Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJ_GeomW4P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          ewitab;
92     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     real             *ewtab;
94     __m128           dummy_mask,cutoff_mask;
95     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
96     __m128           one     = _mm_set1_ps(1.0);
97     __m128           two     = _mm_set1_ps(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm_set1_ps(fr->epsfac);
110     charge           = mdatoms->chargeA;
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
116     ewtab            = fr->ic->tabq_coul_FDV0;
117     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
118     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
119
120     /* Setup water-specific parameters */
121     inr              = nlist->iinr[0];
122     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
123     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
124     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
125     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
159
160         fix0             = _mm_setzero_ps();
161         fiy0             = _mm_setzero_ps();
162         fiz0             = _mm_setzero_ps();
163         fix1             = _mm_setzero_ps();
164         fiy1             = _mm_setzero_ps();
165         fiz1             = _mm_setzero_ps();
166         fix2             = _mm_setzero_ps();
167         fiy2             = _mm_setzero_ps();
168         fiz2             = _mm_setzero_ps();
169         fix3             = _mm_setzero_ps();
170         fiy3             = _mm_setzero_ps();
171         fiz3             = _mm_setzero_ps();
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_ps();
175         vvdwsum          = _mm_setzero_ps();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               x+j_coord_offsetC,x+j_coord_offsetD,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_ps(ix0,jx0);
198             dy00             = _mm_sub_ps(iy0,jy0);
199             dz00             = _mm_sub_ps(iz0,jz0);
200             dx10             = _mm_sub_ps(ix1,jx0);
201             dy10             = _mm_sub_ps(iy1,jy0);
202             dz10             = _mm_sub_ps(iz1,jz0);
203             dx20             = _mm_sub_ps(ix2,jx0);
204             dy20             = _mm_sub_ps(iy2,jy0);
205             dz20             = _mm_sub_ps(iz2,jz0);
206             dx30             = _mm_sub_ps(ix3,jx0);
207             dy30             = _mm_sub_ps(iy3,jy0);
208             dz30             = _mm_sub_ps(iz3,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
214             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
215
216             rinv10           = gmx_mm_invsqrt_ps(rsq10);
217             rinv20           = gmx_mm_invsqrt_ps(rsq20);
218             rinv30           = gmx_mm_invsqrt_ps(rsq30);
219
220             rinvsq00         = gmx_mm_inv_ps(rsq00);
221             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
222             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
223             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                               charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             /* Compute parameters for interactions between i and j atoms */
238             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
239                                          vdwparam+vdwioffset0+vdwjidx0B,
240                                          vdwparam+vdwioffset0+vdwjidx0C,
241                                          vdwparam+vdwioffset0+vdwjidx0D,
242                                          &c6_00,&c12_00);
243
244             /* LENNARD-JONES DISPERSION/REPULSION */
245
246             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
247             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
248             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
249             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
250             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
254
255             fscal            = fvdw;
256
257             /* Calculate temporary vectorial force */
258             tx               = _mm_mul_ps(fscal,dx00);
259             ty               = _mm_mul_ps(fscal,dy00);
260             tz               = _mm_mul_ps(fscal,dz00);
261
262             /* Update vectorial force */
263             fix0             = _mm_add_ps(fix0,tx);
264             fiy0             = _mm_add_ps(fiy0,ty);
265             fiz0             = _mm_add_ps(fiz0,tz);
266
267             fjptrA             = f+j_coord_offsetA;
268             fjptrB             = f+j_coord_offsetB;
269             fjptrC             = f+j_coord_offsetC;
270             fjptrD             = f+j_coord_offsetD;
271             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             r10              = _mm_mul_ps(rsq10,rinv10);
278
279             /* Compute parameters for interactions between i and j atoms */
280             qq10             = _mm_mul_ps(iq1,jq0);
281
282             /* EWALD ELECTROSTATICS */
283
284             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
285             ewrt             = _mm_mul_ps(r10,ewtabscale);
286             ewitab           = _mm_cvttps_epi32(ewrt);
287             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
288             ewitab           = _mm_slli_epi32(ewitab,2);
289             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
290             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
