59e4669e51ff005291a10b3f15d70eeaee63316a
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse4_1_single
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          gbitab;
91     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
92     __m128           minushalf = _mm_set1_ps(-0.5);
93     real             *invsqrta,*dvda,*gbtab;
94     int              nvdwtype;
95     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
96     int              *vdwtype;
97     real             *vdwparam;
98     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
99     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
100     __m128i          vfitab;
101     __m128i          ifour       = _mm_set1_epi32(4);
102     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
103     real             *vftab;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     vftab            = kernel_data->table_vdw->data;
126     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
127
128     invsqrta         = fr->invsqrta;
129     dvda             = fr->dvda;
130     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
131     gbtab            = fr->gbtab.data;
132     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
172         isai0            = _mm_load1_ps(invsqrta+inr+0);
173         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_ps();
177         vgbsum           = _mm_setzero_ps();
178         vvdwsum          = _mm_setzero_ps();
179         dvdasum          = _mm_setzero_ps();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192             j_coord_offsetC  = DIM*jnrC;
193             j_coord_offsetD  = DIM*jnrD;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               x+j_coord_offsetC,x+j_coord_offsetD,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_ps(ix0,jx0);
202             dy00             = _mm_sub_ps(iy0,jy0);
203             dz00             = _mm_sub_ps(iz0,jz0);
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
207
208             rinv00           = gmx_mm_invsqrt_ps(rsq00);
209
210             /* Load parameters for j particles */
211             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
212                                                               charge+jnrC+0,charge+jnrD+0);
213             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
214                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
215             vdwjidx0A        = 2*vdwtype[jnrA+0];
216             vdwjidx0B        = 2*vdwtype[jnrB+0];
217             vdwjidx0C        = 2*vdwtype[jnrC+0];
218             vdwjidx0D        = 2*vdwtype[jnrD+0];
219
220             /**************************
221              * CALCULATE INTERACTIONS *
222              **************************/
223
224             r00              = _mm_mul_ps(rsq00,rinv00);
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq00             = _mm_mul_ps(iq0,jq0);
228             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
229                                          vdwparam+vdwioffset0+vdwjidx0B,
230                                          vdwparam+vdwioffset0+vdwjidx0C,
231                                          vdwparam+vdwioffset0+vdwjidx0D,
232                                          &c6_00,&c12_00);
233
234             /* Calculate table index by multiplying r with table scale and truncate to integer */
235             rt               = _mm_mul_ps(r00,vftabscale);
236             vfitab           = _mm_cvttps_epi32(rt);
237             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
238             vfitab           = _mm_slli_epi32(vfitab,3);
239
240             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
241             isaprod          = _mm_mul_ps(isai0,isaj0);
242             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
243             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
244
245             /* Calculate generalized born table index - this is a separate table from the normal one,
246              * but we use the same procedure by multiplying r with scale and truncating to integer.
247              */
248             rt               = _mm_mul_ps(r00,gbscale);
249             gbitab           = _mm_cvttps_epi32(rt);
250             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
251             gbitab           = _mm_slli_epi32(gbitab,2);
252             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
253             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
254             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
255             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
256             _MM_TRANSPOSE4_PS(Y,F,G,H);
257             Heps             = _mm_mul_ps(gbeps,H);
258             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
259             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
260             vgb              = _mm_mul_ps(gbqqfactor,VV);
261
262             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
263             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
264             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
265             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
266             fjptrA           = dvda+jnrA;
267             fjptrB           = dvda+jnrB;
268             fjptrC           = dvda+jnrC;
269             fjptrD           = dvda+jnrD;
270             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
271             velec            = _mm_mul_ps(qq00,rinv00);
272             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
273
274             /* CUBIC SPLINE TABLE DISPERSION */
275             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
276             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
277             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
278             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
279             _MM_TRANSPOSE4_PS(Y,F,G,H);
280             Heps             = _mm_mul_ps(vfeps,H);
