c84f717f4ff3a31ca8334214466c4d07985973aa
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwNone_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     __m128i          ewitab;
99     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     __m128           dummy_mask,cutoff_mask;
102     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103     __m128           one     = _mm_set1_ps(1.0);
104     __m128           two     = _mm_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_ps(fr->epsfac);
117     charge           = mdatoms->chargeA;
118
119     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
127     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
128     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
161                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
162
163         fix1             = _mm_setzero_ps();
164         fiy1             = _mm_setzero_ps();
165         fiz1             = _mm_setzero_ps();
166         fix2             = _mm_setzero_ps();
167         fiy2             = _mm_setzero_ps();
168         fiz2             = _mm_setzero_ps();
169         fix3             = _mm_setzero_ps();
170         fiy3             = _mm_setzero_ps();
171         fiz3             = _mm_setzero_ps();
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               x+j_coord_offsetC,x+j_coord_offsetD,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx10             = _mm_sub_ps(ix1,jx0);
197             dy10             = _mm_sub_ps(iy1,jy0);
198             dz10             = _mm_sub_ps(iz1,jz0);
199             dx20             = _mm_sub_ps(ix2,jx0);
200             dy20             = _mm_sub_ps(iy2,jy0);
201             dz20             = _mm_sub_ps(iz2,jz0);
202             dx30             = _mm_sub_ps(ix3,jx0);
203             dy30             = _mm_sub_ps(iy3,jy0);
204             dz30             = _mm_sub_ps(iz3,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
208             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
209             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
210
211             rinv10           = gmx_mm_invsqrt_ps(rsq10);
212             rinv20           = gmx_mm_invsqrt_ps(rsq20);
213             rinv30           = gmx_mm_invsqrt_ps(rsq30);
214
215             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
216             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
217             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221                                                               charge+jnrC+0,charge+jnrD+0);
222
223             fjx0             = _mm_setzero_ps();
224             fjy0             = _mm_setzero_ps();
225             fjz0             = _mm_setzero_ps();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             r10              = _mm_mul_ps(rsq10,rinv10);
232
233             /* Compute parameters for interactions between i and j atoms */
234             qq10             = _mm_mul_ps(iq1,jq0);
235
236             /* EWALD ELECTROSTATICS */
237
238             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
239             ewrt             = _mm_mul_ps(r10,ewtabscale);
240             ewitab           = _mm_cvttps_epi32(ewrt);
241             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
242             ewitab           = _mm_slli_epi32(ewitab,2);
243             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
244             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
245             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
246             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
247             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
248             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
249             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
250             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
251             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
252
253             /* Update potential sum for this i atom from the interaction with this j atom. */
254             velecsum         = _mm_add_ps(velecsum,velec);
255
256             fscal            = felec;
257
258             /* Calculate temporary vectorial force */
259             tx               = _mm_mul_ps(fscal,dx10);
260             ty               = _mm_mul_ps(fscal,dy10);
261             tz               = _mm_mul_ps(fscal,dz10);
262
263             /* Update vectorial force */
264             fix1             = _mm_add_ps(fix1,tx);
265             fiy1             = _mm_add_ps(fiy1,ty);
266             fiz1             = _mm_add_ps(fiz1,tz);
267
268             fjx0             = _mm_add_ps(fjx0,tx);
269             fjy0             = _mm_add_ps(fjy0,ty);
270             fjz0             = _mm_add_ps(fjz0,tz);
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             r20              = _mm_mul_ps(rsq20,rinv20);
277
278             /* Compute parameters for interactions between i and j atoms */
279             qq20             = _mm_mul_ps(iq2,jq0);
280
281             /* EWALD ELECTROSTATICS */
282
283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
284             ewrt             = _mm_mul_ps(r20,ewtabscale);
285             ewitab           = _mm_cvttps_epi32(ewrt);
286             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
287             ewitab           = _mm_slli_epi32(ewitab,2);
288             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
289             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
290             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
291             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
292             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
293             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
294             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
295             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
296             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velecsum         = _mm_add_ps(velecsum,velec);
