Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJ_GeomW3P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          ewitab;
89     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128           dummy_mask,cutoff_mask;
92     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
93     __m128           one     = _mm_set1_ps(1.0);
94     __m128           two     = _mm_set1_ps(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_ps(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
120     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
121     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
122     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
155                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
156
157         fix0             = _mm_setzero_ps();
158         fiy0             = _mm_setzero_ps();
159         fiz0             = _mm_setzero_ps();
160         fix1             = _mm_setzero_ps();
161         fiy1             = _mm_setzero_ps();
162         fiz1             = _mm_setzero_ps();
163         fix2             = _mm_setzero_ps();
164         fiy2             = _mm_setzero_ps();
165         fiz2             = _mm_setzero_ps();
166
167         /* Reset potential sums */
168         velecsum         = _mm_setzero_ps();
169         vvdwsum          = _mm_setzero_ps();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               x+j_coord_offsetC,x+j_coord_offsetD,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_ps(ix0,jx0);
192             dy00             = _mm_sub_ps(iy0,jy0);
193             dz00             = _mm_sub_ps(iz0,jz0);
194             dx10             = _mm_sub_ps(ix1,jx0);
195             dy10             = _mm_sub_ps(iy1,jy0);
196             dz10             = _mm_sub_ps(iz1,jz0);
197             dx20             = _mm_sub_ps(ix2,jx0);
198             dy20             = _mm_sub_ps(iy2,jy0);
199             dz20             = _mm_sub_ps(iz2,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
203             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
204             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
205
206             rinv00           = gmx_mm_invsqrt_ps(rsq00);
207             rinv10           = gmx_mm_invsqrt_ps(rsq10);
208             rinv20           = gmx_mm_invsqrt_ps(rsq20);
209
210             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
211             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
212             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
216                                                               charge+jnrC+0,charge+jnrD+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219             vdwjidx0C        = 2*vdwtype[jnrC+0];
220             vdwjidx0D        = 2*vdwtype[jnrD+0];
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             r00              = _mm_mul_ps(rsq00,rinv00);
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq00             = _mm_mul_ps(iq0,jq0);
230             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
231                                          vdwparam+vdwioffset0+vdwjidx0B,
232                                          vdwparam+vdwioffset0+vdwjidx0C,
233                                          vdwparam+vdwioffset0+vdwjidx0D,
234                                          &c6_00,&c12_00);
235
236             /* EWALD ELECTROSTATICS */
237
238             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
239             ewrt             = _mm_mul_ps(r00,ewtabscale);
240             ewitab           = _mm_cvttps_epi32(ewrt);
241             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
242             ewitab           = _mm_slli_epi32(ewitab,2);
243             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
244             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
245             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
246             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
247             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
248             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
249             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
250             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
251             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
252
253             /* LENNARD-JONES DISPERSION/REPULSION */
254
255             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
256             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
257             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
258             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
259             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
260
261             /* Update potential sum for this i atom from the interaction with this j atom. */
262             velecsum         = _mm_add_ps(velecsum,velec);
263             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
264
265             fscal            = _mm_add_ps(felec,fvdw);
266
267             /* Calculate temporary vectorial force */
268             tx               = _mm_mul_ps(fscal,dx00);
269             ty               = _mm_mul_ps(fscal,dy00);