281             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
282             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
283             vvdw6            = _mm_mul_ps(c6_00,VV);
284             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
285             fvdw6            = _mm_mul_ps(c6_00,FF);
286
287             /* CUBIC SPLINE TABLE REPULSION */
288             vfitab           = _mm_add_epi32(vfitab,ifour);
289             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
290             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
291             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
292             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
293             _MM_TRANSPOSE4_PS(Y,F,G,H);
294             Heps             = _mm_mul_ps(vfeps,H);
295             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
296             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
297             vvdw12           = _mm_mul_ps(c12_00,VV);
298             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
299             fvdw12           = _mm_mul_ps(c12_00,FF);
300             vvdw             = _mm_add_ps(vvdw12,vvdw6);
301             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velecsum         = _mm_add_ps(velecsum,velec);
305             vgbsum           = _mm_add_ps(vgbsum,vgb);
306             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
307
308             fscal            = _mm_add_ps(felec,fvdw);
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm_mul_ps(fscal,dx00);
312             ty               = _mm_mul_ps(fscal,dy00);
313             tz               = _mm_mul_ps(fscal,dz00);
314
315             /* Update vectorial force */
316             fix0             = _mm_add_ps(fix0,tx);
317             fiy0             = _mm_add_ps(fiy0,ty);
318             fiz0             = _mm_add_ps(fiz0,tz);
319
320             fjptrA             = f+j_coord_offsetA;
321             fjptrB             = f+j_coord_offsetB;
322             fjptrC             = f+j_coord_offsetC;
323             fjptrD             = f+j_coord_offsetD;
324             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
325
326             /* Inner loop uses 92 flops */
327         }
328
329         if(jidx<j_index_end)
330         {
331
332             /* Get j neighbor index, and coordinate index */
333             jnrlistA         = jjnr[jidx];
334             jnrlistB         = jjnr[jidx+1];
335             jnrlistC         = jjnr[jidx+2];
336             jnrlistD         = jjnr[jidx+3];
337             /* Sign of each element will be negative for non-real atoms.
338              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
339              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
340              */
341             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
342             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
343             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
344             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
345             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
346             j_coord_offsetA  = DIM*jnrA;
347             j_coord_offsetB  = DIM*jnrB;
348             j_coord_offsetC  = DIM*jnrC;
349             j_coord_offsetD  = DIM*jnrD;
350
351             /* load j atom coordinates */
352             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
353                                               x+j_coord_offsetC,x+j_coord_offsetD,
354                                               &jx0,&jy0,&jz0);
355
356             /* Calculate displacement vector */
357             dx00             = _mm_sub_ps(ix0,jx0);
358             dy00             = _mm_sub_ps(iy0,jy0);
359             dz00             = _mm_sub_ps(iz0,jz0);
360
361             /* Calculate squared distance and things based on it */
362             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
363
364             rinv00           = gmx_mm_invsqrt_ps(rsq00);
365
366             /* Load parameters for j particles */
367             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
368                                                               charge+jnrC+0,charge+jnrD+0);
369             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
370                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
371             vdwjidx0A        = 2*vdwtype[jnrA+0];
372             vdwjidx0B        = 2*vdwtype[jnrB+0];
373             vdwjidx0C        = 2*vdwtype[jnrC+0];
374             vdwjidx0D        = 2*vdwtype[jnrD+0];
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             r00              = _mm_mul_ps(rsq00,rinv00);
381             r00              = _mm_andnot_ps(dummy_mask,r00);
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq00             = _mm_mul_ps(iq0,jq0);
385             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
386                                          vdwparam+vdwioffset0+vdwjidx0B,
387                                          vdwparam+vdwioffset0+vdwjidx0C,
388                                          vdwparam+vdwioffset0+vdwjidx0D,
389                                          &c6_00,&c12_00);
390
391             /* Calculate table index by multiplying r with table scale and truncate to integer */
392             rt               = _mm_mul_ps(r00,vftabscale);
393             vfitab           = _mm_cvttps_epi32(rt);
394             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
395             vfitab           = _mm_slli_epi32(vfitab,3);
396
397             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
398             isaprod          = _mm_mul_ps(isai0,isaj0);
399             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
400             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
401
402             /* Calculate generalized born table index - this is a separate table from the normal one,
403              * but we use the same procedure by multiplying r with scale and truncating to integer.
