Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwNone_GeomP1P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          ewitab;
77     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
78     real             *ewtab;
79     __m128           dummy_mask,cutoff_mask;
80     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
81     __m128           one     = _mm_set1_ps(1.0);
82     __m128           two     = _mm_set1_ps(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_ps(fr->epsfac);
95     charge           = mdatoms->chargeA;
96
97     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
98     ewtab            = fr->ic->tabq_coul_FDV0;
99     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
100     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
101
102     /* Avoid stupid compiler warnings */
103     jnrA = jnrB = jnrC = jnrD = 0;
104     j_coord_offsetA = 0;
105     j_coord_offsetB = 0;
106     j_coord_offsetC = 0;
107     j_coord_offsetD = 0;
108
109     outeriter        = 0;
110     inneriter        = 0;
111
112     for(iidx=0;iidx<4*DIM;iidx++)
113     {
114         scratch[iidx] = 0.0;
115     }
116
117     /* Start outer loop over neighborlists */
118     for(iidx=0; iidx<nri; iidx++)
119     {
120         /* Load shift vector for this list */
121         i_shift_offset   = DIM*shiftidx[iidx];
122
123         /* Load limits for loop over neighbors */
124         j_index_start    = jindex[iidx];
125         j_index_end      = jindex[iidx+1];
126
127         /* Get outer coordinate index */
128         inr              = iinr[iidx];
129         i_coord_offset   = DIM*inr;
130
131         /* Load i particle coords and add shift vector */
132         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
133
134         fix0             = _mm_setzero_ps();
135         fiy0             = _mm_setzero_ps();
136         fiz0             = _mm_setzero_ps();
137
138         /* Load parameters for i particles */
139         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
140
141         /* Reset potential sums */
142         velecsum         = _mm_setzero_ps();
143
144         /* Start inner kernel loop */
145         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
146         {
147
148             /* Get j neighbor index, and coordinate index */
149             jnrA             = jjnr[jidx];
150             jnrB             = jjnr[jidx+1];
151             jnrC             = jjnr[jidx+2];
152             jnrD             = jjnr[jidx+3];
153             j_coord_offsetA  = DIM*jnrA;
154             j_coord_offsetB  = DIM*jnrB;
155             j_coord_offsetC  = DIM*jnrC;
156             j_coord_offsetD  = DIM*jnrD;
157
158             /* load j atom coordinates */
159             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
160                                               x+j_coord_offsetC,x+j_coord_offsetD,
161                                               &jx0,&jy0,&jz0);
162
163             /* Calculate displacement vector */
164             dx00             = _mm_sub_ps(ix0,jx0);
165             dy00             = _mm_sub_ps(iy0,jy0);
166             dz00             = _mm_sub_ps(iz0,jz0);
167
168             /* Calculate squared distance and things based on it */
169             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
170
171             rinv00           = gmx_mm_invsqrt_ps(rsq00);
172
173             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
174
175             /* Load parameters for j particles */
176             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
177                                                               charge+jnrC+0,charge+jnrD+0);
178
179             /**************************
180              * CALCULATE INTERACTIONS *
181              **************************/
182
183             r00              = _mm_mul_ps(rsq00,rinv00);
184
185             /* Compute parameters for interactions between i and j atoms */
186             qq00             = _mm_mul_ps(iq0,jq0);
187
188             /* EWALD ELECTROSTATICS */
189
190             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
191             ewrt             = _mm_mul_ps(r00,ewtabscale);
192             ewitab           = _mm_cvttps_epi32(ewrt);
193             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
194             ewitab           = _mm_slli_epi32(ewitab,2);
195             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
196             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
197             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
198             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
199             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
200             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
201             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
202             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
203             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
204
205             /* Update potential sum for this i atom from the interaction with this j atom. */
206             velecsum         = _mm_add_ps(velecsum,velec);
207
208             fscal            = felec;
209
210             /* Calculate temporary vectorial force */
211             tx               = _mm_mul_ps(fscal,dx00);
212             ty               = _mm_mul_ps(fscal,dy00);
213             tz               = _mm_mul_ps(fscal,dz00);
214
215             /* Update vectorial force */
216             fix0             = _mm_add_ps(fix0,tx);
217             fiy0             = _mm_add_ps(fiy0,ty);
218             fiz0             = _mm_add_ps(fiz0,tz);
219
220             fjptrA             = f+j_coord_offsetA;
221             fjptrB             = f+j_coord_offsetB;
222             fjptrC             = f+j_coord_offsetC;
223             fjptrD             = f+j_coord_offsetD;
224             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
225
226             /* Inner loop uses 41 flops */
227         }
228
229         if(jidx<j_index_end)
230         {
231
232             /* Get j neighbor index, and coordinate index */
233             jnrlistA         = jjnr[jidx];
234             jnrlistB         = jjnr[jidx+1];
235             jnrlistC         = jjnr[jidx+2];
236             jnrlistD         = jjnr[jidx+3];
237             /* Sign of each element will be negative for non-real atoms.