291             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
292             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
293             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
294             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
295             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
296             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
297             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velecsum         = _mm_add_ps(velecsum,velec);
301
302             fscal            = felec;
303
304             /* Calculate temporary vectorial force */
305             tx               = _mm_mul_ps(fscal,dx10);
306             ty               = _mm_mul_ps(fscal,dy10);
307             tz               = _mm_mul_ps(fscal,dz10);
308
309             /* Update vectorial force */
310             fix1             = _mm_add_ps(fix1,tx);
311             fiy1             = _mm_add_ps(fiy1,ty);
312             fiz1             = _mm_add_ps(fiz1,tz);
313
314             fjptrA             = f+j_coord_offsetA;
315             fjptrB             = f+j_coord_offsetB;
316             fjptrC             = f+j_coord_offsetC;
317             fjptrD             = f+j_coord_offsetD;
318             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             r20              = _mm_mul_ps(rsq20,rinv20);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq20             = _mm_mul_ps(iq2,jq0);
328
329             /* EWALD ELECTROSTATICS */
330
331             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
332             ewrt             = _mm_mul_ps(r20,ewtabscale);
333             ewitab           = _mm_cvttps_epi32(ewrt);
334             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
335             ewitab           = _mm_slli_epi32(ewitab,2);
336             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
337             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
338             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
339             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
340             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
341             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
342             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
343             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
344             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm_mul_ps(fscal,dx20);
353             ty               = _mm_mul_ps(fscal,dy20);
354             tz               = _mm_mul_ps(fscal,dz20);
355
356             /* Update vectorial force */
357             fix2             = _mm_add_ps(fix2,tx);
358             fiy2             = _mm_add_ps(fiy2,ty);
359             fiz2             = _mm_add_ps(fiz2,tz);
360
361             fjptrA             = f+j_coord_offsetA;
362             fjptrB             = f+j_coord_offsetB;
363             fjptrC             = f+j_coord_offsetC;
364             fjptrD             = f+j_coord_offsetD;
365             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             r30              = _mm_mul_ps(rsq30,rinv30);
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq30             = _mm_mul_ps(iq3,jq0);
375
376             /* EWALD ELECTROSTATICS */
377
378             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
379             ewrt             = _mm_mul_ps(r30,ewtabscale);
380             ewitab           = _mm_cvttps_epi32(ewrt);
381             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
382             ewitab           = _mm_slli_epi32(ewitab,2);
383             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
384             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
385             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
386             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
387             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
388             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
389             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
390             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
391             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velecsum         = _mm_add_ps(velecsum,velec);
395
396             fscal            = felec;
397
398             /* Calculate temporary vectorial force */
399             tx               = _mm_mul_ps(fscal,dx30);
400             ty               = _mm_mul_ps(fscal,dy30);
401             tz               = _mm_mul_ps(fscal,dz30);
402
403             /* Update vectorial force */
404             fix3             = _mm_add_ps(fix3,tx);
405             fiy3             = _mm_add_ps(fiy3,ty);
406             fiz3             = _mm_add_ps(fiz3,tz);
407
408             fjptrA             = f+j_coord_offsetA;
409             fjptrB             = f+j_coord_offsetB;
410             fjptrC             = f+j_coord_offsetC;
411             fjptrD             = f+j_coord_offsetD;
412             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
413
414             /* Inner loop uses 155 flops */
415         }
416
417         if(jidx<j_index_end)
418         {
419
420             /* Get j neighbor index, and coordinate index */
421             jnrlistA         = jjnr[jidx];
422             jnrlistB         = jjnr[jidx+1];
423             jnrlistC         = jjnr[jidx+2];
424             jnrlistD         = jjnr[jidx+3];
425             /* Sign of each element will be negative for non-real atoms.
