Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwNone_GeomW4P1_sse4_1_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse4_1_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset1;
83     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m128i          ewitab;
96     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_ps(fr->ic->epsfac);
114     charge           = mdatoms->chargeA;
115
116     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
124     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
125     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
158                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
159
160         fix1             = _mm_setzero_ps();
161         fiy1             = _mm_setzero_ps();
162         fiz1             = _mm_setzero_ps();
163         fix2             = _mm_setzero_ps();
164         fiy2             = _mm_setzero_ps();
165         fiz2             = _mm_setzero_ps();
166         fix3             = _mm_setzero_ps();
167         fiy3             = _mm_setzero_ps();
168         fiz3             = _mm_setzero_ps();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               x+j_coord_offsetC,x+j_coord_offsetD,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx10             = _mm_sub_ps(ix1,jx0);
194             dy10             = _mm_sub_ps(iy1,jy0);
195             dz10             = _mm_sub_ps(iz1,jz0);
196             dx20             = _mm_sub_ps(ix2,jx0);
197             dy20             = _mm_sub_ps(iy2,jy0);
198             dz20             = _mm_sub_ps(iz2,jz0);
199             dx30             = _mm_sub_ps(ix3,jx0);
200             dy30             = _mm_sub_ps(iy3,jy0);
201             dz30             = _mm_sub_ps(iz3,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
205             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
206             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
207
208             rinv10           = sse41_invsqrt_f(rsq10);
209             rinv20           = sse41_invsqrt_f(rsq20);
210             rinv30           = sse41_invsqrt_f(rsq30);
211
212             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
213             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
214             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
218                                                               charge+jnrC+0,charge+jnrD+0);
219
220             fjx0             = _mm_setzero_ps();
221             fjy0             = _mm_setzero_ps();
222             fjz0             = _mm_setzero_ps();
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             r10              = _mm_mul_ps(rsq10,rinv10);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq10             = _mm_mul_ps(iq1,jq0);
232
233             /* EWALD ELECTROSTATICS */
234
235             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
236             ewrt             = _mm_mul_ps(r10,ewtabscale);
237             ewitab           = _mm_cvttps_epi32(ewrt);
238             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
239             ewitab           = _mm_slli_epi32(ewitab,2);
240             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
241             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
242             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
243             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
244             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
245             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
246             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
247             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
248             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velecsum         = _mm_add_ps(velecsum,velec);
252
253             fscal            = felec;
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm_mul_ps(fscal,dx10);
257             ty               = _mm_mul_ps(fscal,dy10);
258             tz               = _mm_mul_ps(fscal,dz10);
259
260             /* Update vectorial force */
261             fix1             = _mm_add_ps(fix1,tx);
262             fiy1             = _mm_add_ps(fiy1,ty);
263             fiz1             = _mm_add_ps(fiz1,tz);
264
265             fjx0             = _mm_add_ps(fjx0,tx);
266             fjy0             = _mm_add_ps(fjy0,ty);
267             fjz0             = _mm_add_ps(fjz0,tz);
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             r20              = _mm_mul_ps(rsq20,rinv20);
274
275             /* Compute parameters for interactions between i and j atoms */
276             qq20             = _mm_mul_ps(iq2,jq0);
277
278             /* EWALD ELECTROSTATICS */
279
280             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
281             ewrt             = _mm_mul_ps(r20,ewtabscale);
282             ewitab           = _mm_cvttps_epi32(ewrt);
283             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
284             ewitab           = _mm_slli_epi32(ewitab,2);
285             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
286             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
287             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
288             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
289             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
290             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
291             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
292             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
293             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm_add_ps(velecsum,velec);
297
298             fscal            = felec;
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm_mul_ps(fscal,dx20);
302             ty               = _mm_mul_ps(fscal,dy20);
303             tz               = _mm_mul_ps(fscal,dz20);
304
305             /* Update vectorial force */
306             fix2             = _mm_add_ps(fix2,tx);
307             fiy2             = _mm_add_ps(fiy2,ty);
308             fiz2             = _mm_add_ps(fiz2,tz);
309
310             fjx0             = _mm_add_ps(fjx0,tx);
311             fjy0             = _mm_add_ps(fjy0,ty);
312             fjz0             = _mm_add_ps(fjz0,tz);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r30              = _mm_mul_ps(rsq30,rinv30);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq30             = _mm_mul_ps(iq3,jq0);
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
326             ewrt             = _mm_mul_ps(r30,ewtabscale);
327             ewitab           = _mm_cvttps_epi32(ewrt);
328             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
