c989945d4a32910db534dc3f6ee67fc0653fd783
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJ_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128i          ewitab;
108     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
109     real             *ewtab;
110     __m128           dummy_mask,cutoff_mask;
111     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
112     __m128           one     = _mm_set1_ps(1.0);
113     __m128           two     = _mm_set1_ps(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm_set1_ps(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
132     ewtab            = fr->ic->tabq_coul_FDV0;
133     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
134     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
139     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
140     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
141     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
175
176         fix0             = _mm_setzero_ps();
177         fiy0             = _mm_setzero_ps();
178         fiz0             = _mm_setzero_ps();
179         fix1             = _mm_setzero_ps();
180         fiy1             = _mm_setzero_ps();
181         fiz1             = _mm_setzero_ps();
182         fix2             = _mm_setzero_ps();
183         fiy2             = _mm_setzero_ps();
184         fiz2             = _mm_setzero_ps();
185         fix3             = _mm_setzero_ps();
186         fiy3             = _mm_setzero_ps();
187         fiz3             = _mm_setzero_ps();
188
189         /* Reset potential sums */
190         velecsum         = _mm_setzero_ps();
191         vvdwsum          = _mm_setzero_ps();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             jnrC             = jjnr[jidx+2];
201             jnrD             = jjnr[jidx+3];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206
207             /* load j atom coordinates */
208             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
209                                               x+j_coord_offsetC,x+j_coord_offsetD,
210                                               &jx0,&jy0,&jz0);
211
212             /* Calculate displacement vector */
213             dx00             = _mm_sub_ps(ix0,jx0);
214             dy00             = _mm_sub_ps(iy0,jy0);
215             dz00             = _mm_sub_ps(iz0,jz0);
216             dx10             = _mm_sub_ps(ix1,jx0);
217             dy10             = _mm_sub_ps(iy1,jy0);
218             dz10             = _mm_sub_ps(iz1,jz0);
219             dx20             = _mm_sub_ps(ix2,jx0);
220             dy20             = _mm_sub_ps(iy2,jy0);
221             dz20             = _mm_sub_ps(iz2,jz0);
222             dx30             = _mm_sub_ps(ix3,jx0);
223             dy30             = _mm_sub_ps(iy3,jy0);
224             dz30             = _mm_sub_ps(iz3,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
228             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
229             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
230             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
231
232             rinv10           = gmx_mm_invsqrt_ps(rsq10);
233             rinv20           = gmx_mm_invsqrt_ps(rsq20);
234             rinv30           = gmx_mm_invsqrt_ps(rsq30);
235
236             rinvsq00         = gmx_mm_inv_ps(rsq00);
237             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
238             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
239             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
240
241             /* Load parameters for j particles */
242             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
243                                                               charge+jnrC+0,charge+jnrD+0);
244             vdwjidx0A        = 2*vdwtype[jnrA+0];
245             vdwjidx0B        = 2*vdwtype[jnrB+0];
246             vdwjidx0C        = 2*vdwtype[jnrC+0];
247             vdwjidx0D        = 2*vdwtype[jnrD+0];
248
249             fjx0             = _mm_setzero_ps();
250             fjy0             = _mm_setzero_ps();
251             fjz0             = _mm_setzero_ps();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             /* Compute parameters for interactions between i and j atoms */
258             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
259                                          vdwparam+vdwioffset0+vdwjidx0B,
260                                          vdwparam+vdwioffset0+vdwjidx0C,
261                                          vdwparam+vdwioffset0+vdwjidx0D,
262                                          &c6_00,&c12_00);
263
264             /* LENNARD-JONES DISPERSION/REPULSION */
265
266             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
267             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
268             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
269             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
270             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
274
275             fscal            = fvdw;
276
277             /* Calculate temporary vectorial force */
278             tx               = _mm_mul_ps(fscal,dx00);
279             ty               = _mm_mul_ps(fscal,dy00);
280             tz               = _mm_mul_ps(fscal,dz00);
281
282             /* Update vectorial force */
283             fix0             = _mm_add_ps(fix0,tx);
284             fiy0             = _mm_add_ps(fiy0,ty);
285             fiz0             = _mm_add_ps(fiz0,tz);
286
287             fjx0             = _mm_add_ps(fjx0,tx);
288             fjy0             = _mm_add_ps(fjy0,ty);
289             fjz0             = _mm_add_ps(fjz0,tz);
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             r10              = _mm_mul_ps(rsq10,rinv10);
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq10             = _mm_mul_ps(iq1,jq0);
299
300             /* EWALD ELECTROSTATICS */
301
302             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
303             ewrt             = _mm_mul_ps(r10,ewtabscale);
304             ewitab           = _mm_cvttps_epi32(ewrt);