238              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
239              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
240              */
241             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
242             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
243             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
244             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
245             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
246             j_coord_offsetA  = DIM*jnrA;
247             j_coord_offsetB  = DIM*jnrB;
248             j_coord_offsetC  = DIM*jnrC;
249             j_coord_offsetD  = DIM*jnrD;
250
251             /* load j atom coordinates */
252             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
253                                               x+j_coord_offsetC,x+j_coord_offsetD,
254                                               &jx0,&jy0,&jz0);
255
256             /* Calculate displacement vector */
257             dx00             = _mm_sub_ps(ix0,jx0);
258             dy00             = _mm_sub_ps(iy0,jy0);
259             dz00             = _mm_sub_ps(iz0,jz0);
260
261             /* Calculate squared distance and things based on it */
262             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
263
264             rinv00           = gmx_mm_invsqrt_ps(rsq00);
265
266             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
267
268             /* Load parameters for j particles */
269             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
270                                                               charge+jnrC+0,charge+jnrD+0);
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             r00              = _mm_mul_ps(rsq00,rinv00);
277             r00              = _mm_andnot_ps(dummy_mask,r00);
278
279             /* Compute parameters for interactions between i and j atoms */
280             qq00             = _mm_mul_ps(iq0,jq0);
281
282             /* EWALD ELECTROSTATICS */
283
284             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
285             ewrt             = _mm_mul_ps(r00,ewtabscale);
286             ewitab           = _mm_cvttps_epi32(ewrt);
287             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
288             ewitab           = _mm_slli_epi32(ewitab,2);
289             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
290             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
291             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
292             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
293             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
294             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
295             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
296             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
297             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velec            = _mm_andnot_ps(dummy_mask,velec);
301             velecsum         = _mm_add_ps(velecsum,velec);
302
303             fscal            = felec;
304
305             fscal            = _mm_andnot_ps(dummy_mask,fscal);
306
307             /* Calculate temporary vectorial force */
308             tx               = _mm_mul_ps(fscal,dx00);
309             ty               = _mm_mul_ps(fscal,dy00);
310             tz               = _mm_mul_ps(fscal,dz00);
311
312             /* Update vectorial force */
313             fix0             = _mm_add_ps(fix0,tx);
314             fiy0             = _mm_add_ps(fiy0,ty);
315             fiz0             = _mm_add_ps(fiz0,tz);
316
317             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
318             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
319             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
320             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
321             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
322
323             /* Inner loop uses 42 flops */
324         }
325
326         /* End of innermost loop */
327
328         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
329                                               f+i_coord_offset,fshift+i_shift_offset);
330
331         ggid                        = gid[iidx];
332         /* Update potential energies */
333         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
334
335         /* Increment number of inner iterations */
336         inneriter                  += j_index_end - j_index_start;
337
338         /* Outer loop uses 8 flops */
339     }
340
341     /* Increment number of outer iterations */
342     outeriter        += nri;
343
344     /* Update outer/inner flops */
345
346     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*42);
347 }
348 /*
349  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse4_1_single
350  * Electrostatics interaction: Ewald
351  * VdW interaction:            None
352  * Geometry:                   Particle-Particle
353  * Calculate force/pot:        Force
354  */
355 void
356 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse4_1_single
357                     (t_nblist * gmx_restrict                nlist,
358                      rvec * gmx_restrict                    xx,
359                      rvec * gmx_restrict                    ff,
360                      t_forcerec * gmx_restrict              fr,
361                      t_mdatoms * gmx_restrict               mdatoms,
362                      nb_kernel_data_t * gmx_restrict        kernel_data,
363                      t_nrnb * gmx_restrict                  nrnb)
364 {
365     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
366      * just 0 for non-waters.