270             tz               = _mm_mul_ps(fscal,dz00);
271
272             /* Update vectorial force */
273             fix0             = _mm_add_ps(fix0,tx);
274             fiy0             = _mm_add_ps(fiy0,ty);
275             fiz0             = _mm_add_ps(fiz0,tz);
276
277             fjptrA             = f+j_coord_offsetA;
278             fjptrB             = f+j_coord_offsetB;
279             fjptrC             = f+j_coord_offsetC;
280             fjptrD             = f+j_coord_offsetD;
281             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
282
283             /**************************
284              * CALCULATE INTERACTIONS *
285              **************************/
286
287             r10              = _mm_mul_ps(rsq10,rinv10);
288
289             /* Compute parameters for interactions between i and j atoms */
290             qq10             = _mm_mul_ps(iq1,jq0);
291
292             /* EWALD ELECTROSTATICS */
293
294             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
295             ewrt             = _mm_mul_ps(r10,ewtabscale);
296             ewitab           = _mm_cvttps_epi32(ewrt);
297             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
298             ewitab           = _mm_slli_epi32(ewitab,2);
299             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
300             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
301             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
302             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
303             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
304             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
305             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
306             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
307             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velecsum         = _mm_add_ps(velecsum,velec);
311
312             fscal            = felec;
313
314             /* Calculate temporary vectorial force */
315             tx               = _mm_mul_ps(fscal,dx10);
316             ty               = _mm_mul_ps(fscal,dy10);
317             tz               = _mm_mul_ps(fscal,dz10);
318
319             /* Update vectorial force */
320             fix1             = _mm_add_ps(fix1,tx);
321             fiy1             = _mm_add_ps(fiy1,ty);
322             fiz1             = _mm_add_ps(fiz1,tz);
323
324             fjptrA             = f+j_coord_offsetA;
325             fjptrB             = f+j_coord_offsetB;
326             fjptrC             = f+j_coord_offsetC;
327             fjptrD             = f+j_coord_offsetD;
328             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             r20              = _mm_mul_ps(rsq20,rinv20);
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq20             = _mm_mul_ps(iq2,jq0);
338
339             /* EWALD ELECTROSTATICS */
340
341             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
342             ewrt             = _mm_mul_ps(r20,ewtabscale);
343             ewitab           = _mm_cvttps_epi32(ewrt);
344             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
345             ewitab           = _mm_slli_epi32(ewitab,2);
346             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
347             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
348             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
349             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
350             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
351             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
352             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
353             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
354             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velecsum         = _mm_add_ps(velecsum,velec);
358
359             fscal            = felec;
360
361             /* Calculate temporary vectorial force */
362             tx               = _mm_mul_ps(fscal,dx20);
363             ty               = _mm_mul_ps(fscal,dy20);
364             tz               = _mm_mul_ps(fscal,dz20);
365
366             /* Update vectorial force */
367             fix2             = _mm_add_ps(fix2,tx);
368             fiy2             = _mm_add_ps(fiy2,ty);
369             fiz2             = _mm_add_ps(fiz2,tz);
370
371             fjptrA             = f+j_coord_offsetA;
372             fjptrB             = f+j_coord_offsetB;
373             fjptrC             = f+j_coord_offsetC;
374             fjptrD             = f+j_coord_offsetD;
375             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
376
377             /* Inner loop uses 135 flops */
378         }
379
380         if(jidx<j_index_end)
381         {
382
383             /* Get j neighbor index, and coordinate index */
384             jnrlistA         = jjnr[jidx];
385             jnrlistB         = jjnr[jidx+1];
386             jnrlistC         = jjnr[jidx+2];
387             jnrlistD         = jjnr[jidx+3];
388             /* Sign of each element will be negative for non-real atoms.
