Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJ_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          ewitab;
105     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     __m128           dummy_mask,cutoff_mask;
108     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
109     __m128           one     = _mm_set1_ps(1.0);
110     __m128           two     = _mm_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_ps(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
136     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
137     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
172
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176         fix1             = _mm_setzero_ps();
177         fiy1             = _mm_setzero_ps();
178         fiz1             = _mm_setzero_ps();
179         fix2             = _mm_setzero_ps();
180         fiy2             = _mm_setzero_ps();
181         fiz2             = _mm_setzero_ps();
182
183         /* Reset potential sums */
184         velecsum         = _mm_setzero_ps();
185         vvdwsum          = _mm_setzero_ps();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198             j_coord_offsetC  = DIM*jnrC;
199             j_coord_offsetD  = DIM*jnrD;
200
201             /* load j atom coordinates */
202             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
203                                               x+j_coord_offsetC,x+j_coord_offsetD,
204                                               &jx0,&jy0,&jz0);
205
206             /* Calculate displacement vector */
207             dx00             = _mm_sub_ps(ix0,jx0);
208             dy00             = _mm_sub_ps(iy0,jy0);
209             dz00             = _mm_sub_ps(iz0,jz0);
210             dx10             = _mm_sub_ps(ix1,jx0);
211             dy10             = _mm_sub_ps(iy1,jy0);
212             dz10             = _mm_sub_ps(iz1,jz0);
213             dx20             = _mm_sub_ps(ix2,jx0);
214             dy20             = _mm_sub_ps(iy2,jy0);
215             dz20             = _mm_sub_ps(iz2,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
219             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
220             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
221
222             rinv00           = gmx_mm_invsqrt_ps(rsq00);
223             rinv10           = gmx_mm_invsqrt_ps(rsq10);
224             rinv20           = gmx_mm_invsqrt_ps(rsq20);
225
226             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
227             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
228             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
232                                                               charge+jnrC+0,charge+jnrD+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235             vdwjidx0C        = 2*vdwtype[jnrC+0];
236             vdwjidx0D        = 2*vdwtype[jnrD+0];
237
238             fjx0             = _mm_setzero_ps();
239             fjy0             = _mm_setzero_ps();
240             fjz0             = _mm_setzero_ps();
241
242             /**************************
243              * CALCULATE INTERACTIONS *
244              **************************/
245
246             r00              = _mm_mul_ps(rsq00,rinv00);
247
248             /* Compute parameters for interactions between i and j atoms */
249             qq00             = _mm_mul_ps(iq0,jq0);
250             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
251                                          vdwparam+vdwioffset0+vdwjidx0B,
252                                          vdwparam+vdwioffset0+vdwjidx0C,
253                                          vdwparam+vdwioffset0+vdwjidx0D,
254                                          &c6_00,&c12_00);
255
256             /* EWALD ELECTROSTATICS */
257
258             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
259             ewrt             = _mm_mul_ps(r00,ewtabscale);
260             ewitab           = _mm_cvttps_epi32(ewrt);
261             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
262             ewitab           = _mm_slli_epi32(ewitab,2);
263             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
264             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
265             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
266             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
267             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
268             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
269             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
270             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
271             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
272
273             /* LENNARD-JONES DISPERSION/REPULSION */
274
275             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
276             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
277             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
278             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
279             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_ps(velecsum,velec);
283             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
284
285             fscal            = _mm_add_ps(felec,fvdw);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm_mul_ps(fscal,dx00);
289             ty               = _mm_mul_ps(fscal,dy00);
290             tz               = _mm_mul_ps(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm_add_ps(fix0,tx);
294             fiy0             = _mm_add_ps(fiy0,ty);
295             fiz0             = _mm_add_ps(fiz0,tz);
296
297             fjx0             = _mm_add_ps(fjx0,tx);
298             fjy0             = _mm_add_ps(fjy0,ty);
299             fjz0             = _mm_add_ps(fjz0,tz);
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             r10              = _mm_mul_ps(rsq10,rinv10);
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq10             = _mm_mul_ps(iq1,jq0);
309
310             /* EWALD ELECTROSTATICS */
311
312             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