404              */
405             rt               = _mm_mul_ps(r00,gbscale);
406             gbitab           = _mm_cvttps_epi32(rt);
407             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
408             gbitab           = _mm_slli_epi32(gbitab,2);
409             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
410             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
411             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
412             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
413             _MM_TRANSPOSE4_PS(Y,F,G,H);
414             Heps             = _mm_mul_ps(gbeps,H);
415             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
416             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
417             vgb              = _mm_mul_ps(gbqqfactor,VV);
418
419             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
420             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
421             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
422             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
423             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
424             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
425             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
426             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
427             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
428             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
429             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
430             velec            = _mm_mul_ps(qq00,rinv00);
431             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
432
433             /* CUBIC SPLINE TABLE DISPERSION */
434             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
435             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
436             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
437             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
438             _MM_TRANSPOSE4_PS(Y,F,G,H);
439             Heps             = _mm_mul_ps(vfeps,H);
440             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
441             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
442             vvdw6            = _mm_mul_ps(c6_00,VV);
443             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
444             fvdw6            = _mm_mul_ps(c6_00,FF);
445
446             /* CUBIC SPLINE TABLE REPULSION */
447             vfitab           = _mm_add_epi32(vfitab,ifour);
448             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
449             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
450             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
451             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
452             _MM_TRANSPOSE4_PS(Y,F,G,H);
453             Heps             = _mm_mul_ps(vfeps,H);
454             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
455             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
456             vvdw12           = _mm_mul_ps(c12_00,VV);
457             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
458             fvdw12           = _mm_mul_ps(c12_00,FF);
459             vvdw             = _mm_add_ps(vvdw12,vvdw6);
460             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
461
462             /* Update potential sum for this i atom from the interaction with this j atom. */
463             velec            = _mm_andnot_ps(dummy_mask,velec);
464             velecsum         = _mm_add_ps(velecsum,velec);
465             vgb              = _mm_andnot_ps(dummy_mask,vgb);
466             vgbsum           = _mm_add_ps(vgbsum,vgb);
467             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
468             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
469
470             fscal            = _mm_add_ps(felec,fvdw);
471
472             fscal            = _mm_andnot_ps(dummy_mask,fscal);
473
474             /* Calculate temporary vectorial force */
475             tx               = _mm_mul_ps(fscal,dx00);
476             ty               = _mm_mul_ps(fscal,dy00);
477             tz               = _mm_mul_ps(fscal,dz00);
478
479             /* Update vectorial force */
480             fix0             = _mm_add_ps(fix0,tx);
481             fiy0             = _mm_add_ps(fiy0,ty);
482             fiz0             = _mm_add_ps(fiz0,tz);
483
484             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
485             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
486             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
487             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
488             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
489
490             /* Inner loop uses 93 flops */
491         }
492
493         /* End of innermost loop */
494
495         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
496                                               f+i_coord_offset,fshift+i_shift_offset);
497
498         ggid                        = gid[iidx];
499         /* Update potential energies */
500         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
501         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
502         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
503         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
504         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
505
506         /* Increment number of inner iterations */
507         inneriter                  += j_index_end - j_index_start;
508
509         /* Outer loop uses 10 flops */
510     }
511
512     /* Increment number of outer iterations */
513     outeriter        += nri;
514
515     /* Update outer/inner flops */
516
517     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*93);
518 }
519 /*
520  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse4_1_single
521  * Electrostatics interaction: GeneralizedBorn
522  * VdW interaction:            CubicSplineTable
523  * Geometry:                   Particle-Particle
524  * Calculate force/pot:        Force
525  */
526 void
527 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse4_1_single
528                     (t_nblist                    * gmx_restrict       nlist,
529                      rvec                        * gmx_restrict          xx,
530                      rvec                        * gmx_restrict          ff,
531                      t_forcerec                  * gmx_restrict          fr,
532                      t_mdatoms                   * gmx_restrict     mdatoms,
533                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
534                      t_nrnb                      * gmx_restrict        nrnb)
535 {
536     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
537      * just 0 for non-waters.
538      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
539      * jnr indices corresponding to data put in the four positions in the SIMD register.