367      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
368      * jnr indices corresponding to data put in the four positions in the SIMD register.
369      */
370     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
371     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
372     int              jnrA,jnrB,jnrC,jnrD;
373     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
374     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
375     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
376     real             rcutoff_scalar;
377     real             *shiftvec,*fshift,*x,*f;
378     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
379     real             scratch[4*DIM];
380     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
381     int              vdwioffset0;
382     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
383     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
384     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
385     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
386     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
387     real             *charge;
388     __m128i          ewitab;
389     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
390     real             *ewtab;
391     __m128           dummy_mask,cutoff_mask;
392     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
393     __m128           one     = _mm_set1_ps(1.0);
394     __m128           two     = _mm_set1_ps(2.0);
395     x                = xx[0];
396     f                = ff[0];
397
398     nri              = nlist->nri;
399     iinr             = nlist->iinr;
400     jindex           = nlist->jindex;
401     jjnr             = nlist->jjnr;
402     shiftidx         = nlist->shift;
403     gid              = nlist->gid;
404     shiftvec         = fr->shift_vec[0];
405     fshift           = fr->fshift[0];
406     facel            = _mm_set1_ps(fr->epsfac);
407     charge           = mdatoms->chargeA;
408
409     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
410     ewtab            = fr->ic->tabq_coul_F;
411     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
412     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
413
414     /* Avoid stupid compiler warnings */
415     jnrA = jnrB = jnrC = jnrD = 0;
416     j_coord_offsetA = 0;
417     j_coord_offsetB = 0;
418     j_coord_offsetC = 0;
419     j_coord_offsetD = 0;
420
421     outeriter        = 0;
422     inneriter        = 0;
423
424     for(iidx=0;iidx<4*DIM;iidx++)
425     {
426         scratch[iidx] = 0.0;
427     }
428
429     /* Start outer loop over neighborlists */
430     for(iidx=0; iidx<nri; iidx++)
431     {
432         /* Load shift vector for this list */
433         i_shift_offset   = DIM*shiftidx[iidx];
434
435         /* Load limits for loop over neighbors */
436         j_index_start    = jindex[iidx];
437         j_index_end      = jindex[iidx+1];
438
439         /* Get outer coordinate index */
440         inr              = iinr[iidx];
441         i_coord_offset   = DIM*inr;
442
443         /* Load i particle coords and add shift vector */
444         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
445
446         fix0             = _mm_setzero_ps();
447         fiy0             = _mm_setzero_ps();
448         fiz0             = _mm_setzero_ps();
449
450         /* Load parameters for i particles */
451         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
452
453         /* Start inner kernel loop */
454         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
455         {
456
457             /* Get j neighbor index, and coordinate index */
458             jnrA             = jjnr[jidx];
459             jnrB             = jjnr[jidx+1];
460             jnrC             = jjnr[jidx+2];
461             jnrD             = jjnr[jidx+3];
462             j_coord_offsetA  = DIM*jnrA;
463             j_coord_offsetB  = DIM*jnrB;
464             j_coord_offsetC  = DIM*jnrC;
465             j_coord_offsetD  = DIM*jnrD;
466
467             /* load j atom coordinates */
468             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
469                                               x+j_coord_offsetC,x+j_coord_offsetD,
470                                               &jx0,&jy0,&jz0);
471
472             /* Calculate displacement vector */
473             dx00             = _mm_sub_ps(ix0,jx0);
474             dy00             = _mm_sub_ps(iy0,jy0);
475             dz00             = _mm_sub_ps(iz0,jz0);
476
477             /* Calculate squared distance and things based on it */
478             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
479
480             rinv00           = gmx_mm_invsqrt_ps(rsq00);
481
482             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
483
484             /* Load parameters for j particles */
485             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
486                                                               charge+jnrC+0,charge+jnrD+0);
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             r00              = _mm_mul_ps(rsq00,rinv00);
493
494             /* Compute parameters for interactions between i and j atoms */
495             qq00             = _mm_mul_ps(iq0,jq0);
496
497             /* EWALD ELECTROSTATICS */
498
499             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
500             ewrt             = _mm_mul_ps(r00,ewtabscale);
501             ewitab           = _mm_cvttps_epi32(ewrt);
502             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
503             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