305             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
306             ewitab           = _mm_slli_epi32(ewitab,2);
307             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
308             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
309             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
310             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
311             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
312             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
313             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
314             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
315             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velecsum         = _mm_add_ps(velecsum,velec);
319
320             fscal            = felec;
321
322             /* Calculate temporary vectorial force */
323             tx               = _mm_mul_ps(fscal,dx10);
324             ty               = _mm_mul_ps(fscal,dy10);
325             tz               = _mm_mul_ps(fscal,dz10);
326
327             /* Update vectorial force */
328             fix1             = _mm_add_ps(fix1,tx);
329             fiy1             = _mm_add_ps(fiy1,ty);
330             fiz1             = _mm_add_ps(fiz1,tz);
331
332             fjx0             = _mm_add_ps(fjx0,tx);
333             fjy0             = _mm_add_ps(fjy0,ty);
334             fjz0             = _mm_add_ps(fjz0,tz);
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             r20              = _mm_mul_ps(rsq20,rinv20);
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq20             = _mm_mul_ps(iq2,jq0);
344
345             /* EWALD ELECTROSTATICS */
346
347             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
348             ewrt             = _mm_mul_ps(r20,ewtabscale);
349             ewitab           = _mm_cvttps_epi32(ewrt);
350             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
351             ewitab           = _mm_slli_epi32(ewitab,2);
352             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
353             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
354             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
355             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
356             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
357             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
358             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
359             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
360             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velecsum         = _mm_add_ps(velecsum,velec);
364
365             fscal            = felec;
366
367             /* Calculate temporary vectorial force */
368             tx               = _mm_mul_ps(fscal,dx20);
369             ty               = _mm_mul_ps(fscal,dy20);
370             tz               = _mm_mul_ps(fscal,dz20);
371
372             /* Update vectorial force */
373             fix2             = _mm_add_ps(fix2,tx);
374             fiy2             = _mm_add_ps(fiy2,ty);
375             fiz2             = _mm_add_ps(fiz2,tz);
376
377             fjx0             = _mm_add_ps(fjx0,tx);
378             fjy0             = _mm_add_ps(fjy0,ty);
379             fjz0             = _mm_add_ps(fjz0,tz);
380
381             /**************************
382              * CALCULATE INTERACTIONS *
383              **************************/
384
385             r30              = _mm_mul_ps(rsq30,rinv30);
386
387             /* Compute parameters for interactions between i and j atoms */
388             qq30             = _mm_mul_ps(iq3,jq0);
389
390             /* EWALD ELECTROSTATICS */
391
392             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
393             ewrt             = _mm_mul_ps(r30,ewtabscale);
394             ewitab           = _mm_cvttps_epi32(ewrt);
395             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
396             ewitab           = _mm_slli_epi32(ewitab,2);
397             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
398             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
399             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
400             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
401             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
402             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
403             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
404             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
405             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velecsum         = _mm_add_ps(velecsum,velec);
409
410             fscal            = felec;
411
412             /* Calculate temporary vectorial force */
413             tx               = _mm_mul_ps(fscal,dx30);
414             ty               = _mm_mul_ps(fscal,dy30);
415             tz               = _mm_mul_ps(fscal,dz30);
416
417             /* Update vectorial force */
418             fix3             = _mm_add_ps(fix3,tx);
419             fiy3             = _mm_add_ps(fiy3,ty);
420             fiz3             = _mm_add_ps(fiz3,tz);
421
422             fjx0             = _mm_add_ps(fjx0,tx);
423             fjy0             = _mm_add_ps(fjy0,ty);
424             fjz0             = _mm_add_ps(fjz0,tz);
425
426             fjptrA             = f+j_coord_offsetA;
427             fjptrB             = f+j_coord_offsetB;
428             fjptrC             = f+j_coord_offsetC;
429             fjptrD             = f+j_coord_offsetD;
430
431             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
432
433             /* Inner loop uses 155 flops */
434         }
435
436         if(jidx<j_index_end)
437         {
438
439             /* Get j neighbor index, and coordinate index */
440             jnrlistA         = jjnr[jidx];
441             jnrlistB         = jjnr[jidx+1];
442             jnrlistC         = jjnr[jidx+2];
443             jnrlistD         = jjnr[jidx+3];
444             /* Sign of each element will be negative for non-real atoms.