426              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
427              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
428              */
429             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
430             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
431             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
432             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
433             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
434             j_coord_offsetA  = DIM*jnrA;
435             j_coord_offsetB  = DIM*jnrB;
436             j_coord_offsetC  = DIM*jnrC;
437             j_coord_offsetD  = DIM*jnrD;
438
439             /* load j atom coordinates */
440             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
441                                               x+j_coord_offsetC,x+j_coord_offsetD,
442                                               &jx0,&jy0,&jz0);
443
444             /* Calculate displacement vector */
445             dx00             = _mm_sub_ps(ix0,jx0);
446             dy00             = _mm_sub_ps(iy0,jy0);
447             dz00             = _mm_sub_ps(iz0,jz0);
448             dx10             = _mm_sub_ps(ix1,jx0);
449             dy10             = _mm_sub_ps(iy1,jy0);
450             dz10             = _mm_sub_ps(iz1,jz0);
451             dx20             = _mm_sub_ps(ix2,jx0);
452             dy20             = _mm_sub_ps(iy2,jy0);
453             dz20             = _mm_sub_ps(iz2,jz0);
454             dx30             = _mm_sub_ps(ix3,jx0);
455             dy30             = _mm_sub_ps(iy3,jy0);
456             dz30             = _mm_sub_ps(iz3,jz0);
457
458             /* Calculate squared distance and things based on it */
459             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
460             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
461             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
462             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
463
464             rinv10           = gmx_mm_invsqrt_ps(rsq10);
465             rinv20           = gmx_mm_invsqrt_ps(rsq20);
466             rinv30           = gmx_mm_invsqrt_ps(rsq30);
467
468             rinvsq00         = gmx_mm_inv_ps(rsq00);
469             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
470             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
471             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
472
473             /* Load parameters for j particles */
474             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
475                                                               charge+jnrC+0,charge+jnrD+0);
476             vdwjidx0A        = 2*vdwtype[jnrA+0];
477             vdwjidx0B        = 2*vdwtype[jnrB+0];
478             vdwjidx0C        = 2*vdwtype[jnrC+0];
479             vdwjidx0D        = 2*vdwtype[jnrD+0];
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             /* Compute parameters for interactions between i and j atoms */
486             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
487                                          vdwparam+vdwioffset0+vdwjidx0B,
488                                          vdwparam+vdwioffset0+vdwjidx0C,
489                                          vdwparam+vdwioffset0+vdwjidx0D,
490                                          &c6_00,&c12_00);
491
492             /* LENNARD-JONES DISPERSION/REPULSION */
493
494             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
495             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
496             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
497             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
498             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
499
500             /* Update potential sum for this i atom from the interaction with this j atom. */
501             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
502             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
503
504             fscal            = fvdw;
505
506             fscal            = _mm_andnot_ps(dummy_mask,fscal);
507
508             /* Calculate temporary vectorial force */
509             tx               = _mm_mul_ps(fscal,dx00);
510             ty               = _mm_mul_ps(fscal,dy00);
511             tz               = _mm_mul_ps(fscal,dz00);
512
513             /* Update vectorial force */
514             fix0             = _mm_add_ps(fix0,tx);
515             fiy0             = _mm_add_ps(fiy0,ty);
516             fiz0             = _mm_add_ps(fiz0,tz);
517
518             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
519             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
520             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
521             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
522             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             r10              = _mm_mul_ps(rsq10,rinv10);
529             r10              = _mm_andnot_ps(dummy_mask,r10);
530
531             /* Compute parameters for interactions between i and j atoms */
532             qq10             = _mm_mul_ps(iq1,jq0);
533
534             /* EWALD ELECTROSTATICS */
535
536             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
537             ewrt             = _mm_mul_ps(r10,ewtabscale);
538             ewitab           = _mm_cvttps_epi32(ewrt);
539             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
540             ewitab           = _mm_slli_epi32(ewitab,2);
541             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
542             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
543             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
544             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
545             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
546             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
547             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
548             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
549             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             velec            = _mm_andnot_ps(dummy_mask,velec);
553             velecsum         = _mm_add_ps(velecsum,velec);
554
555             fscal            = felec;
556
557             fscal            = _mm_andnot_ps(dummy_mask,fscal);
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm_mul_ps(fscal,dx10);
561             ty               = _mm_mul_ps(fscal,dy10);
562             tz               = _mm_mul_ps(fscal,dz10);
563
564             /* Update vectorial force */
565             fix1             = _mm_add_ps(fix1,tx);
566             fiy1             = _mm_add_ps(fiy1,ty);
567             fiz1             = _mm_add_ps(fiz1,tz);
568
569             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