389              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
390              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
391              */
392             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
393             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
394             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
395             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
396             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
397             j_coord_offsetA  = DIM*jnrA;
398             j_coord_offsetB  = DIM*jnrB;
399             j_coord_offsetC  = DIM*jnrC;
400             j_coord_offsetD  = DIM*jnrD;
401
402             /* load j atom coordinates */
403             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
404                                               x+j_coord_offsetC,x+j_coord_offsetD,
405                                               &jx0,&jy0,&jz0);
406
407             /* Calculate displacement vector */
408             dx00             = _mm_sub_ps(ix0,jx0);
409             dy00             = _mm_sub_ps(iy0,jy0);
410             dz00             = _mm_sub_ps(iz0,jz0);
411             dx10             = _mm_sub_ps(ix1,jx0);
412             dy10             = _mm_sub_ps(iy1,jy0);
413             dz10             = _mm_sub_ps(iz1,jz0);
414             dx20             = _mm_sub_ps(ix2,jx0);
415             dy20             = _mm_sub_ps(iy2,jy0);
416             dz20             = _mm_sub_ps(iz2,jz0);
417
418             /* Calculate squared distance and things based on it */
419             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
420             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
421             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
422
423             rinv00           = gmx_mm_invsqrt_ps(rsq00);
424             rinv10           = gmx_mm_invsqrt_ps(rsq10);
425             rinv20           = gmx_mm_invsqrt_ps(rsq20);
426
427             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
428             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
429             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
430
431             /* Load parameters for j particles */
432             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
433                                                               charge+jnrC+0,charge+jnrD+0);
434             vdwjidx0A        = 2*vdwtype[jnrA+0];
435             vdwjidx0B        = 2*vdwtype[jnrB+0];
436             vdwjidx0C        = 2*vdwtype[jnrC+0];
437             vdwjidx0D        = 2*vdwtype[jnrD+0];
438
439             /**************************
440              * CALCULATE INTERACTIONS *
441              **************************/
442
443             r00              = _mm_mul_ps(rsq00,rinv00);
444             r00              = _mm_andnot_ps(dummy_mask,r00);
445
446             /* Compute parameters for interactions between i and j atoms */
447             qq00             = _mm_mul_ps(iq0,jq0);
448             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
449                                          vdwparam+vdwioffset0+vdwjidx0B,
450                                          vdwparam+vdwioffset0+vdwjidx0C,
451                                          vdwparam+vdwioffset0+vdwjidx0D,
452                                          &c6_00,&c12_00);
453
454             /* EWALD ELECTROSTATICS */
455
456             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
457             ewrt             = _mm_mul_ps(r00,ewtabscale);
458             ewitab           = _mm_cvttps_epi32(ewrt);
459             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
460             ewitab           = _mm_slli_epi32(ewitab,2);
461             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
462             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
463             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
464             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
465             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
466             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
467             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
468             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
469             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
470
471             /* LENNARD-JONES DISPERSION/REPULSION */
472
473             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
474             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
475             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
476             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
477             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
478
479             /* Update potential sum for this i atom from the interaction with this j atom. */
480             velec            = _mm_andnot_ps(dummy_mask,velec);
481             velecsum         = _mm_add_ps(velecsum,velec);
482             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
483             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
484
485             fscal            = _mm_add_ps(felec,fvdw);
486
487             fscal            = _mm_andnot_ps(dummy_mask,fscal);
488
489             /* Calculate temporary vectorial force */
490             tx               = _mm_mul_ps(fscal,dx00);
491             ty               = _mm_mul_ps(fscal,dy00);
492             tz               = _mm_mul_ps(fscal,dz00);
493
494             /* Update vectorial force */
495             fix0             = _mm_add_ps(fix0,tx);
496             fiy0             = _mm_add_ps(fiy0,ty);
497             fiz0             = _mm_add_ps(fiz0,tz);
498
499             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
500             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
501             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
502             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
503             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
504
505             /**************************
506              * CALCULATE INTERACTIONS *
507              **************************/
508
509             r10              = _mm_mul_ps(rsq10,rinv10);
510             r10              = _mm_andnot_ps(dummy_mask,r10);
511
512             /* Compute parameters for interactions between i and j atoms */