445              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
446              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
447              */
448             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
449             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
450             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
451             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
452             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
453             j_coord_offsetA  = DIM*jnrA;
454             j_coord_offsetB  = DIM*jnrB;
455             j_coord_offsetC  = DIM*jnrC;
456             j_coord_offsetD  = DIM*jnrD;
457
458             /* load j atom coordinates */
459             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
460                                               x+j_coord_offsetC,x+j_coord_offsetD,
461                                               &jx0,&jy0,&jz0);
462
463             /* Calculate displacement vector */
464             dx00             = _mm_sub_ps(ix0,jx0);
465             dy00             = _mm_sub_ps(iy0,jy0);
466             dz00             = _mm_sub_ps(iz0,jz0);
467             dx10             = _mm_sub_ps(ix1,jx0);
468             dy10             = _mm_sub_ps(iy1,jy0);
469             dz10             = _mm_sub_ps(iz1,jz0);
470             dx20             = _mm_sub_ps(ix2,jx0);
471             dy20             = _mm_sub_ps(iy2,jy0);
472             dz20             = _mm_sub_ps(iz2,jz0);
473             dx30             = _mm_sub_ps(ix3,jx0);
474             dy30             = _mm_sub_ps(iy3,jy0);
475             dz30             = _mm_sub_ps(iz3,jz0);
476
477             /* Calculate squared distance and things based on it */
478             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
479             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
480             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
481             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
482
483             rinv10           = gmx_mm_invsqrt_ps(rsq10);
484             rinv20           = gmx_mm_invsqrt_ps(rsq20);
485             rinv30           = gmx_mm_invsqrt_ps(rsq30);
486
487             rinvsq00         = gmx_mm_inv_ps(rsq00);
488             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
489             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
490             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
491
492             /* Load parameters for j particles */
493             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
494                                                               charge+jnrC+0,charge+jnrD+0);
495             vdwjidx0A        = 2*vdwtype[jnrA+0];
496             vdwjidx0B        = 2*vdwtype[jnrB+0];
497             vdwjidx0C        = 2*vdwtype[jnrC+0];
498             vdwjidx0D        = 2*vdwtype[jnrD+0];
499
500             fjx0             = _mm_setzero_ps();
501             fjy0             = _mm_setzero_ps();
502             fjz0             = _mm_setzero_ps();
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             /* Compute parameters for interactions between i and j atoms */
509             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
510                                          vdwparam+vdwioffset0+vdwjidx0B,
511                                          vdwparam+vdwioffset0+vdwjidx0C,
512                                          vdwparam+vdwioffset0+vdwjidx0D,
513                                          &c6_00,&c12_00);
514
515             /* LENNARD-JONES DISPERSION/REPULSION */
516
517             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
518             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
519             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
520             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
521             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
522
523             /* Update potential sum for this i atom from the interaction with this j atom. */
524             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
525             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
526
527             fscal            = fvdw;
528
529             fscal            = _mm_andnot_ps(dummy_mask,fscal);
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_ps(fscal,dx00);
533             ty               = _mm_mul_ps(fscal,dy00);
534             tz               = _mm_mul_ps(fscal,dz00);
535
536             /* Update vectorial force */
537             fix0             = _mm_add_ps(fix0,tx);
538             fiy0             = _mm_add_ps(fiy0,ty);
539             fiz0             = _mm_add_ps(fiz0,tz);
540
541             fjx0             = _mm_add_ps(fjx0,tx);
542             fjy0             = _mm_add_ps(fjy0,ty);
543             fjz0             = _mm_add_ps(fjz0,tz);
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             r10              = _mm_mul_ps(rsq10,rinv10);
550             r10              = _mm_andnot_ps(dummy_mask,r10);
551
552             /* Compute parameters for interactions between i and j atoms */
553             qq10             = _mm_mul_ps(iq1,jq0);
554
555             /* EWALD ELECTROSTATICS */
556
557             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
558             ewrt             = _mm_mul_ps(r10,ewtabscale);
559             ewitab           = _mm_cvttps_epi32(ewrt);
560             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
561             ewitab           = _mm_slli_epi32(ewitab,2);
562             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
563             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
564             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
565             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
566             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
567             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
568             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
569             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
570             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
571
572             /* Update potential sum for this i atom from the interaction with this j atom. */
573             velec            = _mm_andnot_ps(dummy_mask,velec);
574             velecsum         = _mm_add_ps(velecsum,velec);
575
576             fscal            = felec;
577
578             fscal            = _mm_andnot_ps(dummy_mask,fscal);
579
580             /* Calculate temporary vectorial force */
581             tx               = _mm_mul_ps(fscal,dx10);
582             ty               = _mm_mul_ps(fscal,dy10);
583             tz               = _mm_mul_ps(fscal,dz10);
584
585             /* Update vectorial force */
586             fix1             = _mm_add_ps(fix1,tx);
587             fiy1             = _mm_add_ps(fiy1,ty);
588             fiz1             = _mm_add_ps(fiz1,tz);
589
590             fjx0             = _mm_add_ps(fjx0,tx);
591             fjy0             = _mm_add_ps(fjy0,ty);