570             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
571             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
572             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
573             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             r20              = _mm_mul_ps(rsq20,rinv20);
580             r20              = _mm_andnot_ps(dummy_mask,r20);
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq20             = _mm_mul_ps(iq2,jq0);
584
585             /* EWALD ELECTROSTATICS */
586
587             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
588             ewrt             = _mm_mul_ps(r20,ewtabscale);
589             ewitab           = _mm_cvttps_epi32(ewrt);
590             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
591             ewitab           = _mm_slli_epi32(ewitab,2);
592             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
593             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
594             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
595             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
596             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
597             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
598             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
599             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
600             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             velec            = _mm_andnot_ps(dummy_mask,velec);
604             velecsum         = _mm_add_ps(velecsum,velec);
605
606             fscal            = felec;
607
608             fscal            = _mm_andnot_ps(dummy_mask,fscal);
609
610             /* Calculate temporary vectorial force */
611             tx               = _mm_mul_ps(fscal,dx20);
612             ty               = _mm_mul_ps(fscal,dy20);
613             tz               = _mm_mul_ps(fscal,dz20);
614
615             /* Update vectorial force */
616             fix2             = _mm_add_ps(fix2,tx);
617             fiy2             = _mm_add_ps(fiy2,ty);
618             fiz2             = _mm_add_ps(fiz2,tz);
619
620             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
621             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
622             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
623             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
624             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
625
626             /**************************
627              * CALCULATE INTERACTIONS *
628              **************************/
629
630             r30              = _mm_mul_ps(rsq30,rinv30);
631             r30              = _mm_andnot_ps(dummy_mask,r30);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq30             = _mm_mul_ps(iq3,jq0);
635
636             /* EWALD ELECTROSTATICS */
637
638             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
639             ewrt             = _mm_mul_ps(r30,ewtabscale);
640             ewitab           = _mm_cvttps_epi32(ewrt);
641             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
642             ewitab           = _mm_slli_epi32(ewitab,2);
643             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
644             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
645             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
646             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
647             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
648             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
649             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
650             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
651             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
652
653             /* Update potential sum for this i atom from the interaction with this j atom. */
654             velec            = _mm_andnot_ps(dummy_mask,velec);
655             velecsum         = _mm_add_ps(velecsum,velec);
656
657             fscal            = felec;
658
659             fscal            = _mm_andnot_ps(dummy_mask,fscal);
660
661             /* Calculate temporary vectorial force */
662             tx               = _mm_mul_ps(fscal,dx30);
663             ty               = _mm_mul_ps(fscal,dy30);
664             tz               = _mm_mul_ps(fscal,dz30);
665
666             /* Update vectorial force */
667             fix3             = _mm_add_ps(fix3,tx);
668             fiy3             = _mm_add_ps(fiy3,ty);
669             fiz3             = _mm_add_ps(fiz3,tz);
670
671             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
672             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
673             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
674             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
675             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
676
677             /* Inner loop uses 158 flops */
678         }
679
680         /* End of innermost loop */
681
682         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
683                                               f+i_coord_offset,fshift+i_shift_offset);
684
685         ggid                        = gid[iidx];
686         /* Update potential energies */
687         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
688         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
689
690         /* Increment number of inner iterations */
691         inneriter                  += j_index_end - j_index_start;
692
693         /* Outer loop uses 26 flops */
694     }
695
696     /* Increment number of outer iterations */
697     outeriter        += nri;
698
699     /* Update outer/inner flops */
700
701     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*158);
702 }
703 /*
704  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse4_1_single
705  * Electrostatics interaction: Ewald
706  * VdW interaction:            LennardJones
707  * Geometry:                   Water4-Particle
708  * Calculate force/pot:        Force
709  */
710 void
711 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse4_1_single
712                     (t_nblist * gmx_restrict                nlist,
713                      rvec * gmx_restrict                    xx,
714                      rvec * gmx_restrict                    ff,
715                      t_forcerec * gmx_restrict              fr,
716                      t_mdatoms * gmx_restrict               mdatoms,
717                      nb_kernel_data_t * gmx_restrict        kernel_data,
718                      t_nrnb * gmx_restrict                  nrnb)
719 {
720     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
721      * just 0 for non-waters.
722      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
723      * jnr indices corresponding to data put in the four positions in the SIMD register.