329             ewitab           = _mm_slli_epi32(ewitab,2);
330             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
331             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
332             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
333             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
334             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
335             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
336             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
337             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
338             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velecsum         = _mm_add_ps(velecsum,velec);
342
343             fscal            = felec;
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm_mul_ps(fscal,dx30);
347             ty               = _mm_mul_ps(fscal,dy30);
348             tz               = _mm_mul_ps(fscal,dz30);
349
350             /* Update vectorial force */
351             fix3             = _mm_add_ps(fix3,tx);
352             fiy3             = _mm_add_ps(fiy3,ty);
353             fiz3             = _mm_add_ps(fiz3,tz);
354
355             fjx0             = _mm_add_ps(fjx0,tx);
356             fjy0             = _mm_add_ps(fjy0,ty);
357             fjz0             = _mm_add_ps(fjz0,tz);
358
359             fjptrA             = f+j_coord_offsetA;
360             fjptrB             = f+j_coord_offsetB;
361             fjptrC             = f+j_coord_offsetC;
362             fjptrD             = f+j_coord_offsetD;
363
364             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
365
366             /* Inner loop uses 123 flops */
367         }
368
369         if(jidx<j_index_end)
370         {
371
372             /* Get j neighbor index, and coordinate index */
373             jnrlistA         = jjnr[jidx];
374             jnrlistB         = jjnr[jidx+1];
375             jnrlistC         = jjnr[jidx+2];
376             jnrlistD         = jjnr[jidx+3];
377             /* Sign of each element will be negative for non-real atoms.
378              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
379              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
380              */
381             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
382             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
383             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
384             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
385             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
386             j_coord_offsetA  = DIM*jnrA;
387             j_coord_offsetB  = DIM*jnrB;
388             j_coord_offsetC  = DIM*jnrC;
389             j_coord_offsetD  = DIM*jnrD;
390
391             /* load j atom coordinates */
392             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
393                                               x+j_coord_offsetC,x+j_coord_offsetD,
394                                               &jx0,&jy0,&jz0);
395
396             /* Calculate displacement vector */
397             dx10             = _mm_sub_ps(ix1,jx0);
398             dy10             = _mm_sub_ps(iy1,jy0);
399             dz10             = _mm_sub_ps(iz1,jz0);
400             dx20             = _mm_sub_ps(ix2,jx0);
401             dy20             = _mm_sub_ps(iy2,jy0);
402             dz20             = _mm_sub_ps(iz2,jz0);
403             dx30             = _mm_sub_ps(ix3,jx0);
404             dy30             = _mm_sub_ps(iy3,jy0);
405             dz30             = _mm_sub_ps(iz3,jz0);
406
407             /* Calculate squared distance and things based on it */
408             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
409             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
410             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
411
412             rinv10           = sse41_invsqrt_f(rsq10);
413             rinv20           = sse41_invsqrt_f(rsq20);
414             rinv30           = sse41_invsqrt_f(rsq30);
415
416             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
417             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
418             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
419
420             /* Load parameters for j particles */
421             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
422                                                               charge+jnrC+0,charge+jnrD+0);
423
424             fjx0             = _mm_setzero_ps();
425             fjy0             = _mm_setzero_ps();
426             fjz0             = _mm_setzero_ps();
427
428             /**************************
429              * CALCULATE INTERACTIONS *
430              **************************/
431
432             r10              = _mm_mul_ps(rsq10,rinv10);
433             r10              = _mm_andnot_ps(dummy_mask,r10);
434
435             /* Compute parameters for interactions between i and j atoms */
436             qq10             = _mm_mul_ps(iq1,jq0);
437
438             /* EWALD ELECTROSTATICS */
439
440             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
441             ewrt             = _mm_mul_ps(r10,ewtabscale);
442             ewitab           = _mm_cvttps_epi32(ewrt);
443             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
444             ewitab           = _mm_slli_epi32(ewitab,2);
445             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
446             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
447             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
448             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
449             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
450             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
451             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
452             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
453             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
454
455             /* Update potential sum for this i atom from the interaction with this j atom. */
456             velec            = _mm_andnot_ps(dummy_mask,velec);
457             velecsum         = _mm_add_ps(velecsum,velec);
458
459             fscal            = felec;
460
461             fscal            = _mm_andnot_ps(dummy_mask,fscal);
462
463             /* Calculate temporary vectorial force */
464             tx               = _mm_mul_ps(fscal,dx10);
465             ty               = _mm_mul_ps(fscal,dy10);
466             tz               = _mm_mul_ps(fscal,dz10);
467
468             /* Update vectorial force */
469             fix1             = _mm_add_ps(fix1,tx);
470             fiy1             = _mm_add_ps(fiy1,ty);