513             qq10             = _mm_mul_ps(iq1,jq0);
514
515             /* EWALD ELECTROSTATICS */
516
517             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
518             ewrt             = _mm_mul_ps(r10,ewtabscale);
519             ewitab           = _mm_cvttps_epi32(ewrt);
520             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
521             ewitab           = _mm_slli_epi32(ewitab,2);
522             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
523             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
524             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
525             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
526             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
527             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
528             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
529             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
530             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
531
532             /* Update potential sum for this i atom from the interaction with this j atom. */
533             velec            = _mm_andnot_ps(dummy_mask,velec);
534             velecsum         = _mm_add_ps(velecsum,velec);
535
536             fscal            = felec;
537
538             fscal            = _mm_andnot_ps(dummy_mask,fscal);
539
540             /* Calculate temporary vectorial force */
541             tx               = _mm_mul_ps(fscal,dx10);
542             ty               = _mm_mul_ps(fscal,dy10);
543             tz               = _mm_mul_ps(fscal,dz10);
544
545             /* Update vectorial force */
546             fix1             = _mm_add_ps(fix1,tx);
547             fiy1             = _mm_add_ps(fiy1,ty);
548             fiz1             = _mm_add_ps(fiz1,tz);
549
550             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
551             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
552             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
553             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
554             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             r20              = _mm_mul_ps(rsq20,rinv20);
561             r20              = _mm_andnot_ps(dummy_mask,r20);
562
563             /* Compute parameters for interactions between i and j atoms */
564             qq20             = _mm_mul_ps(iq2,jq0);
565
566             /* EWALD ELECTROSTATICS */
567
568             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
569             ewrt             = _mm_mul_ps(r20,ewtabscale);
570             ewitab           = _mm_cvttps_epi32(ewrt);
571             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
572             ewitab           = _mm_slli_epi32(ewitab,2);
573             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
574             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
575             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
576             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
577             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
578             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
579             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
580             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
581             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velec            = _mm_andnot_ps(dummy_mask,velec);
585             velecsum         = _mm_add_ps(velecsum,velec);
586
587             fscal            = felec;
588
589             fscal            = _mm_andnot_ps(dummy_mask,fscal);
590
591             /* Calculate temporary vectorial force */
592             tx               = _mm_mul_ps(fscal,dx20);
593             ty               = _mm_mul_ps(fscal,dy20);
594             tz               = _mm_mul_ps(fscal,dz20);
595
596             /* Update vectorial force */
597             fix2             = _mm_add_ps(fix2,tx);
598             fiy2             = _mm_add_ps(fiy2,ty);
599             fiz2             = _mm_add_ps(fiz2,tz);
600
601             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
602             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
603             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
604             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
605             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
606
607             /* Inner loop uses 138 flops */
608         }
609
610         /* End of innermost loop */
611
612         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
613                                               f+i_coord_offset,fshift+i_shift_offset);
614
615         ggid                        = gid[iidx];
616         /* Update potential energies */
617         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
618         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
619
620         /* Increment number of inner iterations */
621         inneriter                  += j_index_end - j_index_start;
622
623         /* Outer loop uses 20 flops */
624     }
625
626     /* Increment number of outer iterations */
627     outeriter        += nri;
628
629     /* Update outer/inner flops */
630
631     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*138);
632 }
633 /*
634  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse4_1_single
635  * Electrostatics interaction: Ewald
636  * VdW interaction:            LennardJones
637  * Geometry:                   Water3-Particle
638  * Calculate force/pot:        Force
639  */
640 void
641 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse4_1_single
642                     (t_nblist * gmx_restrict                nlist,
643                      rvec * gmx_restrict                    xx,
644                      rvec * gmx_restrict                    ff,
645                      t_forcerec * gmx_restrict              fr,
646                      t_mdatoms * gmx_restrict               mdatoms,
647                      nb_kernel_data_t * gmx_restrict        kernel_data,
648                      t_nrnb * gmx_restrict                  nrnb)
649 {
650     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
651      * just 0 for non-waters.
652      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
653      * jnr indices corresponding to data put in the four positions in the SIMD register.
