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
239             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
240             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
241             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
242             _MM_TRANSPOSE4_PS(Y,F,G,H);
243             Heps             = _mm_mul_ps(gbeps,H);
244             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
245             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
246             vgb              = _mm_mul_ps(gbqqfactor,VV);
247
248             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
249             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
250             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
251             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
252             fjptrA           = dvda+jnrA;
253             fjptrB           = dvda+jnrB;
254             fjptrC           = dvda+jnrC;
255             fjptrD           = dvda+jnrD;
256             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
257             velec            = _mm_mul_ps(qq00,rinv00);
258             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
259
260             /* CUBIC SPLINE TABLE DISPERSION */
261             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
262             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
263             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
264             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
265             _MM_TRANSPOSE4_PS(Y,F,G,H);
266             Heps             = _mm_mul_ps(vfeps,H);
267             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
268             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
269             vvdw6            = _mm_mul_ps(c6_00,VV);
270             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
271             fvdw6            = _mm_mul_ps(c6_00,FF);
272
273             /* CUBIC SPLINE TABLE REPULSION */
274             vfitab           = _mm_add_epi32(vfitab,ifour);
275             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
276             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
277             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
278             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
279             _MM_TRANSPOSE4_PS(Y,F,G,H);
280             Heps             = _mm_mul_ps(vfeps,H);
281             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
282             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
283             vvdw12           = _mm_mul_ps(c12_00,VV);
284             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
285             fvdw12           = _mm_mul_ps(c12_00,FF);
286             vvdw             = _mm_add_ps(vvdw12,vvdw6);
287             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             velecsum         = _mm_add_ps(velecsum,velec);
291             vgbsum           = _mm_add_ps(vgbsum,vgb);
292             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
293
294             fscal            = _mm_add_ps(felec,fvdw);
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm_mul_ps(fscal,dx00);
298             ty               = _mm_mul_ps(fscal,dy00);
299             tz               = _mm_mul_ps(fscal,dz00);
300
301             /* Update vectorial force */
302             fix0             = _mm_add_ps(fix0,tx);
303             fiy0             = _mm_add_ps(fiy0,ty);
304             fiz0             = _mm_add_ps(fiz0,tz);
305
306             fjptrA             = f+j_coord_offsetA;
307             fjptrB             = f+j_coord_offsetB;
308             fjptrC             = f+j_coord_offsetC;
309             fjptrD             = f+j_coord_offsetD;
310             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
311
312             /* Inner loop uses 92 flops */
313         }
314
315         if(jidx<j_index_end)
316         {
317
318             /* Get j neighbor index, and coordinate index */
319             jnrlistA         = jjnr[jidx];
320             jnrlistB         = jjnr[jidx+1];
321             jnrlistC         = jjnr[jidx+2];
322             jnrlistD         = jjnr[jidx+3];
323             /* Sign of each element will be negative for non-real atoms.
324              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
325              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
326              */
327             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
328             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
329             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
330             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
331             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
332             j_coord_offsetA  = DIM*jnrA;
333             j_coord_offsetB  = DIM*jnrB;
334             j_coord_offsetC  = DIM*jnrC;
335             j_coord_offsetD  = DIM*jnrD;
336
337             /* load j atom coordinates */
338             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
339                                               x+j_coord_offsetC,x+j_coord_offsetD,
340                                               &jx0,&jy0,&jz0);
341
342             /* Calculate displacement vector */
343             dx00             = _mm_sub_ps(ix0,jx0);
344             dy00             = _mm_sub_ps(iy0,jy0);
345             dz00             = _mm_sub_ps(iz0,jz0);
346
347             /* Calculate squared distance and things based on it */
348             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
349
350             rinv00           = gmx_mm_invsqrt_ps(rsq00);
351
352             /* Load parameters for j particles */
353             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
354                                                               charge+jnrC+0,charge+jnrD+0);
355             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
356                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
357             vdwjidx0A        = 2*vdwtype[jnrA+0];
358             vdwjidx0B        = 2*vdwtype[jnrB+0];
359             vdwjidx0C        = 2*vdwtype[jnrC+0];
360             vdwjidx0D        = 2*vdwtype[jnrD+0];
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             r00              = _mm_mul_ps(rsq00,rinv00);
367             r00              = _mm_andnot_ps(dummy_mask,r00);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq00             = _mm_mul_ps(iq0,jq0);
371             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
372                                          vdwparam+vdwioffset0+vdwjidx0B,
373                                          vdwparam+vdwioffset0+vdwjidx0C,
374                                          vdwparam+vdwioffset0+vdwjidx0D,
375                                          &c6_00,&c12_00);
376
377             /* Calculate table index by multiplying r with table scale and truncate to integer */
378             rt               = _mm_mul_ps(r00,vftabscale);
379             vfitab           = _mm_cvttps_epi32(rt);
380             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
381             vfitab           = _mm_slli_epi32(vfitab,3);
382
383             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
384             isaprod          = _mm_mul_ps(isai0,isaj0);
385             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
386             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
387
388             /* Calculate generalized born table index - this is a separate table from the normal one,
389              * but we use the same procedure by multiplying r with scale and truncating to integer.