471             fiz1             = _mm_add_ps(fiz1,tz);
472
473             fjx0             = _mm_add_ps(fjx0,tx);
474             fjy0             = _mm_add_ps(fjy0,ty);
475             fjz0             = _mm_add_ps(fjz0,tz);
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             r20              = _mm_mul_ps(rsq20,rinv20);
482             r20              = _mm_andnot_ps(dummy_mask,r20);
483
484             /* Compute parameters for interactions between i and j atoms */
485             qq20             = _mm_mul_ps(iq2,jq0);
486
487             /* EWALD ELECTROSTATICS */
488
489             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
490             ewrt             = _mm_mul_ps(r20,ewtabscale);
491             ewitab           = _mm_cvttps_epi32(ewrt);
492             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
493             ewitab           = _mm_slli_epi32(ewitab,2);
494             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
495             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
496             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
497             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
498             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
499             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
500             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
501             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
502             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
503
504             /* Update potential sum for this i atom from the interaction with this j atom. */
505             velec            = _mm_andnot_ps(dummy_mask,velec);
506             velecsum         = _mm_add_ps(velecsum,velec);
507
508             fscal            = felec;
509
510             fscal            = _mm_andnot_ps(dummy_mask,fscal);
511
512             /* Calculate temporary vectorial force */
513             tx               = _mm_mul_ps(fscal,dx20);
514             ty               = _mm_mul_ps(fscal,dy20);
515             tz               = _mm_mul_ps(fscal,dz20);
516
517             /* Update vectorial force */
518             fix2             = _mm_add_ps(fix2,tx);
519             fiy2             = _mm_add_ps(fiy2,ty);
520             fiz2             = _mm_add_ps(fiz2,tz);
521
522             fjx0             = _mm_add_ps(fjx0,tx);
523             fjy0             = _mm_add_ps(fjy0,ty);
524             fjz0             = _mm_add_ps(fjz0,tz);
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             r30              = _mm_mul_ps(rsq30,rinv30);
531             r30              = _mm_andnot_ps(dummy_mask,r30);
532
533             /* Compute parameters for interactions between i and j atoms */
534             qq30             = _mm_mul_ps(iq3,jq0);
535
536             /* EWALD ELECTROSTATICS */
537
538             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
539             ewrt             = _mm_mul_ps(r30,ewtabscale);
540             ewitab           = _mm_cvttps_epi32(ewrt);
541             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
542             ewitab           = _mm_slli_epi32(ewitab,2);
543             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
544             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
545             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
546             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
547             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
548             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
549             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
550             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
551             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velec            = _mm_andnot_ps(dummy_mask,velec);
555             velecsum         = _mm_add_ps(velecsum,velec);
556
557             fscal            = felec;
558
559             fscal            = _mm_andnot_ps(dummy_mask,fscal);
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm_mul_ps(fscal,dx30);
563             ty               = _mm_mul_ps(fscal,dy30);
564             tz               = _mm_mul_ps(fscal,dz30);
565
566             /* Update vectorial force */
567             fix3             = _mm_add_ps(fix3,tx);
568             fiy3             = _mm_add_ps(fiy3,ty);
569             fiz3             = _mm_add_ps(fiz3,tz);
570
571             fjx0             = _mm_add_ps(fjx0,tx);
572             fjy0             = _mm_add_ps(fjy0,ty);
573             fjz0             = _mm_add_ps(fjz0,tz);
574
575             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
576             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
577             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
578             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
579
580             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
581
582             /* Inner loop uses 126 flops */
583         }
584
585         /* End of innermost loop */
586
587         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
588                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
589
590         ggid                        = gid[iidx];
591         /* Update potential energies */
592         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
593
594         /* Increment number of inner iterations */
595         inneriter                  += j_index_end - j_index_start;
596
597         /* Outer loop uses 19 flops */
598     }
599
600     /* Increment number of outer iterations */
601     outeriter        += nri;
602
603     /* Update outer/inner flops */
604
605     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*126);
606 }
607 /*
608  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse4_1_single
609  * Electrostatics interaction: Ewald
610  * VdW interaction:            None
611  * Geometry:                   Water4-Particle
612  * Calculate force/pot:        Force
613  */
614 void
615 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse4_1_single
616                     (t_nblist                    * gmx_restrict       nlist,
617                      rvec                        * gmx_restrict          xx,
618                      rvec                        * gmx_restrict          ff,
619                      struct t_forcerec           * gmx_restrict          fr,
620                      t_mdatoms                   * gmx_restrict     mdatoms,
621                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
622                      t_nrnb                      * gmx_restrict        nrnb)
623 {
624     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
625      * just 0 for non-waters.