654      */
655     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
656     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
657     int              jnrA,jnrB,jnrC,jnrD;
658     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
659     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
660     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
661     real             rcutoff_scalar;
662     real             *shiftvec,*fshift,*x,*f;
663     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
664     real             scratch[4*DIM];
665     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
666     int              vdwioffset0;
667     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
668     int              vdwioffset1;
669     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
670     int              vdwioffset2;
671     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
672     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
673     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
674     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
675     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
676     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
677     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
678     real             *charge;
679     int              nvdwtype;
680     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
681     int              *vdwtype;
682     real             *vdwparam;
683     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
684     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
685     __m128i          ewitab;
686     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
687     real             *ewtab;
688     __m128           dummy_mask,cutoff_mask;
689     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
690     __m128           one     = _mm_set1_ps(1.0);
691     __m128           two     = _mm_set1_ps(2.0);
692     x                = xx[0];
693     f                = ff[0];
694
695     nri              = nlist->nri;
696     iinr             = nlist->iinr;
697     jindex           = nlist->jindex;
698     jjnr             = nlist->jjnr;
699     shiftidx         = nlist->shift;
700     gid              = nlist->gid;
701     shiftvec         = fr->shift_vec[0];
702     fshift           = fr->fshift[0];
703     facel            = _mm_set1_ps(fr->epsfac);
704     charge           = mdatoms->chargeA;
705     nvdwtype         = fr->ntype;
706     vdwparam         = fr->nbfp;
707     vdwtype          = mdatoms->typeA;
708
709     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
710     ewtab            = fr->ic->tabq_coul_F;
711     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
712     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
713
714     /* Setup water-specific parameters */
715     inr              = nlist->iinr[0];
716     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
717     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
718     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
719     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
720
721     /* Avoid stupid compiler warnings */
722     jnrA = jnrB = jnrC = jnrD = 0;
723     j_coord_offsetA = 0;
724     j_coord_offsetB = 0;
725     j_coord_offsetC = 0;
726     j_coord_offsetD = 0;
727
728     outeriter        = 0;
729     inneriter        = 0;
730
731     for(iidx=0;iidx<4*DIM;iidx++)
732     {
733         scratch[iidx] = 0.0;
734     }
735
736     /* Start outer loop over neighborlists */
737     for(iidx=0; iidx<nri; iidx++)
738     {
739         /* Load shift vector for this list */
740         i_shift_offset   = DIM*shiftidx[iidx];
741
742         /* Load limits for loop over neighbors */
743         j_index_start    = jindex[iidx];
744         j_index_end      = jindex[iidx+1];
745
746         /* Get outer coordinate index */
747         inr              = iinr[iidx];
748         i_coord_offset   = DIM*inr;
749
750         /* Load i particle coords and add shift vector */
751         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
752                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
753
754         fix0             = _mm_setzero_ps();
755         fiy0             = _mm_setzero_ps();
756         fiz0             = _mm_setzero_ps();
757         fix1             = _mm_setzero_ps();
758         fiy1             = _mm_setzero_ps();
759         fiz1             = _mm_setzero_ps();
760         fix2             = _mm_setzero_ps();
761         fiy2             = _mm_setzero_ps();
762         fiz2             = _mm_setzero_ps();
763
764         /* Start inner kernel loop */
765         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
766         {
767
768             /* Get j neighbor index, and coordinate index */
769             jnrA             = jjnr[jidx];
770             jnrB             = jjnr[jidx+1];
771             jnrC             = jjnr[jidx+2];
772             jnrD             = jjnr[jidx+3];
773             j_coord_offsetA  = DIM*jnrA;
774             j_coord_offsetB  = DIM*jnrB;
775             j_coord_offsetC  = DIM*jnrC;
776             j_coord_offsetD  = DIM*jnrD;
777
778             /* load j atom coordinates */
779             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
780                                               x+j_coord_offsetC,x+j_coord_offsetD,
781                                               &jx0,&jy0,&jz0);
782
783             /* Calculate displacement vector */
784             dx00             = _mm_sub_ps(ix0,jx0);
785             dy00             = _mm_sub_ps(iy0,jy0);
786             dz00             = _mm_sub_ps(iz0,jz0);
787             dx10             = _mm_sub_ps(ix1,jx0);
788             dy10             = _mm_sub_ps(iy1,jy0);
789             dz10             = _mm_sub_ps(iz1,jz0);