504                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
505                                          &ewtabF,&ewtabFn);
506             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
507             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
508
509             fscal            = felec;
510
511             /* Calculate temporary vectorial force */
512             tx               = _mm_mul_ps(fscal,dx00);
513             ty               = _mm_mul_ps(fscal,dy00);
514             tz               = _mm_mul_ps(fscal,dz00);
515
516             /* Update vectorial force */
517             fix0             = _mm_add_ps(fix0,tx);
518             fiy0             = _mm_add_ps(fiy0,ty);
519             fiz0             = _mm_add_ps(fiz0,tz);
520
521             fjptrA             = f+j_coord_offsetA;
522             fjptrB             = f+j_coord_offsetB;
523             fjptrC             = f+j_coord_offsetC;
524             fjptrD             = f+j_coord_offsetD;
525             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
526
527             /* Inner loop uses 36 flops */
528         }
529
530         if(jidx<j_index_end)
531         {
532
533             /* Get j neighbor index, and coordinate index */
534             jnrlistA         = jjnr[jidx];
535             jnrlistB         = jjnr[jidx+1];
536             jnrlistC         = jjnr[jidx+2];
537             jnrlistD         = jjnr[jidx+3];
538             /* Sign of each element will be negative for non-real atoms.
539              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
540              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
541              */
542             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
543             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
544             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
545             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
546             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
547             j_coord_offsetA  = DIM*jnrA;
548             j_coord_offsetB  = DIM*jnrB;
549             j_coord_offsetC  = DIM*jnrC;
550             j_coord_offsetD  = DIM*jnrD;
551
552             /* load j atom coordinates */
553             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
554                                               x+j_coord_offsetC,x+j_coord_offsetD,
555                                               &jx0,&jy0,&jz0);
556
557             /* Calculate displacement vector */
558             dx00             = _mm_sub_ps(ix0,jx0);
559             dy00             = _mm_sub_ps(iy0,jy0);
560             dz00             = _mm_sub_ps(iz0,jz0);
561
562             /* Calculate squared distance and things based on it */
563             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
564
565             rinv00           = gmx_mm_invsqrt_ps(rsq00);
566
567             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
568
569             /* Load parameters for j particles */
570             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
571                                                               charge+jnrC+0,charge+jnrD+0);
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r00              = _mm_mul_ps(rsq00,rinv00);
578             r00              = _mm_andnot_ps(dummy_mask,r00);
579
580             /* Compute parameters for interactions between i and j atoms */
581             qq00             = _mm_mul_ps(iq0,jq0);
582
583             /* EWALD ELECTROSTATICS */
584
585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
586             ewrt             = _mm_mul_ps(r00,ewtabscale);
587             ewitab           = _mm_cvttps_epi32(ewrt);
588             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
589             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
590                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
591                                          &ewtabF,&ewtabFn);
592             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
593             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
594
595             fscal            = felec;
596
597             fscal            = _mm_andnot_ps(dummy_mask,fscal);
598
599             /* Calculate temporary vectorial force */
600             tx               = _mm_mul_ps(fscal,dx00);
601             ty               = _mm_mul_ps(fscal,dy00);
602             tz               = _mm_mul_ps(fscal,dz00);
603
604             /* Update vectorial force */
605             fix0             = _mm_add_ps(fix0,tx);
606             fiy0             = _mm_add_ps(fiy0,ty);
607             fiz0             = _mm_add_ps(fiz0,tz);
608
609             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
610             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
611             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
612             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
613             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
614
615             /* Inner loop uses 37 flops */
616         }
617
618         /* End of innermost loop */
619
620         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
621                                               f+i_coord_offset,fshift+i_shift_offset);
622
623         /* Increment number of inner iterations */
624         inneriter                  += j_index_end - j_index_start;
625
626         /* Outer loop uses 7 flops */
627     }
628
629     /* Increment number of outer iterations */
630     outeriter        += nri;
631
632     /* Update outer/inner flops */
633
634     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*37);
635 }