592             fjz0             = _mm_add_ps(fjz0,tz);
593
594             /**************************
595              * CALCULATE INTERACTIONS *
596              **************************/
597
598             r20              = _mm_mul_ps(rsq20,rinv20);
599             r20              = _mm_andnot_ps(dummy_mask,r20);
600
601             /* Compute parameters for interactions between i and j atoms */
602             qq20             = _mm_mul_ps(iq2,jq0);
603
604             /* EWALD ELECTROSTATICS */
605
606             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
607             ewrt             = _mm_mul_ps(r20,ewtabscale);
608             ewitab           = _mm_cvttps_epi32(ewrt);
609             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
610             ewitab           = _mm_slli_epi32(ewitab,2);
611             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
612             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
613             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
614             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
615             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
616             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
617             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
618             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
619             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             velec            = _mm_andnot_ps(dummy_mask,velec);
623             velecsum         = _mm_add_ps(velecsum,velec);
624
625             fscal            = felec;
626
627             fscal            = _mm_andnot_ps(dummy_mask,fscal);
628
629             /* Calculate temporary vectorial force */
630             tx               = _mm_mul_ps(fscal,dx20);
631             ty               = _mm_mul_ps(fscal,dy20);
632             tz               = _mm_mul_ps(fscal,dz20);
633
634             /* Update vectorial force */
635             fix2             = _mm_add_ps(fix2,tx);
636             fiy2             = _mm_add_ps(fiy2,ty);
637             fiz2             = _mm_add_ps(fiz2,tz);
638
639             fjx0             = _mm_add_ps(fjx0,tx);
640             fjy0             = _mm_add_ps(fjy0,ty);
641             fjz0             = _mm_add_ps(fjz0,tz);
642
643             /**************************
644              * CALCULATE INTERACTIONS *
645              **************************/
646
647             r30              = _mm_mul_ps(rsq30,rinv30);
648             r30              = _mm_andnot_ps(dummy_mask,r30);
649
650             /* Compute parameters for interactions between i and j atoms */
651             qq30             = _mm_mul_ps(iq3,jq0);
652
653             /* EWALD ELECTROSTATICS */
654
655             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
656             ewrt             = _mm_mul_ps(r30,ewtabscale);
657             ewitab           = _mm_cvttps_epi32(ewrt);
658             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
659             ewitab           = _mm_slli_epi32(ewitab,2);
660             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
661             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
662             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
663             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
664             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
665             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
666             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
667             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
668             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
669
670             /* Update potential sum for this i atom from the interaction with this j atom. */
671             velec            = _mm_andnot_ps(dummy_mask,velec);
672             velecsum         = _mm_add_ps(velecsum,velec);
673
674             fscal            = felec;
675
676             fscal            = _mm_andnot_ps(dummy_mask,fscal);
677
678             /* Calculate temporary vectorial force */
679             tx               = _mm_mul_ps(fscal,dx30);
680             ty               = _mm_mul_ps(fscal,dy30);
681             tz               = _mm_mul_ps(fscal,dz30);
682
683             /* Update vectorial force */
684             fix3             = _mm_add_ps(fix3,tx);
685             fiy3             = _mm_add_ps(fiy3,ty);
686             fiz3             = _mm_add_ps(fiz3,tz);
687
688             fjx0             = _mm_add_ps(fjx0,tx);
689             fjy0             = _mm_add_ps(fjy0,ty);
690             fjz0             = _mm_add_ps(fjz0,tz);
691
692             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
693             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
694             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
695             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
696
697             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
698
699             /* Inner loop uses 158 flops */
700         }
701
702         /* End of innermost loop */
703
704         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
705                                               f+i_coord_offset,fshift+i_shift_offset);
706
707         ggid                        = gid[iidx];
708         /* Update potential energies */
709         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
710         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
711
712         /* Increment number of inner iterations */
713         inneriter                  += j_index_end - j_index_start;
714
715         /* Outer loop uses 26 flops */
716     }
717
718     /* Increment number of outer iterations */
719     outeriter        += nri;
720
721     /* Update outer/inner flops */
722
723     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*158);
724 }
725 /*
726  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse4_1_single
727  * Electrostatics interaction: Ewald
728  * VdW interaction:            LennardJones
729  * Geometry:                   Water4-Particle
730  * Calculate force/pot:        Force
731  */
732 void
733 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse4_1_single
734                     (t_nblist                    * gmx_restrict       nlist,
735                      rvec                        * gmx_restrict          xx,
736                      rvec                        * gmx_restrict          ff,
737                      t_forcerec                  * gmx_restrict          fr,
738                      t_mdatoms                   * gmx_restrict     mdatoms,
739                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
740                      t_nrnb                      * gmx_restrict        nrnb)
741 {
742     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
743      * just 0 for non-waters.
744      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
745      * jnr indices corresponding to data put in the four positions in the SIMD register.