790             dx20             = _mm_sub_ps(ix2,jx0);
791             dy20             = _mm_sub_ps(iy2,jy0);
792             dz20             = _mm_sub_ps(iz2,jz0);
793
794             /* Calculate squared distance and things based on it */
795             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
796             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
797             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
798
799             rinv00           = gmx_mm_invsqrt_ps(rsq00);
800             rinv10           = gmx_mm_invsqrt_ps(rsq10);
801             rinv20           = gmx_mm_invsqrt_ps(rsq20);
802
803             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
804             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
805             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
806
807             /* Load parameters for j particles */
808             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
809                                                               charge+jnrC+0,charge+jnrD+0);
810             vdwjidx0A        = 2*vdwtype[jnrA+0];
811             vdwjidx0B        = 2*vdwtype[jnrB+0];
812             vdwjidx0C        = 2*vdwtype[jnrC+0];
813             vdwjidx0D        = 2*vdwtype[jnrD+0];
814
815             /**************************
816              * CALCULATE INTERACTIONS *
817              **************************/
818
819             r00              = _mm_mul_ps(rsq00,rinv00);
820
821             /* Compute parameters for interactions between i and j atoms */
822             qq00             = _mm_mul_ps(iq0,jq0);
823             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
824                                          vdwparam+vdwioffset0+vdwjidx0B,
825                                          vdwparam+vdwioffset0+vdwjidx0C,
826                                          vdwparam+vdwioffset0+vdwjidx0D,
827                                          &c6_00,&c12_00);
828
829             /* EWALD ELECTROSTATICS */
830
831             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
832             ewrt             = _mm_mul_ps(r00,ewtabscale);
833             ewitab           = _mm_cvttps_epi32(ewrt);
834             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
835             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
836                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
837                                          &ewtabF,&ewtabFn);
838             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
839             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
840
841             /* LENNARD-JONES DISPERSION/REPULSION */
842
843             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
844             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
845
846             fscal            = _mm_add_ps(felec,fvdw);
847
848             /* Calculate temporary vectorial force */
849             tx               = _mm_mul_ps(fscal,dx00);
850             ty               = _mm_mul_ps(fscal,dy00);
851             tz               = _mm_mul_ps(fscal,dz00);
852
853             /* Update vectorial force */
854             fix0             = _mm_add_ps(fix0,tx);
855             fiy0             = _mm_add_ps(fiy0,ty);
856             fiz0             = _mm_add_ps(fiz0,tz);
857
858             fjptrA             = f+j_coord_offsetA;
859             fjptrB             = f+j_coord_offsetB;
860             fjptrC             = f+j_coord_offsetC;
861             fjptrD             = f+j_coord_offsetD;
862             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
863
864             /**************************
865              * CALCULATE INTERACTIONS *
866              **************************/
867
868             r10              = _mm_mul_ps(rsq10,rinv10);
869
870             /* Compute parameters for interactions between i and j atoms */
871             qq10             = _mm_mul_ps(iq1,jq0);
872
873             /* EWALD ELECTROSTATICS */
874
875             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
876             ewrt             = _mm_mul_ps(r10,ewtabscale);
877             ewitab           = _mm_cvttps_epi32(ewrt);
878             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
879             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
880                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
881                                          &ewtabF,&ewtabFn);
882             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
883             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
884
885             fscal            = felec;
886
887             /* Calculate temporary vectorial force */
888             tx               = _mm_mul_ps(fscal,dx10);
889             ty               = _mm_mul_ps(fscal,dy10);
890             tz               = _mm_mul_ps(fscal,dz10);
891
892             /* Update vectorial force */
893             fix1             = _mm_add_ps(fix1,tx);
894             fiy1             = _mm_add_ps(fiy1,ty);
895             fiz1             = _mm_add_ps(fiz1,tz);
896
897             fjptrA             = f+j_coord_offsetA;
898             fjptrB             = f+j_coord_offsetB;
899             fjptrC             = f+j_coord_offsetC;
900             fjptrD             = f+j_coord_offsetD;
901             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
902
903             /**************************
904              * CALCULATE INTERACTIONS *
905              **************************/
906
907             r20              = _mm_mul_ps(rsq20,rinv20);
908
909             /* Compute parameters for interactions between i and j atoms */
910             qq20             = _mm_mul_ps(iq2,jq0);
911
912             /* EWALD ELECTROSTATICS */