724      */
725     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
726     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
727     int              jnrA,jnrB,jnrC,jnrD;
728     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
729     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
730     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
731     real             rcutoff_scalar;
732     real             *shiftvec,*fshift,*x,*f;
733     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
734     real             scratch[4*DIM];
735     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
736     int              vdwioffset0;
737     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
738     int              vdwioffset1;
739     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
740     int              vdwioffset2;
741     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
742     int              vdwioffset3;
743     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
744     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
745     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
746     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
747     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
748     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
749     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
750     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
751     real             *charge;
752     int              nvdwtype;
753     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
754     int              *vdwtype;
755     real             *vdwparam;
756     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
757     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
758     __m128i          ewitab;
759     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
760     real             *ewtab;
761     __m128           dummy_mask,cutoff_mask;
762     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
763     __m128           one     = _mm_set1_ps(1.0);
764     __m128           two     = _mm_set1_ps(2.0);
765     x                = xx[0];
766     f                = ff[0];
767
768     nri              = nlist->nri;
769     iinr             = nlist->iinr;
770     jindex           = nlist->jindex;
771     jjnr             = nlist->jjnr;
772     shiftidx         = nlist->shift;
773     gid              = nlist->gid;
774     shiftvec         = fr->shift_vec[0];
775     fshift           = fr->fshift[0];
776     facel            = _mm_set1_ps(fr->epsfac);
777     charge           = mdatoms->chargeA;
778     nvdwtype         = fr->ntype;
779     vdwparam         = fr->nbfp;
780     vdwtype          = mdatoms->typeA;
781
782     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
783     ewtab            = fr->ic->tabq_coul_F;
784     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
785     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
786
787     /* Setup water-specific parameters */
788     inr              = nlist->iinr[0];
789     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
790     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
791     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
792     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
793
794     /* Avoid stupid compiler warnings */
795     jnrA = jnrB = jnrC = jnrD = 0;
796     j_coord_offsetA = 0;
797     j_coord_offsetB = 0;
798     j_coord_offsetC = 0;
799     j_coord_offsetD = 0;
800
801     outeriter        = 0;
802     inneriter        = 0;
803
804     for(iidx=0;iidx<4*DIM;iidx++)
805     {
806         scratch[iidx] = 0.0;
807     }
808
809     /* Start outer loop over neighborlists */
810     for(iidx=0; iidx<nri; iidx++)
811     {
812         /* Load shift vector for this list */
813         i_shift_offset   = DIM*shiftidx[iidx];
814
815         /* Load limits for loop over neighbors */
816         j_index_start    = jindex[iidx];
817         j_index_end      = jindex[iidx+1];
818
819         /* Get outer coordinate index */
820         inr              = iinr[iidx];
821         i_coord_offset   = DIM*inr;
822
823         /* Load i particle coords and add shift vector */
824         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
825                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
826
827         fix0             = _mm_setzero_ps();
828         fiy0             = _mm_setzero_ps();
829         fiz0             = _mm_setzero_ps();
830         fix1             = _mm_setzero_ps();
831         fiy1             = _mm_setzero_ps();
832         fiz1             = _mm_setzero_ps();
833         fix2             = _mm_setzero_ps();
834         fiy2             = _mm_setzero_ps();
835         fiz2             = _mm_setzero_ps();
836         fix3             = _mm_setzero_ps();
837         fiy3             = _mm_setzero_ps();
838         fiz3             = _mm_setzero_ps();
839
840         /* Start inner kernel loop */
841         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
842         {
843
844             /* Get j neighbor index, and coordinate index */
845             jnrA             = jjnr[jidx];
846             jnrB             = jjnr[jidx+1];
847             jnrC             = jjnr[jidx+2];
848             jnrD             = jjnr[jidx+3];
849             j_coord_offsetA  = DIM*jnrA;
850             j_coord_offsetB  = DIM*jnrB;
851             j_coord_offsetC  = DIM*jnrC;
852             j_coord_offsetD  = DIM*jnrD;
853
854             /* load j atom coordinates */
855             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
856                                               x+j_coord_offsetC,x+j_coord_offsetD,
857                                               &jx0,&jy0,&jz0);
858
859             /* Calculate displacement vector */
860             dx00             = _mm_sub_ps(ix0,jx0);
861             dy00             = _mm_sub_ps(iy0,jy0);
862             dz00             = _mm_sub_ps(iz0,jz0);
863             dx10             = _mm_sub_ps(ix1,jx0);
864             dy10             = _mm_sub_ps(iy1,jy0);
865             dz10             = _mm_sub_ps(iz1,jz0);
866             dx20             = _mm_sub_ps(ix2,jx0);
867             dy20             = _mm_sub_ps(iy2,jy0);
868             dz20             = _mm_sub_ps(iz2,jz0);
869             dx30             = _mm_sub_ps(ix3,jx0);
870             dy30             = _mm_sub_ps(iy3,jy0);
871             dz30             = _mm_sub_ps(iz3,jz0);
872
873             /* Calculate squared distance and things based on it */
874             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
875             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
876             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
877             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
878
879             rinv10           = gmx_mm_invsqrt_ps(rsq10);
880             rinv20           = gmx_mm_invsqrt_ps(rsq20);
881             rinv30           = gmx_mm_invsqrt_ps(rsq30);
882
883             rinvsq00         = gmx_mm_inv_ps(rsq00);
884             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
885             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
886             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
887
888             /* Load parameters for j particles */
889             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
890                                                               charge+jnrC+0,charge+jnrD+0);