746      */
747     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
748     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
749     int              jnrA,jnrB,jnrC,jnrD;
750     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
751     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
752     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
753     real             rcutoff_scalar;
754     real             *shiftvec,*fshift,*x,*f;
755     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
756     real             scratch[4*DIM];
757     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
758     int              vdwioffset0;
759     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
760     int              vdwioffset1;
761     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
762     int              vdwioffset2;
763     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
764     int              vdwioffset3;
765     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
766     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
767     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
768     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
769     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
770     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
771     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
772     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
773     real             *charge;
774     int              nvdwtype;
775     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
776     int              *vdwtype;
777     real             *vdwparam;
778     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
779     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
780     __m128i          ewitab;
781     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
782     real             *ewtab;
783     __m128           dummy_mask,cutoff_mask;
784     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
785     __m128           one     = _mm_set1_ps(1.0);
786     __m128           two     = _mm_set1_ps(2.0);
787     x                = xx[0];
788     f                = ff[0];
789
790     nri              = nlist->nri;
791     iinr             = nlist->iinr;
792     jindex           = nlist->jindex;
793     jjnr             = nlist->jjnr;
794     shiftidx         = nlist->shift;
795     gid              = nlist->gid;
796     shiftvec         = fr->shift_vec[0];
797     fshift           = fr->fshift[0];
798     facel            = _mm_set1_ps(fr->epsfac);
799     charge           = mdatoms->chargeA;
800     nvdwtype         = fr->ntype;
801     vdwparam         = fr->nbfp;
802     vdwtype          = mdatoms->typeA;
803
804     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
805     ewtab            = fr->ic->tabq_coul_F;
806     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
807     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
808
809     /* Setup water-specific parameters */
810     inr              = nlist->iinr[0];
811     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
812     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
813     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
814     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
815
816     /* Avoid stupid compiler warnings */
817     jnrA = jnrB = jnrC = jnrD = 0;
818     j_coord_offsetA = 0;
819     j_coord_offsetB = 0;
820     j_coord_offsetC = 0;
821     j_coord_offsetD = 0;
822
823     outeriter        = 0;
824     inneriter        = 0;
825
826     for(iidx=0;iidx<4*DIM;iidx++)
827     {
828         scratch[iidx] = 0.0;
829     }
830
831     /* Start outer loop over neighborlists */
832     for(iidx=0; iidx<nri; iidx++)
833     {
834         /* Load shift vector for this list */
835         i_shift_offset   = DIM*shiftidx[iidx];
836
837         /* Load limits for loop over neighbors */
838         j_index_start    = jindex[iidx];
839         j_index_end      = jindex[iidx+1];
840
841         /* Get outer coordinate index */
842         inr              = iinr[iidx];
843         i_coord_offset   = DIM*inr;
844
845         /* Load i particle coords and add shift vector */
846         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
847                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
848
849         fix0             = _mm_setzero_ps();
850         fiy0             = _mm_setzero_ps();
851         fiz0             = _mm_setzero_ps();
852         fix1             = _mm_setzero_ps();
853         fiy1             = _mm_setzero_ps();
854         fiz1             = _mm_setzero_ps();
855         fix2             = _mm_setzero_ps();
856         fiy2             = _mm_setzero_ps();
857         fiz2             = _mm_setzero_ps();
858         fix3             = _mm_setzero_ps();
859         fiy3             = _mm_setzero_ps();
860         fiz3             = _mm_setzero_ps();
861
862         /* Start inner kernel loop */
863         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
864         {
865
866             /* Get j neighbor index, and coordinate index */
867             jnrA             = jjnr[jidx];
868             jnrB             = jjnr[jidx+1];
869             jnrC             = jjnr[jidx+2];
870             jnrD             = jjnr[jidx+3];
871             j_coord_offsetA  = DIM*jnrA;
872             j_coord_offsetB  = DIM*jnrB;
873             j_coord_offsetC  = DIM*jnrC;
874             j_coord_offsetD  = DIM*jnrD;
875
876             /* load j atom coordinates */
877             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
878                                               x+j_coord_offsetC,x+j_coord_offsetD,
879                                               &jx0,&jy0,&jz0);
880
881             /* Calculate displacement vector */
882             dx00             = _mm_sub_ps(ix0,jx0);
883             dy00             = _mm_sub_ps(iy0,jy0);
884             dz00             = _mm_sub_ps(iz0,jz0);
885             dx10             = _mm_sub_ps(ix1,jx0);
886             dy10             = _mm_sub_ps(iy1,jy0);
887             dz10             = _mm_sub_ps(iz1,jz0);
888             dx20             = _mm_sub_ps(ix2,jx0);
889             dy20             = _mm_sub_ps(iy2,jy0);
890             dz20             = _mm_sub_ps(iz2,jz0);
891             dx30             = _mm_sub_ps(ix3,jx0);
892             dy30             = _mm_sub_ps(iy3,jy0);
893             dz30             = _mm_sub_ps(iz3,jz0);
894
895             /* Calculate squared distance and things based on it */
896             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
897             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
898             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
899             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
900
901             rinv10           = gmx_mm_invsqrt_ps(rsq10);
902             rinv20           = gmx_mm_invsqrt_ps(rsq20);
903             rinv30           = gmx_mm_invsqrt_ps(rsq30);
904
905             rinvsq00         = gmx_mm_inv_ps(rsq00);
906             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
907             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
908             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
909
910             /* Load parameters for j particles */
911             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
912                                                               charge+jnrC+0,charge+jnrD+0);