626      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
627      * jnr indices corresponding to data put in the four positions in the SIMD register.
628      */
629     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
630     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
631     int              jnrA,jnrB,jnrC,jnrD;
632     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
633     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
634     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
635     real             rcutoff_scalar;
636     real             *shiftvec,*fshift,*x,*f;
637     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
638     real             scratch[4*DIM];
639     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
640     int              vdwioffset1;
641     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
642     int              vdwioffset2;
643     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
644     int              vdwioffset3;
645     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
646     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
647     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
648     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
649     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
650     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
651     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
652     real             *charge;
653     __m128i          ewitab;
654     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
655     real             *ewtab;
656     __m128           dummy_mask,cutoff_mask;
657     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
658     __m128           one     = _mm_set1_ps(1.0);
659     __m128           two     = _mm_set1_ps(2.0);
660     x                = xx[0];
661     f                = ff[0];
662
663     nri              = nlist->nri;
664     iinr             = nlist->iinr;
665     jindex           = nlist->jindex;
666     jjnr             = nlist->jjnr;
667     shiftidx         = nlist->shift;
668     gid              = nlist->gid;
669     shiftvec         = fr->shift_vec[0];
670     fshift           = fr->fshift[0];
671     facel            = _mm_set1_ps(fr->ic->epsfac);
672     charge           = mdatoms->chargeA;
673
674     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
675     ewtab            = fr->ic->tabq_coul_F;
676     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
677     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
678
679     /* Setup water-specific parameters */
680     inr              = nlist->iinr[0];
681     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
682     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
683     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
684
685     /* Avoid stupid compiler warnings */
686     jnrA = jnrB = jnrC = jnrD = 0;
687     j_coord_offsetA = 0;
688     j_coord_offsetB = 0;
689     j_coord_offsetC = 0;
690     j_coord_offsetD = 0;
691
692     outeriter        = 0;
693     inneriter        = 0;
694
695     for(iidx=0;iidx<4*DIM;iidx++)
696     {
697         scratch[iidx] = 0.0;
698     }
699
700     /* Start outer loop over neighborlists */
701     for(iidx=0; iidx<nri; iidx++)
702     {
703         /* Load shift vector for this list */
704         i_shift_offset   = DIM*shiftidx[iidx];
705
706         /* Load limits for loop over neighbors */
707         j_index_start    = jindex[iidx];
708         j_index_end      = jindex[iidx+1];
709
710         /* Get outer coordinate index */
711         inr              = iinr[iidx];
712         i_coord_offset   = DIM*inr;
713
714         /* Load i particle coords and add shift vector */
715         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
716                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
717
718         fix1             = _mm_setzero_ps();
719         fiy1             = _mm_setzero_ps();
720         fiz1             = _mm_setzero_ps();
721         fix2             = _mm_setzero_ps();
722         fiy2             = _mm_setzero_ps();
723         fiz2             = _mm_setzero_ps();
724         fix3             = _mm_setzero_ps();
725         fiy3             = _mm_setzero_ps();
726         fiz3             = _mm_setzero_ps();
727
728         /* Start inner kernel loop */
729         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
730         {
731
732             /* Get j neighbor index, and coordinate index */
733             jnrA             = jjnr[jidx];
734             jnrB             = jjnr[jidx+1];
735             jnrC             = jjnr[jidx+2];
736             jnrD             = jjnr[jidx+3];
737             j_coord_offsetA  = DIM*jnrA;
738             j_coord_offsetB  = DIM*jnrB;
739             j_coord_offsetC  = DIM*jnrC;
740             j_coord_offsetD  = DIM*jnrD;
741
742             /* load j atom coordinates */
743             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
744                                               x+j_coord_offsetC,x+j_coord_offsetD,
745                                               &jx0,&jy0,&jz0);
746
747             /* Calculate displacement vector */
748             dx10             = _mm_sub_ps(ix1,jx0);
749             dy10             = _mm_sub_ps(iy1,jy0);
750             dz10             = _mm_sub_ps(iz1,jz0);