300
301             fscal            = felec;
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm_mul_ps(fscal,dx20);
305             ty               = _mm_mul_ps(fscal,dy20);
306             tz               = _mm_mul_ps(fscal,dz20);
307
308             /* Update vectorial force */
309             fix2             = _mm_add_ps(fix2,tx);
310             fiy2             = _mm_add_ps(fiy2,ty);
311             fiz2             = _mm_add_ps(fiz2,tz);
312
313             fjx0             = _mm_add_ps(fjx0,tx);
314             fjy0             = _mm_add_ps(fjy0,ty);
315             fjz0             = _mm_add_ps(fjz0,tz);
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             r30              = _mm_mul_ps(rsq30,rinv30);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq30             = _mm_mul_ps(iq3,jq0);
325
326             /* EWALD ELECTROSTATICS */
327
328             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329             ewrt             = _mm_mul_ps(r30,ewtabscale);
330             ewitab           = _mm_cvttps_epi32(ewrt);
331             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
332             ewitab           = _mm_slli_epi32(ewitab,2);
333             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
334             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
335             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
336             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
337             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
338             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
339             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
340             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
341             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm_add_ps(velecsum,velec);
345
346             fscal            = felec;
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm_mul_ps(fscal,dx30);
350             ty               = _mm_mul_ps(fscal,dy30);
351             tz               = _mm_mul_ps(fscal,dz30);
352
353             /* Update vectorial force */
354             fix3             = _mm_add_ps(fix3,tx);
355             fiy3             = _mm_add_ps(fiy3,ty);
356             fiz3             = _mm_add_ps(fiz3,tz);
357
358             fjx0             = _mm_add_ps(fjx0,tx);
359             fjy0             = _mm_add_ps(fjy0,ty);
360             fjz0             = _mm_add_ps(fjz0,tz);
361
362             fjptrA             = f+j_coord_offsetA;
363             fjptrB             = f+j_coord_offsetB;
364             fjptrC             = f+j_coord_offsetC;
365             fjptrD             = f+j_coord_offsetD;
366
367             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
368
369             /* Inner loop uses 123 flops */
370         }
371
372         if(jidx<j_index_end)
373         {
374
375             /* Get j neighbor index, and coordinate index */
376             jnrlistA         = jjnr[jidx];
377             jnrlistB         = jjnr[jidx+1];
378             jnrlistC         = jjnr[jidx+2];
379             jnrlistD         = jjnr[jidx+3];
380             /* Sign of each element will be negative for non-real atoms.
381              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
382              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
383              */
384             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
385             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
386             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
387             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
388             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
389             j_coord_offsetA  = DIM*jnrA;
390             j_coord_offsetB  = DIM*jnrB;
391             j_coord_offsetC  = DIM*jnrC;
392             j_coord_offsetD  = DIM*jnrD;
393
394             /* load j atom coordinates */
395             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
396                                               x+j_coord_offsetC,x+j_coord_offsetD,
397                                               &jx0,&jy0,&jz0);
398
399             /* Calculate displacement vector */
400             dx10             = _mm_sub_ps(ix1,jx0);
401             dy10             = _mm_sub_ps(iy1,jy0);
402             dz10             = _mm_sub_ps(iz1,jz0);
403             dx20             = _mm_sub_ps(ix2,jx0);
404             dy20             = _mm_sub_ps(iy2,jy0);
405             dz20             = _mm_sub_ps(iz2,jz0);
406             dx30             = _mm_sub_ps(ix3,jx0);
407             dy30             = _mm_sub_ps(iy3,jy0);
408             dz30             = _mm_sub_ps(iz3,jz0);
409
410             /* Calculate squared distance and things based on it */
411             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
412             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
413             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
414
415             rinv10           = gmx_mm_invsqrt_ps(rsq10);
416             rinv20           = gmx_mm_invsqrt_ps(rsq20);
417             rinv30           = gmx_mm_invsqrt_ps(rsq30);
418
419             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
420             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
421             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
422
423             /* Load parameters for j particles */
424             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
425                                                               charge+jnrC+0,charge+jnrD+0);
426
427             fjx0             = _mm_setzero_ps();
428             fjy0             = _mm_setzero_ps();
429             fjz0             = _mm_setzero_ps();
430
431             /**************************
432              * CALCULATE INTERACTIONS *
433              **************************/
434
435             r10              = _mm_mul_ps(rsq10,rinv10);
436             r10              = _mm_andnot_ps(dummy_mask,r10);