891             vdwjidx0A        = 2*vdwtype[jnrA+0];
892             vdwjidx0B        = 2*vdwtype[jnrB+0];
893             vdwjidx0C        = 2*vdwtype[jnrC+0];
894             vdwjidx0D        = 2*vdwtype[jnrD+0];
895
896             /**************************
897              * CALCULATE INTERACTIONS *
898              **************************/
899
900             /* Compute parameters for interactions between i and j atoms */
901             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
902                                          vdwparam+vdwioffset0+vdwjidx0B,
903                                          vdwparam+vdwioffset0+vdwjidx0C,
904                                          vdwparam+vdwioffset0+vdwjidx0D,
905                                          &c6_00,&c12_00);
906
907             /* LENNARD-JONES DISPERSION/REPULSION */
908
909             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
910             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
911
912             fscal            = fvdw;
913
914             /* Calculate temporary vectorial force */
915             tx               = _mm_mul_ps(fscal,dx00);
916             ty               = _mm_mul_ps(fscal,dy00);
917             tz               = _mm_mul_ps(fscal,dz00);
918
919             /* Update vectorial force */
920             fix0             = _mm_add_ps(fix0,tx);
921             fiy0             = _mm_add_ps(fiy0,ty);
922             fiz0             = _mm_add_ps(fiz0,tz);
923
924             fjptrA             = f+j_coord_offsetA;
925             fjptrB             = f+j_coord_offsetB;
926             fjptrC             = f+j_coord_offsetC;
927             fjptrD             = f+j_coord_offsetD;
928             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
929
930             /**************************
931              * CALCULATE INTERACTIONS *
932              **************************/
933
934             r10              = _mm_mul_ps(rsq10,rinv10);
935
936             /* Compute parameters for interactions between i and j atoms */
937             qq10             = _mm_mul_ps(iq1,jq0);
938
939             /* EWALD ELECTROSTATICS */
940
941             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
942             ewrt             = _mm_mul_ps(r10,ewtabscale);
943             ewitab           = _mm_cvttps_epi32(ewrt);
944             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
945             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
946                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
947                                          &ewtabF,&ewtabFn);
948             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
949             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
950
951             fscal            = felec;
952
953             /* Calculate temporary vectorial force */
954             tx               = _mm_mul_ps(fscal,dx10);
955             ty               = _mm_mul_ps(fscal,dy10);
956             tz               = _mm_mul_ps(fscal,dz10);
957
958             /* Update vectorial force */
959             fix1             = _mm_add_ps(fix1,tx);
960             fiy1             = _mm_add_ps(fiy1,ty);
961             fiz1             = _mm_add_ps(fiz1,tz);
962
963             fjptrA             = f+j_coord_offsetA;
964             fjptrB             = f+j_coord_offsetB;
965             fjptrC             = f+j_coord_offsetC;
966             fjptrD             = f+j_coord_offsetD;
967             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             r20              = _mm_mul_ps(rsq20,rinv20);
974
975             /* Compute parameters for interactions between i and j atoms */
976             qq20             = _mm_mul_ps(iq2,jq0);
977
978             /* EWALD ELECTROSTATICS */
979
980             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
981             ewrt             = _mm_mul_ps(r20,ewtabscale);
982             ewitab           = _mm_cvttps_epi32(ewrt);
983             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
984             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
985                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
986                                          &ewtabF,&ewtabFn);
987             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
988             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
989
990             fscal            = felec;
991
992             /* Calculate temporary vectorial force */
993             tx               = _mm_mul_ps(fscal,dx20);
994             ty               = _mm_mul_ps(fscal,dy20);
995             tz               = _mm_mul_ps(fscal,dz20);
996
997             /* Update vectorial force */
998             fix2             = _mm_add_ps(fix2,tx);
999             fiy2             = _mm_add_ps(fiy2,ty);
1000             fiz2             = _mm_add_ps(fiz2,tz);
1001
1002             fjptrA             = f+j_coord_offsetA;
1003             fjptrB             = f+j_coord_offsetB;
1004             fjptrC             = f+j_coord_offsetC;
1005             fjptrD             = f+j_coord_offsetD;
1006             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1007
1008             /**************************
1009              * CALCULATE INTERACTIONS *
1010              **************************/
1011
1012             r30              = _mm_mul_ps(rsq30,rinv30);
1013
1014             /* Compute parameters for interactions between i and j atoms */
1015             qq30             = _mm_mul_ps(iq3,jq0);
1016
1017             /* EWALD ELECTROSTATICS */
1018
1019             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1020             ewrt             = _mm_mul_ps(r30,ewtabscale);
1021             ewitab           = _mm_cvttps_epi32(ewrt);
1022             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1023             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1024                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1025                                          &ewtabF,&ewtabFn);
1026             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1027             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1028
1029             fscal            = felec;
1030
1031             /* Calculate temporary vectorial force */
1032             tx               = _mm_mul_ps(fscal,dx30);
1033             ty               = _mm_mul_ps(fscal,dy30);
1034             tz               = _mm_mul_ps(fscal,dz30);
1035
1036             /* Update vectorial force */
1037             fix3             = _mm_add_ps(fix3,tx);
1038             fiy3             = _mm_add_ps(fiy3,ty);
1039             fiz3             = _mm_add_ps(fiz3,tz);
1040
1041             fjptrA             = f+j_coord_offsetA;
1042             fjptrB             = f+j_coord_offsetB;
1043             fjptrC             = f+j_coord_offsetC;
1044             fjptrD             = f+j_coord_offsetD;
1045             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1046
1047             /* Inner loop uses 135 flops */
1048         }
1049
1050         if(jidx<j_index_end)
1051         {
1052
1053             /* Get j neighbor index, and coordinate index */
1054             jnrlistA         = jjnr[jidx];
1055             jnrlistB         = jjnr[jidx+1];
1056             jnrlistC         = jjnr[jidx+2];
1057             jnrlistD         = jjnr[jidx+3];
1058             /* Sign of each element will be negative for non-real atoms.