751             dx20             = _mm_sub_ps(ix2,jx0);
752             dy20             = _mm_sub_ps(iy2,jy0);
753             dz20             = _mm_sub_ps(iz2,jz0);
754             dx30             = _mm_sub_ps(ix3,jx0);
755             dy30             = _mm_sub_ps(iy3,jy0);
756             dz30             = _mm_sub_ps(iz3,jz0);
757
758             /* Calculate squared distance and things based on it */
759             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
760             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
761             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
762
763             rinv10           = sse41_invsqrt_f(rsq10);
764             rinv20           = sse41_invsqrt_f(rsq20);
765             rinv30           = sse41_invsqrt_f(rsq30);
766
767             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
768             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
769             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
770
771             /* Load parameters for j particles */
772             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
773                                                               charge+jnrC+0,charge+jnrD+0);
774
775             fjx0             = _mm_setzero_ps();
776             fjy0             = _mm_setzero_ps();
777             fjz0             = _mm_setzero_ps();
778
779             /**************************
780              * CALCULATE INTERACTIONS *
781              **************************/
782
783             r10              = _mm_mul_ps(rsq10,rinv10);
784
785             /* Compute parameters for interactions between i and j atoms */
786             qq10             = _mm_mul_ps(iq1,jq0);
787
788             /* EWALD ELECTROSTATICS */
789
790             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
791             ewrt             = _mm_mul_ps(r10,ewtabscale);
792             ewitab           = _mm_cvttps_epi32(ewrt);
793             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
794             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
795                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
796                                          &ewtabF,&ewtabFn);
797             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
798             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
799
800             fscal            = felec;
801
802             /* Calculate temporary vectorial force */
803             tx               = _mm_mul_ps(fscal,dx10);
804             ty               = _mm_mul_ps(fscal,dy10);
805             tz               = _mm_mul_ps(fscal,dz10);
806
807             /* Update vectorial force */
808             fix1             = _mm_add_ps(fix1,tx);
809             fiy1             = _mm_add_ps(fiy1,ty);
810             fiz1             = _mm_add_ps(fiz1,tz);
811
812             fjx0             = _mm_add_ps(fjx0,tx);
813             fjy0             = _mm_add_ps(fjy0,ty);
814             fjz0             = _mm_add_ps(fjz0,tz);
815
816             /**************************
817              * CALCULATE INTERACTIONS *
818              **************************/
819
820             r20              = _mm_mul_ps(rsq20,rinv20);
821
822             /* Compute parameters for interactions between i and j atoms */
823             qq20             = _mm_mul_ps(iq2,jq0);
824
825             /* EWALD ELECTROSTATICS */
826
827             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
828             ewrt             = _mm_mul_ps(r20,ewtabscale);
829             ewitab           = _mm_cvttps_epi32(ewrt);
830             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
831             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
832                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
833                                          &ewtabF,&ewtabFn);
834             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
835             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
836
837             fscal            = felec;
838
839             /* Calculate temporary vectorial force */
840             tx               = _mm_mul_ps(fscal,dx20);
841             ty               = _mm_mul_ps(fscal,dy20);
842             tz               = _mm_mul_ps(fscal,dz20);
843
844             /* Update vectorial force */
845             fix2             = _mm_add_ps(fix2,tx);
846             fiy2             = _mm_add_ps(fiy2,ty);
847             fiz2             = _mm_add_ps(fiz2,tz);
848
849             fjx0             = _mm_add_ps(fjx0,tx);
850             fjy0             = _mm_add_ps(fjy0,ty);
851             fjz0             = _mm_add_ps(fjz0,tz);
852
853             /**************************
854              * CALCULATE INTERACTIONS *
855              **************************/
856
857             r30              = _mm_mul_ps(rsq30,rinv30);
858
859             /* Compute parameters for interactions between i and j atoms */
860             qq30             = _mm_mul_ps(iq3,jq0);
861
862             /* EWALD ELECTROSTATICS */
863
864             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
865             ewrt             = _mm_mul_ps(r30,ewtabscale);
866             ewitab           = _mm_cvttps_epi32(ewrt);
867             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