437
438             /* Compute parameters for interactions between i and j atoms */
439             qq10             = _mm_mul_ps(iq1,jq0);
440
441             /* EWALD ELECTROSTATICS */
442
443             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
444             ewrt             = _mm_mul_ps(r10,ewtabscale);
445             ewitab           = _mm_cvttps_epi32(ewrt);
446             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
447             ewitab           = _mm_slli_epi32(ewitab,2);
448             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
449             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
450             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
451             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
452             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
453             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
454             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
455             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
456             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
457
458             /* Update potential sum for this i atom from the interaction with this j atom. */
459             velec            = _mm_andnot_ps(dummy_mask,velec);
460             velecsum         = _mm_add_ps(velecsum,velec);
461
462             fscal            = felec;
463
464             fscal            = _mm_andnot_ps(dummy_mask,fscal);
465
466             /* Calculate temporary vectorial force */
467             tx               = _mm_mul_ps(fscal,dx10);
468             ty               = _mm_mul_ps(fscal,dy10);
469             tz               = _mm_mul_ps(fscal,dz10);
470
471             /* Update vectorial force */
472             fix1             = _mm_add_ps(fix1,tx);
473             fiy1             = _mm_add_ps(fiy1,ty);
474             fiz1             = _mm_add_ps(fiz1,tz);
475
476             fjx0             = _mm_add_ps(fjx0,tx);
477             fjy0             = _mm_add_ps(fjy0,ty);
478             fjz0             = _mm_add_ps(fjz0,tz);
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             r20              = _mm_mul_ps(rsq20,rinv20);
485             r20              = _mm_andnot_ps(dummy_mask,r20);
486
487             /* Compute parameters for interactions between i and j atoms */
488             qq20             = _mm_mul_ps(iq2,jq0);
489
490             /* EWALD ELECTROSTATICS */
491
492             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
493             ewrt             = _mm_mul_ps(r20,ewtabscale);
494             ewitab           = _mm_cvttps_epi32(ewrt);
495             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
496             ewitab           = _mm_slli_epi32(ewitab,2);
497             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
498             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
499             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
500             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
501             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
502             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
503             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
504             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
505             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
506
507             /* Update potential sum for this i atom from the interaction with this j atom. */
508             velec            = _mm_andnot_ps(dummy_mask,velec);
509             velecsum         = _mm_add_ps(velecsum,velec);
510
511             fscal            = felec;
512
513             fscal            = _mm_andnot_ps(dummy_mask,fscal);
514
515             /* Calculate temporary vectorial force */
516             tx               = _mm_mul_ps(fscal,dx20);
517             ty               = _mm_mul_ps(fscal,dy20);
518             tz               = _mm_mul_ps(fscal,dz20);
519
520             /* Update vectorial force */
521             fix2             = _mm_add_ps(fix2,tx);
522             fiy2             = _mm_add_ps(fiy2,ty);
523             fiz2             = _mm_add_ps(fiz2,tz);
524
525             fjx0             = _mm_add_ps(fjx0,tx);
526             fjy0             = _mm_add_ps(fjy0,ty);
527             fjz0             = _mm_add_ps(fjz0,tz);
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             r30              = _mm_mul_ps(rsq30,rinv30);
534             r30              = _mm_andnot_ps(dummy_mask,r30);
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq30             = _mm_mul_ps(iq3,jq0);
538
539             /* EWALD ELECTROSTATICS */
540
541             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
542             ewrt             = _mm_mul_ps(r30,ewtabscale);
543             ewitab           = _mm_cvttps_epi32(ewrt);
544             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
545             ewitab           = _mm_slli_epi32(ewitab,2);
546             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
547             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
548             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
549             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
550             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
551             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
552             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
553             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
554             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
555
556             /* Update potential sum for this i atom from the interaction with this j atom. */
557             velec            = _mm_andnot_ps(dummy_mask,velec);
558             velecsum         = _mm_add_ps(velecsum,velec);
559
560             fscal            = felec;
561
562             fscal            = _mm_andnot_ps(dummy_mask,fscal);
563