540      */
541     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
542     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
543     int              jnrA,jnrB,jnrC,jnrD;
544     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
545     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
546     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
547     real             rcutoff_scalar;
548     real             *shiftvec,*fshift,*x,*f;
549     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
550     real             scratch[4*DIM];
551     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
552     int              vdwioffset0;
553     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
554     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
555     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
556     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
557     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
558     real             *charge;
559     __m128i          gbitab;
560     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
561     __m128           minushalf = _mm_set1_ps(-0.5);
562     real             *invsqrta,*dvda,*gbtab;
563     int              nvdwtype;
564     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
565     int              *vdwtype;
566     real             *vdwparam;
567     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
568     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
569     __m128i          vfitab;
570     __m128i          ifour       = _mm_set1_epi32(4);
571     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
572     real             *vftab;
573     __m128           dummy_mask,cutoff_mask;
574     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
575     __m128           one     = _mm_set1_ps(1.0);
576     __m128           two     = _mm_set1_ps(2.0);
577     x                = xx[0];
578     f                = ff[0];
579
580     nri              = nlist->nri;
581     iinr             = nlist->iinr;
582     jindex           = nlist->jindex;
583     jjnr             = nlist->jjnr;
584     shiftidx         = nlist->shift;
585     gid              = nlist->gid;
586     shiftvec         = fr->shift_vec[0];
587     fshift           = fr->fshift[0];
588     facel            = _mm_set1_ps(fr->epsfac);
589     charge           = mdatoms->chargeA;
590     nvdwtype         = fr->ntype;
591     vdwparam         = fr->nbfp;
592     vdwtype          = mdatoms->typeA;
593
594     vftab            = kernel_data->table_vdw->data;
595     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
596
597     invsqrta         = fr->invsqrta;
598     dvda             = fr->dvda;
599     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
600     gbtab            = fr->gbtab.data;
601     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
602
603     /* Avoid stupid compiler warnings */
604     jnrA = jnrB = jnrC = jnrD = 0;
605     j_coord_offsetA = 0;
606     j_coord_offsetB = 0;
607     j_coord_offsetC = 0;
608     j_coord_offsetD = 0;
609
610     outeriter        = 0;
611     inneriter        = 0;
612
613     for(iidx=0;iidx<4*DIM;iidx++)
614     {
615         scratch[iidx] = 0.0;
616     }
617
618     /* Start outer loop over neighborlists */
619     for(iidx=0; iidx<nri; iidx++)
620     {
621         /* Load shift vector for this list */
622         i_shift_offset   = DIM*shiftidx[iidx];
623
624         /* Load limits for loop over neighbors */
625         j_index_start    = jindex[iidx];
626         j_index_end      = jindex[iidx+1];
627
628         /* Get outer coordinate index */
629         inr              = iinr[iidx];
630         i_coord_offset   = DIM*inr;
631
632         /* Load i particle coords and add shift vector */
633         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
634
635         fix0             = _mm_setzero_ps();
636         fiy0             = _mm_setzero_ps();
637         fiz0             = _mm_setzero_ps();
638
639         /* Load parameters for i particles */
640         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
641         isai0            = _mm_load1_ps(invsqrta+inr+0);
642         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
643
644         dvdasum          = _mm_setzero_ps();
645
646         /* Start inner kernel loop */
647         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
648         {
649
650             /* Get j neighbor index, and coordinate index */
651             jnrA             = jjnr[jidx];
652             jnrB             = jjnr[jidx+1];
653             jnrC             = jjnr[jidx+2];
654             jnrD             = jjnr[jidx+3];
655             j_coord_offsetA  = DIM*jnrA;
656             j_coord_offsetB  = DIM*jnrB;
657             j_coord_offsetC  = DIM*jnrC;
658             j_coord_offsetD  = DIM*jnrD;
659
660             /* load j atom coordinates */
661             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
662                                               x+j_coord_offsetC,x+j_coord_offsetD,
663                                               &jx0,&jy0,&jz0);
664
665             /* Calculate displacement vector */
666             dx00             = _mm_sub_ps(ix0,jx0);
667             dy00             = _mm_sub_ps(iy0,jy0);
668             dz00             = _mm_sub_ps(iz0,jz0);
669
670             /* Calculate squared distance and things based on it */
671             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
672
673             rinv00           = gmx_mm_invsqrt_ps(rsq00);
674
675             /* Load parameters for j particles */
676             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
677                                                               charge+jnrC+0,charge+jnrD+0);
678             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
679                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
680             vdwjidx0A        = 2*vdwtype[jnrA+0];
681             vdwjidx0B        = 2*vdwtype[jnrB+0];
682             vdwjidx0C        = 2*vdwtype[jnrC+0];
683             vdwjidx0D        = 2*vdwtype[jnrD+0];
684
685             /**************************
686              * CALCULATE INTERACTIONS *
687              **************************/
688
689             r00              = _mm_mul_ps(rsq00,rinv00);
690
691             /* Compute parameters for interactions between i and j atoms */
692             qq00             = _mm_mul_ps(iq0,jq0);
693             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
694                                          vdwparam+vdwioffset0+vdwjidx0B,
695                                          vdwparam+vdwioffset0+vdwjidx0C,
696                                          vdwparam+vdwioffset0+vdwjidx0D,
697                                          &c6_00,&c12_00);
698
699             /* Calculate table index by multiplying r with table scale and truncate to integer */
700             rt               = _mm_mul_ps(r00,vftabscale);
701             vfitab           = _mm_cvttps_epi32(rt);
702             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
703             vfitab           = _mm_slli_epi32(vfitab,3);
704
705             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
706             isaprod          = _mm_mul_ps(isai0,isaj0);
707             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
708             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
709
710             /* Calculate generalized born table index - this is a separate table from the normal one,
711              * but we use the same procedure by multiplying r with scale and truncating to integer.