913
914             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
915             ewrt             = _mm_mul_ps(r20,ewtabscale);
916             ewitab           = _mm_cvttps_epi32(ewrt);
917             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
918             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
919                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
920                                          &ewtabF,&ewtabFn);
921             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
922             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
923
924             fscal            = felec;
925
926             /* Calculate temporary vectorial force */
927             tx               = _mm_mul_ps(fscal,dx20);
928             ty               = _mm_mul_ps(fscal,dy20);
929             tz               = _mm_mul_ps(fscal,dz20);
930
931             /* Update vectorial force */
932             fix2             = _mm_add_ps(fix2,tx);
933             fiy2             = _mm_add_ps(fiy2,ty);
934             fiz2             = _mm_add_ps(fiz2,tz);
935
936             fjptrA             = f+j_coord_offsetA;
937             fjptrB             = f+j_coord_offsetB;
938             fjptrC             = f+j_coord_offsetC;
939             fjptrD             = f+j_coord_offsetD;
940             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
941
942             /* Inner loop uses 115 flops */
943         }
944
945         if(jidx<j_index_end)
946         {
947
948             /* Get j neighbor index, and coordinate index */
949             jnrlistA         = jjnr[jidx];
950             jnrlistB         = jjnr[jidx+1];
951             jnrlistC         = jjnr[jidx+2];
952             jnrlistD         = jjnr[jidx+3];
953             /* Sign of each element will be negative for non-real atoms.
954              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
955              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
956              */
957             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
958             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
959             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
960             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
961             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
962             j_coord_offsetA  = DIM*jnrA;
963             j_coord_offsetB  = DIM*jnrB;
964             j_coord_offsetC  = DIM*jnrC;
965             j_coord_offsetD  = DIM*jnrD;
966
967             /* load j atom coordinates */
968             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
969                                               x+j_coord_offsetC,x+j_coord_offsetD,
970                                               &jx0,&jy0,&jz0);
971
972             /* Calculate displacement vector */
973             dx00             = _mm_sub_ps(ix0,jx0);
974             dy00             = _mm_sub_ps(iy0,jy0);
975             dz00             = _mm_sub_ps(iz0,jz0);
976             dx10             = _mm_sub_ps(ix1,jx0);
977             dy10             = _mm_sub_ps(iy1,jy0);
978             dz10             = _mm_sub_ps(iz1,jz0);
979             dx20             = _mm_sub_ps(ix2,jx0);
980             dy20             = _mm_sub_ps(iy2,jy0);
981             dz20             = _mm_sub_ps(iz2,jz0);
982
983             /* Calculate squared distance and things based on it */
984             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
985             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
986             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
987
988             rinv00           = gmx_mm_invsqrt_ps(rsq00);
989             rinv10           = gmx_mm_invsqrt_ps(rsq10);
990             rinv20           = gmx_mm_invsqrt_ps(rsq20);
991
992             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
993             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
994             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
995
996             /* Load parameters for j particles */
997             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
998                                                               charge+jnrC+0,charge+jnrD+0);
999             vdwjidx0A        = 2*vdwtype[jnrA+0];
1000             vdwjidx0B        = 2*vdwtype[jnrB+0];
1001             vdwjidx0C        = 2*vdwtype[jnrC+0];
1002             vdwjidx0D        = 2*vdwtype[jnrD+0];
1003
1004             /**************************
1005              * CALCULATE INTERACTIONS *
1006              **************************/
1007
1008             r00              = _mm_mul_ps(rsq00,rinv00);
1009             r00              = _mm_andnot_ps(dummy_mask,r00);
1010
1011             /* Compute parameters for interactions between i and j atoms */
1012             qq00             = _mm_mul_ps(iq0,jq0);
1013             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1014                                          vdwparam+vdwioffset0+vdwjidx0B,
1015                                          vdwparam+vdwioffset0+vdwjidx0C,
1016                                          vdwparam+vdwioffset0+vdwjidx0D,
1017                                          &c6_00,&c12_00);
1018
1019             /* EWALD ELECTROSTATICS */
1020
1021             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1022             ewrt             = _mm_mul_ps(r00,ewtabscale);
1023             ewitab           = _mm_cvttps_epi32(ewrt);
1024             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1025             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1026                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1027                                          &ewtabF,&ewtabFn);