868             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
869                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
870                                          &ewtabF,&ewtabFn);
871             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
872             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
873
874             fscal            = felec;
875
876             /* Calculate temporary vectorial force */
877             tx               = _mm_mul_ps(fscal,dx30);
878             ty               = _mm_mul_ps(fscal,dy30);
879             tz               = _mm_mul_ps(fscal,dz30);
880
881             /* Update vectorial force */
882             fix3             = _mm_add_ps(fix3,tx);
883             fiy3             = _mm_add_ps(fiy3,ty);
884             fiz3             = _mm_add_ps(fiz3,tz);
885
886             fjx0             = _mm_add_ps(fjx0,tx);
887             fjy0             = _mm_add_ps(fjy0,ty);
888             fjz0             = _mm_add_ps(fjz0,tz);
889
890             fjptrA             = f+j_coord_offsetA;
891             fjptrB             = f+j_coord_offsetB;
892             fjptrC             = f+j_coord_offsetC;
893             fjptrD             = f+j_coord_offsetD;
894
895             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
896
897             /* Inner loop uses 108 flops */
898         }
899
900         if(jidx<j_index_end)
901         {
902
903             /* Get j neighbor index, and coordinate index */
904             jnrlistA         = jjnr[jidx];
905             jnrlistB         = jjnr[jidx+1];
906             jnrlistC         = jjnr[jidx+2];
907             jnrlistD         = jjnr[jidx+3];
908             /* Sign of each element will be negative for non-real atoms.
909              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
910              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
911              */
912             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
913             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
914             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
915             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
916             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
917             j_coord_offsetA  = DIM*jnrA;
918             j_coord_offsetB  = DIM*jnrB;
919             j_coord_offsetC  = DIM*jnrC;
920             j_coord_offsetD  = DIM*jnrD;
921
922             /* load j atom coordinates */
923             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
924                                               x+j_coord_offsetC,x+j_coord_offsetD,
925                                               &jx0,&jy0,&jz0);
926
927             /* Calculate displacement vector */
928             dx10             = _mm_sub_ps(ix1,jx0);
929             dy10             = _mm_sub_ps(iy1,jy0);
930             dz10             = _mm_sub_ps(iz1,jz0);
931             dx20             = _mm_sub_ps(ix2,jx0);
932             dy20             = _mm_sub_ps(iy2,jy0);
933             dz20             = _mm_sub_ps(iz2,jz0);
934             dx30             = _mm_sub_ps(ix3,jx0);
935             dy30             = _mm_sub_ps(iy3,jy0);
936             dz30             = _mm_sub_ps(iz3,jz0);
937
938             /* Calculate squared distance and things based on it */
939             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
940             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
941             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
942
943             rinv10           = sse41_invsqrt_f(rsq10);
944             rinv20           = sse41_invsqrt_f(rsq20);
945             rinv30           = sse41_invsqrt_f(rsq30);
946
947             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
948             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
949             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
950
951             /* Load parameters for j particles */
952             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
953                                                               charge+jnrC+0,charge+jnrD+0);
954
955             fjx0             = _mm_setzero_ps();
956             fjy0             = _mm_setzero_ps();
957             fjz0             = _mm_setzero_ps();
958
959             /**************************
960              * CALCULATE INTERACTIONS *
961              **************************/
962
963             r10              = _mm_mul_ps(rsq10,rinv10);
964             r10              = _mm_andnot_ps(dummy_mask,r10);
965
966             /* Compute parameters for interactions between i and j atoms */
967             qq10             = _mm_mul_ps(iq1,jq0);
968
969             /* EWALD ELECTROSTATICS */
970
971             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
972             ewrt             = _mm_mul_ps(r10,ewtabscale);
973             ewitab           = _mm_cvttps_epi32(ewrt);
974             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
975             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
976                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
977                                          &ewtabF,&ewtabFn);
978             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