913             vdwjidx0A        = 2*vdwtype[jnrA+0];
914             vdwjidx0B        = 2*vdwtype[jnrB+0];
915             vdwjidx0C        = 2*vdwtype[jnrC+0];
916             vdwjidx0D        = 2*vdwtype[jnrD+0];
917
918             fjx0             = _mm_setzero_ps();
919             fjy0             = _mm_setzero_ps();
920             fjz0             = _mm_setzero_ps();
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             /* Compute parameters for interactions between i and j atoms */
927             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
928                                          vdwparam+vdwioffset0+vdwjidx0B,
929                                          vdwparam+vdwioffset0+vdwjidx0C,
930                                          vdwparam+vdwioffset0+vdwjidx0D,
931                                          &c6_00,&c12_00);
932
933             /* LENNARD-JONES DISPERSION/REPULSION */
934
935             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
936             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
937
938             fscal            = fvdw;
939
940             /* Calculate temporary vectorial force */
941             tx               = _mm_mul_ps(fscal,dx00);
942             ty               = _mm_mul_ps(fscal,dy00);
943             tz               = _mm_mul_ps(fscal,dz00);
944
945             /* Update vectorial force */
946             fix0             = _mm_add_ps(fix0,tx);
947             fiy0             = _mm_add_ps(fiy0,ty);
948             fiz0             = _mm_add_ps(fiz0,tz);
949
950             fjx0             = _mm_add_ps(fjx0,tx);
951             fjy0             = _mm_add_ps(fjy0,ty);
952             fjz0             = _mm_add_ps(fjz0,tz);
953
954             /**************************
955              * CALCULATE INTERACTIONS *
956              **************************/
957
958             r10              = _mm_mul_ps(rsq10,rinv10);
959
960             /* Compute parameters for interactions between i and j atoms */
961             qq10             = _mm_mul_ps(iq1,jq0);
962
963             /* EWALD ELECTROSTATICS */
964
965             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
966             ewrt             = _mm_mul_ps(r10,ewtabscale);
967             ewitab           = _mm_cvttps_epi32(ewrt);
968             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
969             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
970                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
971                                          &ewtabF,&ewtabFn);
972             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
973             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
974
975             fscal            = felec;
976
977             /* Calculate temporary vectorial force */
978             tx               = _mm_mul_ps(fscal,dx10);
979             ty               = _mm_mul_ps(fscal,dy10);
980             tz               = _mm_mul_ps(fscal,dz10);
981
982             /* Update vectorial force */
983             fix1             = _mm_add_ps(fix1,tx);
984             fiy1             = _mm_add_ps(fiy1,ty);
985             fiz1             = _mm_add_ps(fiz1,tz);
986
987             fjx0             = _mm_add_ps(fjx0,tx);
988             fjy0             = _mm_add_ps(fjy0,ty);
989             fjz0             = _mm_add_ps(fjz0,tz);
990
991             /**************************
992              * CALCULATE INTERACTIONS *
993              **************************/
994
995             r20              = _mm_mul_ps(rsq20,rinv20);
996
997             /* Compute parameters for interactions between i and j atoms */
998             qq20             = _mm_mul_ps(iq2,jq0);
999
1000             /* EWALD ELECTROSTATICS */
1001
1002             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1003             ewrt             = _mm_mul_ps(r20,ewtabscale);
1004             ewitab           = _mm_cvttps_epi32(ewrt);
1005             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1006             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1007                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1008                                          &ewtabF,&ewtabFn);
1009             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1010             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1011
1012             fscal            = felec;
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = _mm_mul_ps(fscal,dx20);
1016             ty               = _mm_mul_ps(fscal,dy20);
1017             tz               = _mm_mul_ps(fscal,dz20);
1018
1019             /* Update vectorial force */
1020             fix2             = _mm_add_ps(fix2,tx);
1021             fiy2             = _mm_add_ps(fiy2,ty);
1022             fiz2             = _mm_add_ps(fiz2,tz);
1023
1024             fjx0             = _mm_add_ps(fjx0,tx);
1025             fjy0             = _mm_add_ps(fjy0,ty);
1026             fjz0             = _mm_add_ps(fjz0,tz);
1027
1028             /**************************
1029              * CALCULATE INTERACTIONS *
1030              **************************/
1031
1032             r30              = _mm_mul_ps(rsq30,rinv30);
1033
1034             /* Compute parameters for interactions between i and j atoms */
1035             qq30             = _mm_mul_ps(iq3,jq0);
1036
1037             /* EWALD ELECTROSTATICS */
1038
1039             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1040             ewrt             = _mm_mul_ps(r30,ewtabscale);
1041             ewitab           = _mm_cvttps_epi32(ewrt);
1042             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1043             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1044                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1045                                          &ewtabF,&ewtabFn);
1046             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1047             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1048
1049             fscal            = felec;
1050
1051             /* Calculate temporary vectorial force */
1052             tx               = _mm_mul_ps(fscal,dx30);
1053             ty               = _mm_mul_ps(fscal,dy30);
1054             tz               = _mm_mul_ps(fscal,dz30);
1055
1056             /* Update vectorial force */
1057             fix3             = _mm_add_ps(fix3,tx);
1058             fiy3             = _mm_add_ps(fiy3,ty);
1059             fiz3             = _mm_add_ps(fiz3,tz);
1060
1061             fjx0             = _mm_add_ps(fjx0,tx);
1062             fjy0             = _mm_add_ps(fjy0,ty);
1063             fjz0             = _mm_add_ps(fjz0,tz);
1064
1065             fjptrA             = f+j_coord_offsetA;
1066             fjptrB             = f+j_coord_offsetB;
1067             fjptrC             = f+j_coord_offsetC;
1068             fjptrD             = f+j_coord_offsetD;
1069
1070             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1071
1072             /* Inner loop uses 135 flops */
1073         }
1074
1075         if(jidx<j_index_end)
1076         {
1077
1078             /* Get j neighbor index, and coordinate index */
1079             jnrlistA         = jjnr[jidx];
1080             jnrlistB         = jjnr[jidx+1];
1081             jnrlistC         = jjnr[jidx+2];
1082             jnrlistD         = jjnr[jidx+3];
1083             /* Sign of each element will be negative for non-real atoms.