1059              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1060              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1061              */
1062             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1063             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1064             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1065             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1066             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1067             j_coord_offsetA  = DIM*jnrA;
1068             j_coord_offsetB  = DIM*jnrB;
1069             j_coord_offsetC  = DIM*jnrC;
1070             j_coord_offsetD  = DIM*jnrD;
1071
1072             /* load j atom coordinates */
1073             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1074                                               x+j_coord_offsetC,x+j_coord_offsetD,
1075                                               &jx0,&jy0,&jz0);
1076
1077             /* Calculate displacement vector */
1078             dx00             = _mm_sub_ps(ix0,jx0);
1079             dy00             = _mm_sub_ps(iy0,jy0);
1080             dz00             = _mm_sub_ps(iz0,jz0);
1081             dx10             = _mm_sub_ps(ix1,jx0);
1082             dy10             = _mm_sub_ps(iy1,jy0);
1083             dz10             = _mm_sub_ps(iz1,jz0);
1084             dx20             = _mm_sub_ps(ix2,jx0);
1085             dy20             = _mm_sub_ps(iy2,jy0);
1086             dz20             = _mm_sub_ps(iz2,jz0);
1087             dx30             = _mm_sub_ps(ix3,jx0);
1088             dy30             = _mm_sub_ps(iy3,jy0);
1089             dz30             = _mm_sub_ps(iz3,jz0);
1090
1091             /* Calculate squared distance and things based on it */
1092             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1093             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1094             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1095             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1096
1097             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1098             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1099             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1100
1101             rinvsq00         = gmx_mm_inv_ps(rsq00);
1102             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1103             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1104             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1105
1106             /* Load parameters for j particles */
1107             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1108                                                               charge+jnrC+0,charge+jnrD+0);
1109             vdwjidx0A        = 2*vdwtype[jnrA+0];
1110             vdwjidx0B        = 2*vdwtype[jnrB+0];
1111             vdwjidx0C        = 2*vdwtype[jnrC+0];
1112             vdwjidx0D        = 2*vdwtype[jnrD+0];
1113
1114             /**************************
1115              * CALCULATE INTERACTIONS *
1116              **************************/
1117
1118             /* Compute parameters for interactions between i and j atoms */
1119             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1120                                          vdwparam+vdwioffset0+vdwjidx0B,
1121                                          vdwparam+vdwioffset0+vdwjidx0C,
1122                                          vdwparam+vdwioffset0+vdwjidx0D,
1123                                          &c6_00,&c12_00);
1124
1125             /* LENNARD-JONES DISPERSION/REPULSION */
1126
1127             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1128             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1129
1130             fscal            = fvdw;
1131
1132             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1133
1134             /* Calculate temporary vectorial force */
1135             tx               = _mm_mul_ps(fscal,dx00);
1136             ty               = _mm_mul_ps(fscal,dy00);
1137             tz               = _mm_mul_ps(fscal,dz00);
1138
1139             /* Update vectorial force */
1140             fix0             = _mm_add_ps(fix0,tx);
1141             fiy0             = _mm_add_ps(fiy0,ty);
1142             fiz0             = _mm_add_ps(fiz0,tz);
1143
1144             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1145             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1146             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1147             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1148             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1149
1150             /**************************
1151              * CALCULATE INTERACTIONS *
1152              **************************/
1153
1154             r10              = _mm_mul_ps(rsq10,rinv10);
1155             r10              = _mm_andnot_ps(dummy_mask,r10);
1156
1157             /* Compute parameters for interactions between i and j atoms */
1158             qq10             = _mm_mul_ps(iq1,jq0);
1159
1160             /* EWALD ELECTROSTATICS */
1161
1162             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1163             ewrt             = _mm_mul_ps(r10,ewtabscale);
1164             ewitab           = _mm_cvttps_epi32(ewrt);
1165             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1166             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1167                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1168                                          &ewtabF,&ewtabFn);