564             /* Calculate temporary vectorial force */
565             tx               = _mm_mul_ps(fscal,dx30);
566             ty               = _mm_mul_ps(fscal,dy30);
567             tz               = _mm_mul_ps(fscal,dz30);
568
569             /* Update vectorial force */
570             fix3             = _mm_add_ps(fix3,tx);
571             fiy3             = _mm_add_ps(fiy3,ty);
572             fiz3             = _mm_add_ps(fiz3,tz);
573
574             fjx0             = _mm_add_ps(fjx0,tx);
575             fjy0             = _mm_add_ps(fjy0,ty);
576             fjz0             = _mm_add_ps(fjz0,tz);
577
578             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
579             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
580             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
581             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
582
583             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
584
585             /* Inner loop uses 126 flops */
586         }
587
588         /* End of innermost loop */
589
590         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
591                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
592
593         ggid                        = gid[iidx];
594         /* Update potential energies */
595         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
596
597         /* Increment number of inner iterations */
598         inneriter                  += j_index_end - j_index_start;
599
600         /* Outer loop uses 19 flops */
601     }
602
603     /* Increment number of outer iterations */
604     outeriter        += nri;
605
606     /* Update outer/inner flops */
607
608     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*126);
609 }
610 /*
611  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse4_1_single
612  * Electrostatics interaction: Ewald
613  * VdW interaction:            None
614  * Geometry:                   Water4-Particle
615  * Calculate force/pot:        Force
616  */
617 void
618 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse4_1_single
619                     (t_nblist                    * gmx_restrict       nlist,
620                      rvec                        * gmx_restrict          xx,
621                      rvec                        * gmx_restrict          ff,
622                      t_forcerec                  * gmx_restrict          fr,
623                      t_mdatoms                   * gmx_restrict     mdatoms,
624                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
625                      t_nrnb                      * gmx_restrict        nrnb)
626 {
627     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
628      * just 0 for non-waters.
629      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
630      * jnr indices corresponding to data put in the four positions in the SIMD register.
631      */
632     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
633     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
634     int              jnrA,jnrB,jnrC,jnrD;
635     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
636     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
637     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
638     real             rcutoff_scalar;
639     real             *shiftvec,*fshift,*x,*f;
640     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
641     real             scratch[4*DIM];
642     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
643     int              vdwioffset1;
644     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
645     int              vdwioffset2;
646     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
647     int              vdwioffset3;
648     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
649     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
650     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
651     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
652     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
653     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
654     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
655     real             *charge;
656     __m128i          ewitab;
657     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
658     real             *ewtab;
659     __m128           dummy_mask,cutoff_mask;
660     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
661     __m128           one     = _mm_set1_ps(1.0);
662     __m128           two     = _mm_set1_ps(2.0);
663     x                = xx[0];
664     f                = ff[0];
665
666     nri              = nlist->nri;
667     iinr             = nlist->iinr;
668     jindex           = nlist->jindex;
669     jjnr             = nlist->jjnr;
670     shiftidx         = nlist->shift;
671     gid              = nlist->gid;
672     shiftvec         = fr->shift_vec[0];
673     fshift           = fr->fshift[0];
674     facel            = _mm_set1_ps(fr->epsfac);
675     charge           = mdatoms->chargeA;
676
677     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
678     ewtab            = fr->ic->tabq_coul_F;
679     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
680     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
681
682     /* Setup water-specific parameters */
683     inr              = nlist->iinr[0];
684     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
685     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
686     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
687
688     /* Avoid stupid compiler warnings */
689     jnrA = jnrB = jnrC = jnrD = 0;
690     j_coord_offsetA = 0;
691     j_coord_offsetB = 0;
692     j_coord_offsetC = 0;
693     j_coord_offsetD = 0;
694
695     outeriter        = 0;
696     inneriter        = 0;
697
698     for(iidx=0;iidx<4*DIM;iidx++)
699     {
700         scratch[iidx] = 0.0;
701     }
702
703     /* Start outer loop over neighborlists */
704     for(iidx=0; iidx<nri; iidx++)
705     {
706         /* Load shift vector for this list */