313             ewrt             = _mm_mul_ps(r10,ewtabscale);
314             ewitab           = _mm_cvttps_epi32(ewrt);
315             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
316             ewitab           = _mm_slli_epi32(ewitab,2);
317             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
318             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
319             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
320             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
321             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
322             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
323             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
324             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
325             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velecsum         = _mm_add_ps(velecsum,velec);
329
330             fscal            = felec;
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm_mul_ps(fscal,dx10);
334             ty               = _mm_mul_ps(fscal,dy10);
335             tz               = _mm_mul_ps(fscal,dz10);
336
337             /* Update vectorial force */
338             fix1             = _mm_add_ps(fix1,tx);
339             fiy1             = _mm_add_ps(fiy1,ty);
340             fiz1             = _mm_add_ps(fiz1,tz);
341
342             fjx0             = _mm_add_ps(fjx0,tx);
343             fjy0             = _mm_add_ps(fjy0,ty);
344             fjz0             = _mm_add_ps(fjz0,tz);
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             r20              = _mm_mul_ps(rsq20,rinv20);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq20             = _mm_mul_ps(iq2,jq0);
354
355             /* EWALD ELECTROSTATICS */
356
357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358             ewrt             = _mm_mul_ps(r20,ewtabscale);
359             ewitab           = _mm_cvttps_epi32(ewrt);
360             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
361             ewitab           = _mm_slli_epi32(ewitab,2);
362             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
363             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
364             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
365             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
366             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
367             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
368             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
369             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
370             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _mm_add_ps(velecsum,velec);
374
375             fscal            = felec;
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm_mul_ps(fscal,dx20);
379             ty               = _mm_mul_ps(fscal,dy20);
380             tz               = _mm_mul_ps(fscal,dz20);
381
382             /* Update vectorial force */
383             fix2             = _mm_add_ps(fix2,tx);
384             fiy2             = _mm_add_ps(fiy2,ty);
385             fiz2             = _mm_add_ps(fiz2,tz);
386
387             fjx0             = _mm_add_ps(fjx0,tx);
388             fjy0             = _mm_add_ps(fjy0,ty);
389             fjz0             = _mm_add_ps(fjz0,tz);
390
391             fjptrA             = f+j_coord_offsetA;
392             fjptrB             = f+j_coord_offsetB;
393             fjptrC             = f+j_coord_offsetC;
394             fjptrD             = f+j_coord_offsetD;
395
396             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
397
398             /* Inner loop uses 135 flops */
399         }
400
401         if(jidx<j_index_end)
402         {
403
404             /* Get j neighbor index, and coordinate index */
405             jnrlistA         = jjnr[jidx];
406             jnrlistB         = jjnr[jidx+1];
407             jnrlistC         = jjnr[jidx+2];
408             jnrlistD         = jjnr[jidx+3];
409             /* Sign of each element will be negative for non-real atoms.
410              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
411              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
412              */
413             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
414             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
415             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
416             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
417             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
418             j_coord_offsetA  = DIM*jnrA;
419             j_coord_offsetB  = DIM*jnrB;
420             j_coord_offsetC  = DIM*jnrC;
421             j_coord_offsetD  = DIM*jnrD;
422
423             /* load j atom coordinates */
424             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
425                                               x+j_coord_offsetC,x+j_coord_offsetD,
426                                               &jx0,&jy0,&jz0);
427
428             /* Calculate displacement vector */
429             dx00             = _mm_sub_ps(ix0,jx0);
430             dy00             = _mm_sub_ps(iy0,jy0);
431             dz00             = _mm_sub_ps(iz0,jz0);
432             dx10             = _mm_sub_ps(ix1,jx0);
433             dy10             = _mm_sub_ps(iy1,jy0);
434             dz10             = _mm_sub_ps(iz1,jz0);
435             dx20             = _mm_sub_ps(ix2,jx0);
436             dy20             = _mm_sub_ps(iy2,jy0);
437             dz20             = _mm_sub_ps(iz2,jz0);
438
439             /* Calculate squared distance and things based on it */
440             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
441             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
442             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
443
444             rinv00           = gmx_mm_invsqrt_ps(rsq00);
445             rinv10           = gmx_mm_invsqrt_ps(rsq10);
446             rinv20           = gmx_mm_invsqrt_ps(rsq20);
447