390              */
391             rt               = _mm_mul_ps(r00,gbscale);
392             gbitab           = _mm_cvttps_epi32(rt);
393             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
394             gbitab           = _mm_slli_epi32(gbitab,2);
395             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
396             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
397             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
398             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
399             _MM_TRANSPOSE4_PS(Y,F,G,H);
400             Heps             = _mm_mul_ps(gbeps,H);
401             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
402             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
403             vgb              = _mm_mul_ps(gbqqfactor,VV);
404
405             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
406             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
407             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
408             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
409             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
410             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
411             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
412             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
413             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
414             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
415             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
416             velec            = _mm_mul_ps(qq00,rinv00);
417             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
418
419             /* CUBIC SPLINE TABLE DISPERSION */
420             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
421             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
422             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
423             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
424             _MM_TRANSPOSE4_PS(Y,F,G,H);
425             Heps             = _mm_mul_ps(vfeps,H);
426             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
427             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
428             vvdw6            = _mm_mul_ps(c6_00,VV);
429             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
430             fvdw6            = _mm_mul_ps(c6_00,FF);
431
432             /* CUBIC SPLINE TABLE REPULSION */
433             vfitab           = _mm_add_epi32(vfitab,ifour);
434             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
435             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
436             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
437             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
438             _MM_TRANSPOSE4_PS(Y,F,G,H);
439             Heps             = _mm_mul_ps(vfeps,H);
440             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
441             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
442             vvdw12           = _mm_mul_ps(c12_00,VV);
443             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
444             fvdw12           = _mm_mul_ps(c12_00,FF);
445             vvdw             = _mm_add_ps(vvdw12,vvdw6);
446             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
447
448             /* Update potential sum for this i atom from the interaction with this j atom. */
449             velec            = _mm_andnot_ps(dummy_mask,velec);
450             velecsum         = _mm_add_ps(velecsum,velec);
451             vgb              = _mm_andnot_ps(dummy_mask,vgb);
452             vgbsum           = _mm_add_ps(vgbsum,vgb);
453             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
454             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
455
456             fscal            = _mm_add_ps(felec,fvdw);
457
458             fscal            = _mm_andnot_ps(dummy_mask,fscal);
459
460             /* Calculate temporary vectorial force */
461             tx               = _mm_mul_ps(fscal,dx00);
462             ty               = _mm_mul_ps(fscal,dy00);
463             tz               = _mm_mul_ps(fscal,dz00);
464
465             /* Update vectorial force */
466             fix0             = _mm_add_ps(fix0,tx);
467             fiy0             = _mm_add_ps(fiy0,ty);
468             fiz0             = _mm_add_ps(fiz0,tz);
469
470             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
471             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
472             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
473             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
474             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
475
476             /* Inner loop uses 93 flops */
477         }
478
479         /* End of innermost loop */
480
481         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
482                                               f+i_coord_offset,fshift+i_shift_offset);
483
484         ggid                        = gid[iidx];
485         /* Update potential energies */
486         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
487         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
488         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
489         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
490         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
491
492         /* Increment number of inner iterations */
493         inneriter                  += j_index_end - j_index_start;
494
495         /* Outer loop uses 10 flops */
496     }
497
498     /* Increment number of outer iterations */
499     outeriter        += nri;
500
501     /* Update outer/inner flops */
502
503     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*93);
504 }
505 /*
506  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse4_1_single
507  * Electrostatics interaction: GeneralizedBorn
508  * VdW interaction:            CubicSplineTable
509  * Geometry:                   Particle-Particle
510  * Calculate force/pot:        Force
511  */
512 void
513 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse4_1_single
514                     (t_nblist * gmx_restrict                nlist,
515                      rvec * gmx_restrict                    xx,
516                      rvec * gmx_restrict                    ff,
517                      t_forcerec * gmx_restrict              fr,
518                      t_mdatoms * gmx_restrict               mdatoms,
519                      nb_kernel_data_t * gmx_restrict        kernel_data,
520                      t_nrnb * gmx_restrict                  nrnb)
521 {
522     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
523      * just 0 for non-waters.