1169             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1170             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1171
1172             fscal            = felec;
1173
1174             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1175
1176             /* Calculate temporary vectorial force */
1177             tx               = _mm_mul_ps(fscal,dx10);
1178             ty               = _mm_mul_ps(fscal,dy10);
1179             tz               = _mm_mul_ps(fscal,dz10);
1180
1181             /* Update vectorial force */
1182             fix1             = _mm_add_ps(fix1,tx);
1183             fiy1             = _mm_add_ps(fiy1,ty);
1184             fiz1             = _mm_add_ps(fiz1,tz);
1185
1186             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1187             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1188             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1189             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1190             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1191
1192             /**************************
1193              * CALCULATE INTERACTIONS *
1194              **************************/
1195
1196             r20              = _mm_mul_ps(rsq20,rinv20);
1197             r20              = _mm_andnot_ps(dummy_mask,r20);
1198
1199             /* Compute parameters for interactions between i and j atoms */
1200             qq20             = _mm_mul_ps(iq2,jq0);
1201
1202             /* EWALD ELECTROSTATICS */
1203
1204             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1205             ewrt             = _mm_mul_ps(r20,ewtabscale);
1206             ewitab           = _mm_cvttps_epi32(ewrt);
1207             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1208             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1209                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1210                                          &ewtabF,&ewtabFn);
1211             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1212             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1213
1214             fscal            = felec;
1215
1216             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1217
1218             /* Calculate temporary vectorial force */
1219             tx               = _mm_mul_ps(fscal,dx20);
1220             ty               = _mm_mul_ps(fscal,dy20);
1221             tz               = _mm_mul_ps(fscal,dz20);
1222
1223             /* Update vectorial force */
1224             fix2             = _mm_add_ps(fix2,tx);
1225             fiy2             = _mm_add_ps(fiy2,ty);
1226             fiz2             = _mm_add_ps(fiz2,tz);
1227
1228             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1229             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1230             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1231             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1232             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1233
1234             /**************************
1235              * CALCULATE INTERACTIONS *
1236              **************************/
1237
1238             r30              = _mm_mul_ps(rsq30,rinv30);
1239             r30              = _mm_andnot_ps(dummy_mask,r30);
1240
1241             /* Compute parameters for interactions between i and j atoms */
1242             qq30             = _mm_mul_ps(iq3,jq0);
1243
1244             /* EWALD ELECTROSTATICS */
1245
1246             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1247             ewrt             = _mm_mul_ps(r30,ewtabscale);
1248             ewitab           = _mm_cvttps_epi32(ewrt);
1249             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1250             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1251                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1252                                          &ewtabF,&ewtabFn);
1253             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1254             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1255
1256             fscal            = felec;
1257
1258             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1259
1260             /* Calculate temporary vectorial force */
1261             tx               = _mm_mul_ps(fscal,dx30);
1262             ty               = _mm_mul_ps(fscal,dy30);
1263             tz               = _mm_mul_ps(fscal,dz30);
1264
1265             /* Update vectorial force */
1266             fix3             = _mm_add_ps(fix3,tx);
1267             fiy3             = _mm_add_ps(fiy3,ty);
1268             fiz3             = _mm_add_ps(fiz3,tz);
1269
1270             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1271             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1272             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1273             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1274             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1275
1276             /* Inner loop uses 138 flops */
1277         }
1278
1279         /* End of innermost loop */
1280
1281         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1282                                               f+i_coord_offset,fshift+i_shift_offset);
1283
1284         /* Increment number of inner iterations */
1285         inneriter                  += j_index_end - j_index_start;
1286
1287         /* Outer loop uses 24 flops */
1288     }
1289
1290     /* Increment number of outer iterations */
1291     outeriter        += nri;
1292
1293     /* Update outer/inner flops */
1294
1295     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*138);
1296 }