707         i_shift_offset   = DIM*shiftidx[iidx];
708
709         /* Load limits for loop over neighbors */
710         j_index_start    = jindex[iidx];
711         j_index_end      = jindex[iidx+1];
712
713         /* Get outer coordinate index */
714         inr              = iinr[iidx];
715         i_coord_offset   = DIM*inr;
716
717         /* Load i particle coords and add shift vector */
718         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
719                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
720
721         fix1             = _mm_setzero_ps();
722         fiy1             = _mm_setzero_ps();
723         fiz1             = _mm_setzero_ps();
724         fix2             = _mm_setzero_ps();
725         fiy2             = _mm_setzero_ps();
726         fiz2             = _mm_setzero_ps();
727         fix3             = _mm_setzero_ps();
728         fiy3             = _mm_setzero_ps();
729         fiz3             = _mm_setzero_ps();
730
731         /* Start inner kernel loop */
732         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
733         {
734
735             /* Get j neighbor index, and coordinate index */
736             jnrA             = jjnr[jidx];
737             jnrB             = jjnr[jidx+1];
738             jnrC             = jjnr[jidx+2];
739             jnrD             = jjnr[jidx+3];
740             j_coord_offsetA  = DIM*jnrA;
741             j_coord_offsetB  = DIM*jnrB;
742             j_coord_offsetC  = DIM*jnrC;
743             j_coord_offsetD  = DIM*jnrD;
744
745             /* load j atom coordinates */
746             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
747                                               x+j_coord_offsetC,x+j_coord_offsetD,
748                                               &jx0,&jy0,&jz0);
749
750             /* Calculate displacement vector */
751             dx10             = _mm_sub_ps(ix1,jx0);
752             dy10             = _mm_sub_ps(iy1,jy0);
753             dz10             = _mm_sub_ps(iz1,jz0);
754             dx20             = _mm_sub_ps(ix2,jx0);
755             dy20             = _mm_sub_ps(iy2,jy0);
756             dz20             = _mm_sub_ps(iz2,jz0);
757             dx30             = _mm_sub_ps(ix3,jx0);
758             dy30             = _mm_sub_ps(iy3,jy0);
759             dz30             = _mm_sub_ps(iz3,jz0);
760
761             /* Calculate squared distance and things based on it */
762             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
763             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
764             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
765
766             rinv10           = gmx_mm_invsqrt_ps(rsq10);
767             rinv20           = gmx_mm_invsqrt_ps(rsq20);
768             rinv30           = gmx_mm_invsqrt_ps(rsq30);
769
770             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
771             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
772             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
773
774             /* Load parameters for j particles */
775             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
776                                                               charge+jnrC+0,charge+jnrD+0);
777
778             fjx0             = _mm_setzero_ps();
779             fjy0             = _mm_setzero_ps();
780             fjz0             = _mm_setzero_ps();
781
782             /**************************
783              * CALCULATE INTERACTIONS *
784              **************************/
785
786             r10              = _mm_mul_ps(rsq10,rinv10);
787
788             /* Compute parameters for interactions between i and j atoms */
789             qq10             = _mm_mul_ps(iq1,jq0);
790
791             /* EWALD ELECTROSTATICS */
792
793             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
794             ewrt             = _mm_mul_ps(r10,ewtabscale);
795             ewitab           = _mm_cvttps_epi32(ewrt);
796             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
797             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
798                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
799                                          &ewtabF,&ewtabFn);
800             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
801             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
802
803             fscal            = felec;
804
805             /* Calculate temporary vectorial force */
806             tx               = _mm_mul_ps(fscal,dx10);
807             ty               = _mm_mul_ps(fscal,dy10);
808             tz               = _mm_mul_ps(fscal,dz10);
809
810             /* Update vectorial force */
811             fix1             = _mm_add_ps(fix1,tx);
812             fiy1             = _mm_add_ps(fiy1,ty);
813             fiz1             = _mm_add_ps(fiz1,tz);
814
815             fjx0             = _mm_add_ps(fjx0,tx);
816             fjy0             = _mm_add_ps(fjy0,ty);
817             fjz0             = _mm_add_ps(fjz0,tz);
818
819             /**************************
820              * CALCULATE INTERACTIONS *
821              **************************/
822
823             r20              = _mm_mul_ps(rsq20,rinv20);
824
825             /* Compute parameters for interactions between i and j atoms */
826             qq20             = _mm_mul_ps(iq2,jq0);
827
828             /* EWALD ELECTROSTATICS */
829
830             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
831             ewrt             = _mm_mul_ps(r20,ewtabscale);
832             ewitab           = _mm_cvttps_epi32(ewrt);
833             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
834             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
835                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
836                                          &ewtabF,&ewtabFn);
837             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