979             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
980
981             fscal            = felec;
982
983             fscal            = _mm_andnot_ps(dummy_mask,fscal);
984
985             /* Calculate temporary vectorial force */
986             tx               = _mm_mul_ps(fscal,dx10);
987             ty               = _mm_mul_ps(fscal,dy10);
988             tz               = _mm_mul_ps(fscal,dz10);
989
990             /* Update vectorial force */
991             fix1             = _mm_add_ps(fix1,tx);
992             fiy1             = _mm_add_ps(fiy1,ty);
993             fiz1             = _mm_add_ps(fiz1,tz);
994
995             fjx0             = _mm_add_ps(fjx0,tx);
996             fjy0             = _mm_add_ps(fjy0,ty);
997             fjz0             = _mm_add_ps(fjz0,tz);
998
999             /**************************
1000              * CALCULATE INTERACTIONS *
1001              **************************/
1002
1003             r20              = _mm_mul_ps(rsq20,rinv20);
1004             r20              = _mm_andnot_ps(dummy_mask,r20);
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq20             = _mm_mul_ps(iq2,jq0);
1008
1009             /* EWALD ELECTROSTATICS */
1010
1011             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1012             ewrt             = _mm_mul_ps(r20,ewtabscale);
1013             ewitab           = _mm_cvttps_epi32(ewrt);
1014             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1015             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1016                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1017                                          &ewtabF,&ewtabFn);
1018             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1019             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1020
1021             fscal            = felec;
1022
1023             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1024
1025             /* Calculate temporary vectorial force */
1026             tx               = _mm_mul_ps(fscal,dx20);
1027             ty               = _mm_mul_ps(fscal,dy20);
1028             tz               = _mm_mul_ps(fscal,dz20);
1029
1030             /* Update vectorial force */
1031             fix2             = _mm_add_ps(fix2,tx);
1032             fiy2             = _mm_add_ps(fiy2,ty);
1033             fiz2             = _mm_add_ps(fiz2,tz);
1034
1035             fjx0             = _mm_add_ps(fjx0,tx);
1036             fjy0             = _mm_add_ps(fjy0,ty);
1037             fjz0             = _mm_add_ps(fjz0,tz);
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             r30              = _mm_mul_ps(rsq30,rinv30);
1044             r30              = _mm_andnot_ps(dummy_mask,r30);
1045
1046             /* Compute parameters for interactions between i and j atoms */
1047             qq30             = _mm_mul_ps(iq3,jq0);
1048
1049             /* EWALD ELECTROSTATICS */
1050
1051             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1052             ewrt             = _mm_mul_ps(r30,ewtabscale);
1053             ewitab           = _mm_cvttps_epi32(ewrt);
1054             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1055             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1056                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1057                                          &ewtabF,&ewtabFn);
1058             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1059             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1060
1061             fscal            = felec;
1062
1063             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1064
1065             /* Calculate temporary vectorial force */
1066             tx               = _mm_mul_ps(fscal,dx30);
1067             ty               = _mm_mul_ps(fscal,dy30);
1068             tz               = _mm_mul_ps(fscal,dz30);
1069
1070             /* Update vectorial force */
1071             fix3             = _mm_add_ps(fix3,tx);
1072             fiy3             = _mm_add_ps(fiy3,ty);
1073             fiz3             = _mm_add_ps(fiz3,tz);
1074
1075             fjx0             = _mm_add_ps(fjx0,tx);
1076             fjy0             = _mm_add_ps(fjy0,ty);
1077             fjz0             = _mm_add_ps(fjz0,tz);
1078
1079             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1080             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1081             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1082             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1083
1084             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1085
1086             /* Inner loop uses 111 flops */
1087         }
1088
1089         /* End of innermost loop */
1090
1091         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1092                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1093
1094         /* Increment number of inner iterations */
1095         inneriter                  += j_index_end - j_index_start;
1096
1097         /* Outer loop uses 18 flops */
1098     }
1099
1100     /* Increment number of outer iterations */
1101     outeriter        += nri;
1102
1103     /* Update outer/inner flops */
1104
1105     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*111);
1106 }