712              */
713             rt               = _mm_mul_ps(r00,gbscale);
714             gbitab           = _mm_cvttps_epi32(rt);
715             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
716             gbitab           = _mm_slli_epi32(gbitab,2);
717             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
718             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
719             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
720             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
721             _MM_TRANSPOSE4_PS(Y,F,G,H);
722             Heps             = _mm_mul_ps(gbeps,H);
723             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
724             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
725             vgb              = _mm_mul_ps(gbqqfactor,VV);
726
727             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
728             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
729             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
730             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
731             fjptrA           = dvda+jnrA;
732             fjptrB           = dvda+jnrB;
733             fjptrC           = dvda+jnrC;
734             fjptrD           = dvda+jnrD;
735             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
736             velec            = _mm_mul_ps(qq00,rinv00);
737             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
738
739             /* CUBIC SPLINE TABLE DISPERSION */
740             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
741             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
742             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
743             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
744             _MM_TRANSPOSE4_PS(Y,F,G,H);
745             Heps             = _mm_mul_ps(vfeps,H);
746             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
747             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
748             fvdw6            = _mm_mul_ps(c6_00,FF);
749
750             /* CUBIC SPLINE TABLE REPULSION */
751             vfitab           = _mm_add_epi32(vfitab,ifour);
752             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
753             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
754             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
755             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
756             _MM_TRANSPOSE4_PS(Y,F,G,H);
757             Heps             = _mm_mul_ps(vfeps,H);
758             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
759             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
760             fvdw12           = _mm_mul_ps(c12_00,FF);
761             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
762
763             fscal            = _mm_add_ps(felec,fvdw);
764
765             /* Calculate temporary vectorial force */
766             tx               = _mm_mul_ps(fscal,dx00);
767             ty               = _mm_mul_ps(fscal,dy00);
768             tz               = _mm_mul_ps(fscal,dz00);
769
770             /* Update vectorial force */
771             fix0             = _mm_add_ps(fix0,tx);
772             fiy0             = _mm_add_ps(fiy0,ty);
773             fiz0             = _mm_add_ps(fiz0,tz);
774
775             fjptrA             = f+j_coord_offsetA;
776             fjptrB             = f+j_coord_offsetB;
777             fjptrC             = f+j_coord_offsetC;
778             fjptrD             = f+j_coord_offsetD;
779             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
780
781             /* Inner loop uses 82 flops */
782         }
783
784         if(jidx<j_index_end)
785         {
786
787             /* Get j neighbor index, and coordinate index */
788             jnrlistA         = jjnr[jidx];
789             jnrlistB         = jjnr[jidx+1];
790             jnrlistC         = jjnr[jidx+2];
791             jnrlistD         = jjnr[jidx+3];
792             /* Sign of each element will be negative for non-real atoms.