838             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
839
840             fscal            = felec;
841
842             /* Calculate temporary vectorial force */
843             tx               = _mm_mul_ps(fscal,dx20);
844             ty               = _mm_mul_ps(fscal,dy20);
845             tz               = _mm_mul_ps(fscal,dz20);
846
847             /* Update vectorial force */
848             fix2             = _mm_add_ps(fix2,tx);
849             fiy2             = _mm_add_ps(fiy2,ty);
850             fiz2             = _mm_add_ps(fiz2,tz);
851
852             fjx0             = _mm_add_ps(fjx0,tx);
853             fjy0             = _mm_add_ps(fjy0,ty);
854             fjz0             = _mm_add_ps(fjz0,tz);
855
856             /**************************
857              * CALCULATE INTERACTIONS *
858              **************************/
859
860             r30              = _mm_mul_ps(rsq30,rinv30);
861
862             /* Compute parameters for interactions between i and j atoms */
863             qq30             = _mm_mul_ps(iq3,jq0);
864
865             /* EWALD ELECTROSTATICS */
866
867             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
868             ewrt             = _mm_mul_ps(r30,ewtabscale);
869             ewitab           = _mm_cvttps_epi32(ewrt);
870             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
871             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
872                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
873                                          &ewtabF,&ewtabFn);
874             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
875             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
876
877             fscal            = felec;
878
879             /* Calculate temporary vectorial force */
880             tx               = _mm_mul_ps(fscal,dx30);
881             ty               = _mm_mul_ps(fscal,dy30);
882             tz               = _mm_mul_ps(fscal,dz30);
883
884             /* Update vectorial force */
885             fix3             = _mm_add_ps(fix3,tx);
886             fiy3             = _mm_add_ps(fiy3,ty);
887             fiz3             = _mm_add_ps(fiz3,tz);
888
889             fjx0             = _mm_add_ps(fjx0,tx);
890             fjy0             = _mm_add_ps(fjy0,ty);
891             fjz0             = _mm_add_ps(fjz0,tz);
892
893             fjptrA             = f+j_coord_offsetA;
894             fjptrB             = f+j_coord_offsetB;
895             fjptrC             = f+j_coord_offsetC;
896             fjptrD             = f+j_coord_offsetD;
897
898             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
899
900             /* Inner loop uses 108 flops */
901         }
902
903         if(jidx<j_index_end)
904         {
905
906             /* Get j neighbor index, and coordinate index */
907             jnrlistA         = jjnr[jidx];
908             jnrlistB         = jjnr[jidx+1];
909             jnrlistC         = jjnr[jidx+2];
910             jnrlistD         = jjnr[jidx+3];
911             /* Sign of each element will be negative for non-real atoms.
912              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
913              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
914              */
915             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
916             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
917             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
918             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
919             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
920             j_coord_offsetA  = DIM*jnrA;
921             j_coord_offsetB  = DIM*jnrB;
922             j_coord_offsetC  = DIM*jnrC;
923             j_coord_offsetD  = DIM*jnrD;
924
925             /* load j atom coordinates */
926             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
927                                               x+j_coord_offsetC,x+j_coord_offsetD,
928                                               &jx0,&jy0,&jz0);
929
930             /* Calculate displacement vector */
931             dx10             = _mm_sub_ps(ix1,jx0);
932             dy10             = _mm_sub_ps(iy1,jy0);
933             dz10             = _mm_sub_ps(iz1,jz0);
934             dx20             = _mm_sub_ps(ix2,jx0);
935             dy20             = _mm_sub_ps(iy2,jy0);
936             dz20             = _mm_sub_ps(iz2,jz0);
937             dx30             = _mm_sub_ps(ix3,jx0);
938             dy30             = _mm_sub_ps(iy3,jy0);
939             dz30             = _mm_sub_ps(iz3,jz0);
940
941             /* Calculate squared distance and things based on it */
942             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
943             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
944             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
945
946             rinv10           = gmx_mm_invsqrt_ps(rsq10);
947             rinv20           = gmx_mm_invsqrt_ps(rsq20);
948             rinv30           = gmx_mm_invsqrt_ps(rsq30);
949
950             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
951             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
952             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
953
954             /* Load parameters for j particles */
955             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
956                                                               charge+jnrC+0,charge+jnrD+0);
957
958             fjx0             = _mm_setzero_ps();
959             fjy0             = _mm_setzero_ps();
960             fjz0             = _mm_setzero_ps();
961
962             /**************************
963              * CALCULATE INTERACTIONS *
964              **************************/
965
966             r10              = _mm_mul_ps(rsq10,rinv10);
967             r10              = _mm_andnot_ps(dummy_mask,r10);
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq10             = _mm_mul_ps(iq1,jq0);