1028             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1029             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1030
1031             /* LENNARD-JONES DISPERSION/REPULSION */
1032
1033             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1034             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1035
1036             fscal            = _mm_add_ps(felec,fvdw);
1037
1038             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1039
1040             /* Calculate temporary vectorial force */
1041             tx               = _mm_mul_ps(fscal,dx00);
1042             ty               = _mm_mul_ps(fscal,dy00);
1043             tz               = _mm_mul_ps(fscal,dz00);
1044
1045             /* Update vectorial force */
1046             fix0             = _mm_add_ps(fix0,tx);
1047             fiy0             = _mm_add_ps(fiy0,ty);
1048             fiz0             = _mm_add_ps(fiz0,tz);
1049
1050             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1051             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1052             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1053             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1054             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             r10              = _mm_mul_ps(rsq10,rinv10);
1061             r10              = _mm_andnot_ps(dummy_mask,r10);
1062
1063             /* Compute parameters for interactions between i and j atoms */
1064             qq10             = _mm_mul_ps(iq1,jq0);
1065
1066             /* EWALD ELECTROSTATICS */
1067
1068             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1069             ewrt             = _mm_mul_ps(r10,ewtabscale);
1070             ewitab           = _mm_cvttps_epi32(ewrt);
1071             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1072             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1073                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1074                                          &ewtabF,&ewtabFn);
1075             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1076             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1077
1078             fscal            = felec;
1079
1080             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1081
1082             /* Calculate temporary vectorial force */
1083             tx               = _mm_mul_ps(fscal,dx10);
1084             ty               = _mm_mul_ps(fscal,dy10);
1085             tz               = _mm_mul_ps(fscal,dz10);
1086
1087             /* Update vectorial force */
1088             fix1             = _mm_add_ps(fix1,tx);
1089             fiy1             = _mm_add_ps(fiy1,ty);
1090             fiz1             = _mm_add_ps(fiz1,tz);
1091
1092             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1093             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1094             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1095             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1096             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1097
1098             /**************************
1099              * CALCULATE INTERACTIONS *
1100              **************************/
1101
1102             r20              = _mm_mul_ps(rsq20,rinv20);
1103             r20              = _mm_andnot_ps(dummy_mask,r20);
1104
1105             /* Compute parameters for interactions between i and j atoms */
1106             qq20             = _mm_mul_ps(iq2,jq0);
1107
1108             /* EWALD ELECTROSTATICS */
1109
1110             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1111             ewrt             = _mm_mul_ps(r20,ewtabscale);
1112             ewitab           = _mm_cvttps_epi32(ewrt);
1113             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1114             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1115                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1116                                          &ewtabF,&ewtabFn);
1117             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1118             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1119
1120             fscal            = felec;
1121
1122             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1123
1124             /* Calculate temporary vectorial force */
1125             tx               = _mm_mul_ps(fscal,dx20);
1126             ty               = _mm_mul_ps(fscal,dy20);
1127             tz               = _mm_mul_ps(fscal,dz20);
1128
1129             /* Update vectorial force */
1130             fix2             = _mm_add_ps(fix2,tx);
1131             fiy2             = _mm_add_ps(fiy2,ty);
1132             fiz2             = _mm_add_ps(fiz2,tz);
1133
1134             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1135             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1136             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1137             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1138             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1139
1140             /* Inner loop uses 118 flops */
1141         }
1142
1143         /* End of innermost loop */
1144
1145         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1146                                               f+i_coord_offset,fshift+i_shift_offset);
1147
1148         /* Increment number of inner iterations */
1149         inneriter                  += j_index_end - j_index_start;
1150
1151         /* Outer loop uses 18 flops */
1152     }
1153
1154     /* Increment number of outer iterations */
1155     outeriter        += nri;
1156
1157     /* Update outer/inner flops */
1158
1159     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1160 }