793              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
794              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
795              */
796             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
797             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
798             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
799             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
800             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
801             j_coord_offsetA  = DIM*jnrA;
802             j_coord_offsetB  = DIM*jnrB;
803             j_coord_offsetC  = DIM*jnrC;
804             j_coord_offsetD  = DIM*jnrD;
805
806             /* load j atom coordinates */
807             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
808                                               x+j_coord_offsetC,x+j_coord_offsetD,
809                                               &jx0,&jy0,&jz0);
810
811             /* Calculate displacement vector */
812             dx00             = _mm_sub_ps(ix0,jx0);
813             dy00             = _mm_sub_ps(iy0,jy0);
814             dz00             = _mm_sub_ps(iz0,jz0);
815
816             /* Calculate squared distance and things based on it */
817             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
818
819             rinv00           = gmx_mm_invsqrt_ps(rsq00);
820
821             /* Load parameters for j particles */
822             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
823                                                               charge+jnrC+0,charge+jnrD+0);
824             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
825                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
826             vdwjidx0A        = 2*vdwtype[jnrA+0];
827             vdwjidx0B        = 2*vdwtype[jnrB+0];
828             vdwjidx0C        = 2*vdwtype[jnrC+0];
829             vdwjidx0D        = 2*vdwtype[jnrD+0];
830
831             /**************************
832              * CALCULATE INTERACTIONS *
833              **************************/
834
835             r00              = _mm_mul_ps(rsq00,rinv00);
836             r00              = _mm_andnot_ps(dummy_mask,r00);
837
838             /* Compute parameters for interactions between i and j atoms */
839             qq00             = _mm_mul_ps(iq0,jq0);
840             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
841                                          vdwparam+vdwioffset0+vdwjidx0B,
842                                          vdwparam+vdwioffset0+vdwjidx0C,
843                                          vdwparam+vdwioffset0+vdwjidx0D,
844                                          &c6_00,&c12_00);
845
846             /* Calculate table index by multiplying r with table scale and truncate to integer */
847             rt               = _mm_mul_ps(r00,vftabscale);
848             vfitab           = _mm_cvttps_epi32(rt);
849             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
850             vfitab           = _mm_slli_epi32(vfitab,3);
851
852             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
853             isaprod          = _mm_mul_ps(isai0,isaj0);
854             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
855             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
856
857             /* Calculate generalized born table index - this is a separate table from the normal one,
858              * but we use the same procedure by multiplying r with scale and truncating to integer.
859              */
860             rt               = _mm_mul_ps(r00,gbscale);
861             gbitab           = _mm_cvttps_epi32(rt);
862             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
863             gbitab           = _mm_slli_epi32(gbitab,2);
864             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
865             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
866             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
867             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
868             _MM_TRANSPOSE4_PS(Y,F,G,H);
869             Heps             = _mm_mul_ps(gbeps,H);
870             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
871             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
872             vgb              = _mm_mul_ps(gbqqfactor,VV);
873
874             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
875             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
876             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
877             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
878             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
879             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
880             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
881             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
882             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
883             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
884             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
885             velec            = _mm_mul_ps(qq00,rinv00);
886             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
887
888             /* CUBIC SPLINE TABLE DISPERSION */
889             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
890             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
891             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
892             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
893             _MM_TRANSPOSE4_PS(Y,F,G,H);
894             Heps             = _mm_mul_ps(vfeps,H);
895             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
896             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
897             fvdw6            = _mm_mul_ps(c6_00,FF);
898
899             /* CUBIC SPLINE TABLE REPULSION */
900             vfitab           = _mm_add_epi32(vfitab,ifour);
901             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
902             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
903             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
904             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
905             _MM_TRANSPOSE4_PS(Y,F,G,H);
906             Heps             = _mm_mul_ps(vfeps,H);
907             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
908             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
909             fvdw12           = _mm_mul_ps(c12_00,FF);
910             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
911
912             fscal            = _mm_add_ps(felec,fvdw);
913
914             fscal            = _mm_andnot_ps(dummy_mask,fscal);
915
916             /* Calculate temporary vectorial force */
917             tx               = _mm_mul_ps(fscal,dx00);
918             ty               = _mm_mul_ps(fscal,dy00);
919             tz               = _mm_mul_ps(fscal,dz00);
920
921             /* Update vectorial force */
922             fix0             = _mm_add_ps(fix0,tx);
923             fiy0             = _mm_add_ps(fiy0,ty);
924             fiz0             = _mm_add_ps(fiz0,tz);
925
926             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
927             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
928             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
929             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
930             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
931
932             /* Inner loop uses 83 flops */
933         }
934
935         /* End of innermost loop */
936
937         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
938                                               f+i_coord_offset,fshift+i_shift_offset);
939
940         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
941         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
942
943         /* Increment number of inner iterations */
944         inneriter                  += j_index_end - j_index_start;
945
946         /* Outer loop uses 7 flops */
947     }
948
949     /* Increment number of outer iterations */
950     outeriter        += nri;
951
952     /* Update outer/inner flops */
953
954     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*83);
955 }