971
972             /* EWALD ELECTROSTATICS */
973
974             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
975             ewrt             = _mm_mul_ps(r10,ewtabscale);
976             ewitab           = _mm_cvttps_epi32(ewrt);
977             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
978             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
979                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
980                                          &ewtabF,&ewtabFn);
981             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
982             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
983
984             fscal            = felec;
985
986             fscal            = _mm_andnot_ps(dummy_mask,fscal);
987
988             /* Calculate temporary vectorial force */
989             tx               = _mm_mul_ps(fscal,dx10);
990             ty               = _mm_mul_ps(fscal,dy10);
991             tz               = _mm_mul_ps(fscal,dz10);
992
993             /* Update vectorial force */
994             fix1             = _mm_add_ps(fix1,tx);
995             fiy1             = _mm_add_ps(fiy1,ty);
996             fiz1             = _mm_add_ps(fiz1,tz);
997
998             fjx0             = _mm_add_ps(fjx0,tx);
999             fjy0             = _mm_add_ps(fjy0,ty);
1000             fjz0             = _mm_add_ps(fjz0,tz);
1001
1002             /**************************
1003              * CALCULATE INTERACTIONS *
1004              **************************/
1005
1006             r20              = _mm_mul_ps(rsq20,rinv20);
1007             r20              = _mm_andnot_ps(dummy_mask,r20);
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             qq20             = _mm_mul_ps(iq2,jq0);
1011
1012             /* EWALD ELECTROSTATICS */
1013
1014             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1015             ewrt             = _mm_mul_ps(r20,ewtabscale);
1016             ewitab           = _mm_cvttps_epi32(ewrt);
1017             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1018             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1019                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1020                                          &ewtabF,&ewtabFn);
1021             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1022             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1023
1024             fscal            = felec;
1025
1026             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1027
1028             /* Calculate temporary vectorial force */
1029             tx               = _mm_mul_ps(fscal,dx20);
1030             ty               = _mm_mul_ps(fscal,dy20);
1031             tz               = _mm_mul_ps(fscal,dz20);
1032
1033             /* Update vectorial force */
1034             fix2             = _mm_add_ps(fix2,tx);
1035             fiy2             = _mm_add_ps(fiy2,ty);
1036             fiz2             = _mm_add_ps(fiz2,tz);
1037
1038             fjx0             = _mm_add_ps(fjx0,tx);
1039             fjy0             = _mm_add_ps(fjy0,ty);
1040             fjz0             = _mm_add_ps(fjz0,tz);
1041
1042             /**************************
1043              * CALCULATE INTERACTIONS *
1044              **************************/
1045
1046             r30              = _mm_mul_ps(rsq30,rinv30);
1047             r30              = _mm_andnot_ps(dummy_mask,r30);
1048
1049             /* Compute parameters for interactions between i and j atoms */
1050             qq30             = _mm_mul_ps(iq3,jq0);
1051
1052             /* EWALD ELECTROSTATICS */
1053
1054             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1055             ewrt             = _mm_mul_ps(r30,ewtabscale);
1056             ewitab           = _mm_cvttps_epi32(ewrt);
1057             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1058             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1059                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1060                                          &ewtabF,&ewtabFn);
1061             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1062             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1063
1064             fscal            = felec;
1065
1066             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1067
1068             /* Calculate temporary vectorial force */
1069             tx               = _mm_mul_ps(fscal,dx30);
1070             ty               = _mm_mul_ps(fscal,dy30);
1071             tz               = _mm_mul_ps(fscal,dz30);
1072
1073             /* Update vectorial force */
1074             fix3             = _mm_add_ps(fix3,tx);
1075             fiy3             = _mm_add_ps(fiy3,ty);
1076             fiz3             = _mm_add_ps(fiz3,tz);
1077
1078             fjx0             = _mm_add_ps(fjx0,tx);
1079             fjy0             = _mm_add_ps(fjy0,ty);
1080             fjz0             = _mm_add_ps(fjz0,tz);
1081
1082             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1083             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1084             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1085             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1086
1087             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1088
1089             /* Inner loop uses 111 flops */
1090         }
1091
1092         /* End of innermost loop */
1093
1094         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1095                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1096
1097         /* Increment number of inner iterations */
1098         inneriter                  += j_index_end - j_index_start;
1099
1100         /* Outer loop uses 18 flops */
1101     }
1102
1103     /* Increment number of outer iterations */
1104     outeriter        += nri;
1105
1106     /* Update outer/inner flops */
1107
1108     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*111);
1109 }