1084              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1085              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1086              */
1087             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1088             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1089             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1090             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1091             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1092             j_coord_offsetA  = DIM*jnrA;
1093             j_coord_offsetB  = DIM*jnrB;
1094             j_coord_offsetC  = DIM*jnrC;
1095             j_coord_offsetD  = DIM*jnrD;
1096
1097             /* load j atom coordinates */
1098             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1099                                               x+j_coord_offsetC,x+j_coord_offsetD,
1100                                               &jx0,&jy0,&jz0);
1101
1102             /* Calculate displacement vector */
1103             dx00             = _mm_sub_ps(ix0,jx0);
1104             dy00             = _mm_sub_ps(iy0,jy0);
1105             dz00             = _mm_sub_ps(iz0,jz0);
1106             dx10             = _mm_sub_ps(ix1,jx0);
1107             dy10             = _mm_sub_ps(iy1,jy0);
1108             dz10             = _mm_sub_ps(iz1,jz0);
1109             dx20             = _mm_sub_ps(ix2,jx0);
1110             dy20             = _mm_sub_ps(iy2,jy0);
1111             dz20             = _mm_sub_ps(iz2,jz0);
1112             dx30             = _mm_sub_ps(ix3,jx0);
1113             dy30             = _mm_sub_ps(iy3,jy0);
1114             dz30             = _mm_sub_ps(iz3,jz0);
1115
1116             /* Calculate squared distance and things based on it */
1117             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1118             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1119             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1120             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1121
1122             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1123             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1124             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1125
1126             rinvsq00         = gmx_mm_inv_ps(rsq00);
1127             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1128             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1129             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1130
1131             /* Load parameters for j particles */
1132             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1133                                                               charge+jnrC+0,charge+jnrD+0);
1134             vdwjidx0A        = 2*vdwtype[jnrA+0];
1135             vdwjidx0B        = 2*vdwtype[jnrB+0];
1136             vdwjidx0C        = 2*vdwtype[jnrC+0];
1137             vdwjidx0D        = 2*vdwtype[jnrD+0];
1138
1139             fjx0             = _mm_setzero_ps();
1140             fjy0             = _mm_setzero_ps();
1141             fjz0             = _mm_setzero_ps();
1142
1143             /**************************
1144              * CALCULATE INTERACTIONS *
1145              **************************/
1146
1147             /* Compute parameters for interactions between i and j atoms */
1148             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1149                                          vdwparam+vdwioffset0+vdwjidx0B,
1150                                          vdwparam+vdwioffset0+vdwjidx0C,
1151                                          vdwparam+vdwioffset0+vdwjidx0D,
1152                                          &c6_00,&c12_00);
1153
1154             /* LENNARD-JONES DISPERSION/REPULSION */
1155
1156             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1157             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1158
1159             fscal            = fvdw;
1160
1161             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1162
1163             /* Calculate temporary vectorial force */
1164             tx               = _mm_mul_ps(fscal,dx00);
1165             ty               = _mm_mul_ps(fscal,dy00);
1166             tz               = _mm_mul_ps(fscal,dz00);
1167
1168             /* Update vectorial force */
1169             fix0             = _mm_add_ps(fix0,tx);
1170             fiy0             = _mm_add_ps(fiy0,ty);
1171             fiz0             = _mm_add_ps(fiz0,tz);
1172
1173             fjx0             = _mm_add_ps(fjx0,tx);
1174             fjy0             = _mm_add_ps(fjy0,ty);
1175             fjz0             = _mm_add_ps(fjz0,tz);
1176
1177             /**************************
1178              * CALCULATE INTERACTIONS *
1179              **************************/
1180
1181             r10              = _mm_mul_ps(rsq10,rinv10);
1182             r10              = _mm_andnot_ps(dummy_mask,r10);
1183
1184             /* Compute parameters for interactions between i and j atoms */
1185             qq10             = _mm_mul_ps(iq1,jq0);
1186
1187             /* EWALD ELECTROSTATICS */
1188
1189             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1190             ewrt             = _mm_mul_ps(r10,ewtabscale);
1191             ewitab           = _mm_cvttps_epi32(ewrt);
1192             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1193             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1194                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1195                                          &ewtabF,&ewtabFn);