524      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
525      * jnr indices corresponding to data put in the four positions in the SIMD register.
526      */
527     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
528     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
529     int              jnrA,jnrB,jnrC,jnrD;
530     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
531     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
532     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
533     real             rcutoff_scalar;
534     real             *shiftvec,*fshift,*x,*f;
535     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
536     real             scratch[4*DIM];
537     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
538     int              vdwioffset0;
539     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
540     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
541     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
542     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
543     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
544     real             *charge;
545     __m128i          gbitab;
546     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
547     __m128           minushalf = _mm_set1_ps(-0.5);
548     real             *invsqrta,*dvda,*gbtab;
549     int              nvdwtype;
550     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
551     int              *vdwtype;
552     real             *vdwparam;
553     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
554     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
555     __m128i          vfitab;
556     __m128i          ifour       = _mm_set1_epi32(4);
557     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
558     real             *vftab;
559     __m128           dummy_mask,cutoff_mask;
560     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
561     __m128           one     = _mm_set1_ps(1.0);
562     __m128           two     = _mm_set1_ps(2.0);
563     x                = xx[0];
564     f                = ff[0];
565
566     nri              = nlist->nri;
567     iinr             = nlist->iinr;
568     jindex           = nlist->jindex;
569     jjnr             = nlist->jjnr;
570     shiftidx         = nlist->shift;
571     gid              = nlist->gid;
572     shiftvec         = fr->shift_vec[0];
573     fshift           = fr->fshift[0];
574     facel            = _mm_set1_ps(fr->epsfac);
575     charge           = mdatoms->chargeA;
576     nvdwtype         = fr->ntype;
577     vdwparam         = fr->nbfp;
578     vdwtype          = mdatoms->typeA;
579
580     vftab            = kernel_data->table_vdw->data;
581     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
582
583     invsqrta         = fr->invsqrta;
584     dvda             = fr->dvda;
585     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
586     gbtab            = fr->gbtab.data;
587     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
588
589     /* Avoid stupid compiler warnings */
590     jnrA = jnrB = jnrC = jnrD = 0;
591     j_coord_offsetA = 0;
592     j_coord_offsetB = 0;
593     j_coord_offsetC = 0;
594     j_coord_offsetD = 0;
595
596     outeriter        = 0;
597     inneriter        = 0;
598
599     for(iidx=0;iidx<4*DIM;iidx++)
600     {
601         scratch[iidx] = 0.0;
602     }
603
604     /* Start outer loop over neighborlists */
605     for(iidx=0; iidx<nri; iidx++)
606     {
607         /* Load shift vector for this list */
608         i_shift_offset   = DIM*shiftidx[iidx];
609
610         /* Load limits for loop over neighbors */
611         j_index_start    = jindex[iidx];
612         j_index_end      = jindex[iidx+1];
613
614         /* Get outer coordinate index */
615         inr              = iinr[iidx];
616         i_coord_offset   = DIM*inr;
617
618         /* Load i particle coords and add shift vector */
619         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
620
621         fix0             = _mm_setzero_ps();
622         fiy0             = _mm_setzero_ps();
623         fiz0             = _mm_setzero_ps();
624
625         /* Load parameters for i particles */
626         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
627         isai0            = _mm_load1_ps(invsqrta+inr+0);
628         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
629
630         dvdasum          = _mm_setzero_ps();
631
632         /* Start inner kernel loop */
633         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
634         {
635
636             /* Get j neighbor index, and coordinate index */
637             jnrA             = jjnr[jidx];
638             jnrB             = jjnr[jidx+1];
639             jnrC             = jjnr[jidx+2];
640             jnrD             = jjnr[jidx+3];
641             j_coord_offsetA  = DIM*jnrA;
642             j_coord_offsetB  = DIM*jnrB;
643             j_coord_offsetC  = DIM*jnrC;
644             j_coord_offsetD  = DIM*jnrD;
645
646             /* load j atom coordinates */
647             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
648                                               x+j_coord_offsetC,x+j_coord_offsetD,
649                                               &jx0,&jy0,&jz0);
650
651             /* Calculate displacement vector */
652             dx00             = _mm_sub_ps(ix0,jx0);
653             dy00             = _mm_sub_ps(iy0,jy0);
654             dz00             = _mm_sub_ps(iz0,jz0);
655
656             /* Calculate squared distance and things based on it */
657             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
658
659             rinv00           = gmx_mm_invsqrt_ps(rsq00);
660
661             /* Load parameters for j particles */
662             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
663                                                               charge+jnrC+0,charge+jnrD+0);
664             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
665                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
666             vdwjidx0A        = 2*vdwtype[jnrA+0];
667             vdwjidx0B        = 2*vdwtype[jnrB+0];
668             vdwjidx0C        = 2*vdwtype[jnrC+0];
669             vdwjidx0D        = 2*vdwtype[jnrD+0];
670
671             /**************************
672              * CALCULATE INTERACTIONS *
673              **************************/
674
675             r00              = _mm_mul_ps(rsq00,rinv00);
676
677             /* Compute parameters for interactions between i and j atoms */
678             qq00             = _mm_mul_ps(iq0,jq0);
679             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
680                                          vdwparam+vdwioffset0+vdwjidx0B,
681                                          vdwparam+vdwioffset0+vdwjidx0C,
682                                          vdwparam+vdwioffset0+vdwjidx0D,
683                                          &c6_00,&c12_00);
684
685             /* Calculate table index by multiplying r with table scale and truncate to integer */
686             rt               = _mm_mul_ps(r00,vftabscale);
687             vfitab           = _mm_cvttps_epi32(rt);
688             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
689             vfitab           = _mm_slli_epi32(vfitab,3);
690
691             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
692             isaprod          = _mm_mul_ps(isai0,isaj0);
693             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
694             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
695
696             /* Calculate generalized born table index - this is a separate table from the normal one,
697              * but we use the same procedure by multiplying r with scale and truncating to integer.
698              */
699             rt               = _mm_mul_ps(r00,gbscale);
700             gbitab           = _mm_cvttps_epi32(rt);
701             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
702             gbitab           = _mm_slli_epi32(gbitab,2);
703             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
704             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
705             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
706             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
707             _MM_TRANSPOSE4_PS(Y,F,G,H);
708             Heps             = _mm_mul_ps(gbeps,H);
709             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
710             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
711             vgb              = _mm_mul_ps(gbqqfactor,VV);
712
713             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
714             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
715             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
716             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
717             fjptrA           = dvda+jnrA;
718             fjptrB           = dvda+jnrB;
719             fjptrC           = dvda+jnrC;
720             fjptrD           = dvda+jnrD;
721             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
722             velec            = _mm_mul_ps(qq00,rinv00);
723             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
724
725             /* CUBIC SPLINE TABLE DISPERSION */
726             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
727             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
728             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
729             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
730             _MM_TRANSPOSE4_PS(Y,F,G,H);
731             Heps             = _mm_mul_ps(vfeps,H);
732             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
733             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
734             fvdw6            = _mm_mul_ps(c6_00,FF);
735
736             /* CUBIC SPLINE TABLE REPULSION */
737             vfitab           = _mm_add_epi32(vfitab,ifour);
738             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
739             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
740             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
741             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
742             _MM_TRANSPOSE4_PS(Y,F,G,H);
743             Heps             = _mm_mul_ps(vfeps,H);
744             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
745             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
746             fvdw12           = _mm_mul_ps(c12_00,FF);
747             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
748
749             fscal            = _mm_add_ps(felec,fvdw);
750
751             /* Calculate temporary vectorial force */
752             tx               = _mm_mul_ps(fscal,dx00);
753             ty               = _mm_mul_ps(fscal,dy00);
754             tz               = _mm_mul_ps(fscal,dz00);
755
756             /* Update vectorial force */
757             fix0             = _mm_add_ps(fix0,tx);
758             fiy0             = _mm_add_ps(fiy0,ty);
759             fiz0             = _mm_add_ps(fiz0,tz);
760
761             fjptrA             = f+j_coord_offsetA;
762             fjptrB             = f+j_coord_offsetB;
763             fjptrC             = f+j_coord_offsetC;
764             fjptrD             = f+j_coord_offsetD;
765             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
766
767             /* Inner loop uses 82 flops */
768         }
769
770         if(jidx<j_index_end)
771         {
772
773             /* Get j neighbor index, and coordinate index */
774             jnrlistA         = jjnr[jidx];
775             jnrlistB         = jjnr[jidx+1];
776             jnrlistC         = jjnr[jidx+2];
777             jnrlistD         = jjnr[jidx+3];
778             /* Sign of each element will be negative for non-real atoms.