1196             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1197             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1198
1199             fscal            = felec;
1200
1201             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1202
1203             /* Calculate temporary vectorial force */
1204             tx               = _mm_mul_ps(fscal,dx10);
1205             ty               = _mm_mul_ps(fscal,dy10);
1206             tz               = _mm_mul_ps(fscal,dz10);
1207
1208             /* Update vectorial force */
1209             fix1             = _mm_add_ps(fix1,tx);
1210             fiy1             = _mm_add_ps(fiy1,ty);
1211             fiz1             = _mm_add_ps(fiz1,tz);
1212
1213             fjx0             = _mm_add_ps(fjx0,tx);
1214             fjy0             = _mm_add_ps(fjy0,ty);
1215             fjz0             = _mm_add_ps(fjz0,tz);
1216
1217             /**************************
1218              * CALCULATE INTERACTIONS *
1219              **************************/
1220
1221             r20              = _mm_mul_ps(rsq20,rinv20);
1222             r20              = _mm_andnot_ps(dummy_mask,r20);
1223
1224             /* Compute parameters for interactions between i and j atoms */
1225             qq20             = _mm_mul_ps(iq2,jq0);
1226
1227             /* EWALD ELECTROSTATICS */
1228
1229             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1230             ewrt             = _mm_mul_ps(r20,ewtabscale);
1231             ewitab           = _mm_cvttps_epi32(ewrt);
1232             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1233             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1234                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1235                                          &ewtabF,&ewtabFn);
1236             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1237             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1238
1239             fscal            = felec;
1240
1241             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1242
1243             /* Calculate temporary vectorial force */
1244             tx               = _mm_mul_ps(fscal,dx20);
1245             ty               = _mm_mul_ps(fscal,dy20);
1246             tz               = _mm_mul_ps(fscal,dz20);
1247
1248             /* Update vectorial force */
1249             fix2             = _mm_add_ps(fix2,tx);
1250             fiy2             = _mm_add_ps(fiy2,ty);
1251             fiz2             = _mm_add_ps(fiz2,tz);
1252
1253             fjx0             = _mm_add_ps(fjx0,tx);
1254             fjy0             = _mm_add_ps(fjy0,ty);
1255             fjz0             = _mm_add_ps(fjz0,tz);
1256
1257             /**************************
1258              * CALCULATE INTERACTIONS *
1259              **************************/
1260
1261             r30              = _mm_mul_ps(rsq30,rinv30);
1262             r30              = _mm_andnot_ps(dummy_mask,r30);
1263
1264             /* Compute parameters for interactions between i and j atoms */
1265             qq30             = _mm_mul_ps(iq3,jq0);
1266
1267             /* EWALD ELECTROSTATICS */
1268
1269             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1270             ewrt             = _mm_mul_ps(r30,ewtabscale);
1271             ewitab           = _mm_cvttps_epi32(ewrt);
1272             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1273             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1274                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1275                                          &ewtabF,&ewtabFn);
1276             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1277             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1278
1279             fscal            = felec;
1280
1281             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1282
1283             /* Calculate temporary vectorial force */
1284             tx               = _mm_mul_ps(fscal,dx30);
1285             ty               = _mm_mul_ps(fscal,dy30);
1286             tz               = _mm_mul_ps(fscal,dz30);
1287
1288             /* Update vectorial force */
1289             fix3             = _mm_add_ps(fix3,tx);
1290             fiy3             = _mm_add_ps(fiy3,ty);
1291             fiz3             = _mm_add_ps(fiz3,tz);
1292
1293             fjx0             = _mm_add_ps(fjx0,tx);
1294             fjy0             = _mm_add_ps(fjy0,ty);
1295             fjz0             = _mm_add_ps(fjz0,tz);
1296
1297             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1298             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1299             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1300             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1301
1302             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1303
1304             /* Inner loop uses 138 flops */
1305         }
1306
1307         /* End of innermost loop */
1308
1309         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1310                                               f+i_coord_offset,fshift+i_shift_offset);
1311
1312         /* Increment number of inner iterations */
1313         inneriter                  += j_index_end - j_index_start;
1314
1315         /* Outer loop uses 24 flops */
1316     }
1317
1318     /* Increment number of outer iterations */
1319     outeriter        += nri;
1320
1321     /* Update outer/inner flops */
1322
1323     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*138);
1324 }