779              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
780              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
781              */
782             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
783             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
784             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
785             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
786             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
787             j_coord_offsetA  = DIM*jnrA;
788             j_coord_offsetB  = DIM*jnrB;
789             j_coord_offsetC  = DIM*jnrC;
790             j_coord_offsetD  = DIM*jnrD;
791
792             /* load j atom coordinates */
793             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
794                                               x+j_coord_offsetC,x+j_coord_offsetD,
795                                               &jx0,&jy0,&jz0);
796
797             /* Calculate displacement vector */
798             dx00             = _mm_sub_ps(ix0,jx0);
799             dy00             = _mm_sub_ps(iy0,jy0);
800             dz00             = _mm_sub_ps(iz0,jz0);
801
802             /* Calculate squared distance and things based on it */
803             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
804
805             rinv00           = gmx_mm_invsqrt_ps(rsq00);
806
807             /* Load parameters for j particles */
808             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
809                                                               charge+jnrC+0,charge+jnrD+0);
810             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
811                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
812             vdwjidx0A        = 2*vdwtype[jnrA+0];
813             vdwjidx0B        = 2*vdwtype[jnrB+0];
814             vdwjidx0C        = 2*vdwtype[jnrC+0];
815             vdwjidx0D        = 2*vdwtype[jnrD+0];
816
817             /**************************
818              * CALCULATE INTERACTIONS *
819              **************************/
820
821             r00              = _mm_mul_ps(rsq00,rinv00);
822             r00              = _mm_andnot_ps(dummy_mask,r00);
823
824             /* Compute parameters for interactions between i and j atoms */
825             qq00             = _mm_mul_ps(iq0,jq0);
826             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
827                                          vdwparam+vdwioffset0+vdwjidx0B,
828                                          vdwparam+vdwioffset0+vdwjidx0C,
829                                          vdwparam+vdwioffset0+vdwjidx0D,
830                                          &c6_00,&c12_00);
831
832             /* Calculate table index by multiplying r with table scale and truncate to integer */
833             rt               = _mm_mul_ps(r00,vftabscale);
834             vfitab           = _mm_cvttps_epi32(rt);
835             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
836             vfitab           = _mm_slli_epi32(vfitab,3);
837
838             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
839             isaprod          = _mm_mul_ps(isai0,isaj0);
840             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
841             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
842
843             /* Calculate generalized born table index - this is a separate table from the normal one,
844              * but we use the same procedure by multiplying r with scale and truncating to integer.
845              */
846             rt               = _mm_mul_ps(r00,gbscale);
847             gbitab           = _mm_cvttps_epi32(rt);
848             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
849             gbitab           = _mm_slli_epi32(gbitab,2);
850             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
851             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
852             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
853             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
854             _MM_TRANSPOSE4_PS(Y,F,G,H);
855             Heps             = _mm_mul_ps(gbeps,H);
856             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
857             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
858             vgb              = _mm_mul_ps(gbqqfactor,VV);
859
860             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
861             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
862             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
863             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
864             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
865             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
866             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
867             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
868             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
869             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
870             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
871             velec            = _mm_mul_ps(qq00,rinv00);
872             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
873
874             /* CUBIC SPLINE TABLE DISPERSION */
875             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
876             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
877             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
878             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
879             _MM_TRANSPOSE4_PS(Y,F,G,H);
880             Heps             = _mm_mul_ps(vfeps,H);
881             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
882             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
883             fvdw6            = _mm_mul_ps(c6_00,FF);
884
885             /* CUBIC SPLINE TABLE REPULSION */
886             vfitab           = _mm_add_epi32(vfitab,ifour);
887             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
888             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
889             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
890             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
891             _MM_TRANSPOSE4_PS(Y,F,G,H);
892             Heps             = _mm_mul_ps(vfeps,H);
893             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
894             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
895             fvdw12           = _mm_mul_ps(c12_00,FF);
896             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
897
898             fscal            = _mm_add_ps(felec,fvdw);
899
900             fscal            = _mm_andnot_ps(dummy_mask,fscal);
901
902             /* Calculate temporary vectorial force */
903             tx               = _mm_mul_ps(fscal,dx00);
904             ty               = _mm_mul_ps(fscal,dy00);
905             tz               = _mm_mul_ps(fscal,dz00);
906
907             /* Update vectorial force */
908             fix0             = _mm_add_ps(fix0,tx);
909             fiy0             = _mm_add_ps(fiy0,ty);
910             fiz0             = _mm_add_ps(fiz0,tz);
911
912             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
913             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
914             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
915             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
916             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
917
918             /* Inner loop uses 83 flops */
919         }
920
921         /* End of innermost loop */
922
923         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
924                                               f+i_coord_offset,fshift+i_shift_offset);
925
926         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
927         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
928
929         /* Increment number of inner iterations */
930         inneriter                  += j_index_end - j_index_start;
931
932         /* Outer loop uses 7 flops */
933     }
934
935     /* Increment number of outer iterations */
936     outeriter        += nri;
937
938     /* Update outer/inner flops */
939
940     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*83);
941 }