448             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
449             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
450             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
451
452             /* Load parameters for j particles */
453             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
454                                                               charge+jnrC+0,charge+jnrD+0);
455             vdwjidx0A        = 2*vdwtype[jnrA+0];
456             vdwjidx0B        = 2*vdwtype[jnrB+0];
457             vdwjidx0C        = 2*vdwtype[jnrC+0];
458             vdwjidx0D        = 2*vdwtype[jnrD+0];
459
460             fjx0             = _mm_setzero_ps();
461             fjy0             = _mm_setzero_ps();
462             fjz0             = _mm_setzero_ps();
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             r00              = _mm_mul_ps(rsq00,rinv00);
469             r00              = _mm_andnot_ps(dummy_mask,r00);
470
471             /* Compute parameters for interactions between i and j atoms */
472             qq00             = _mm_mul_ps(iq0,jq0);
473             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
474                                          vdwparam+vdwioffset0+vdwjidx0B,
475                                          vdwparam+vdwioffset0+vdwjidx0C,
476                                          vdwparam+vdwioffset0+vdwjidx0D,
477                                          &c6_00,&c12_00);
478
479             /* EWALD ELECTROSTATICS */
480
481             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
482             ewrt             = _mm_mul_ps(r00,ewtabscale);
483             ewitab           = _mm_cvttps_epi32(ewrt);
484             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
485             ewitab           = _mm_slli_epi32(ewitab,2);
486             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
487             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
488             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
489             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
490             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
491             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
492             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
493             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
494             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
495
496             /* LENNARD-JONES DISPERSION/REPULSION */
497
498             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
499             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
500             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
501             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
502             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
503
504             /* Update potential sum for this i atom from the interaction with this j atom. */
505             velec            = _mm_andnot_ps(dummy_mask,velec);
506             velecsum         = _mm_add_ps(velecsum,velec);
507             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
508             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
509
510             fscal            = _mm_add_ps(felec,fvdw);
511
512             fscal            = _mm_andnot_ps(dummy_mask,fscal);
513
514             /* Calculate temporary vectorial force */
515             tx               = _mm_mul_ps(fscal,dx00);
516             ty               = _mm_mul_ps(fscal,dy00);
517             tz               = _mm_mul_ps(fscal,dz00);
518
519             /* Update vectorial force */
520             fix0             = _mm_add_ps(fix0,tx);
521             fiy0             = _mm_add_ps(fiy0,ty);
522             fiz0             = _mm_add_ps(fiz0,tz);
523
524             fjx0             = _mm_add_ps(fjx0,tx);
525             fjy0             = _mm_add_ps(fjy0,ty);
526             fjz0             = _mm_add_ps(fjz0,tz);
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             r10              = _mm_mul_ps(rsq10,rinv10);
533             r10              = _mm_andnot_ps(dummy_mask,r10);
534
535             /* Compute parameters for interactions between i and j atoms */
536             qq10             = _mm_mul_ps(iq1,jq0);
537
538             /* EWALD ELECTROSTATICS */
539
540             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
541             ewrt             = _mm_mul_ps(r10,ewtabscale);
542             ewitab           = _mm_cvttps_epi32(ewrt);
543             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
544             ewitab           = _mm_slli_epi32(ewitab,2);
545             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
546             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
547             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
548             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
549             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
550             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
551             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
552             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
553             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
554
555             /* Update potential sum for this i atom from the interaction with this j atom. */
556             velec            = _mm_andnot_ps(dummy_mask,velec);
557             velecsum         = _mm_add_ps(velecsum,velec);
558
559             fscal            = felec;
560
561             fscal            = _mm_andnot_ps(dummy_mask,fscal);
562
563             /* Calculate temporary vectorial force */
564             tx               = _mm_mul_ps(fscal,dx10);
565             ty               = _mm_mul_ps(fscal,dy10);
566             tz               = _mm_mul_ps(fscal,dz10);
567
568             /* Update vectorial force */
569             fix1             = _mm_add_ps(fix1,tx);
570             fiy1             = _mm_add_ps(fiy1,ty);
571             fiz1             = _mm_add_ps(fiz1,tz);
572
573             fjx0             = _mm_add_ps(fjx0,tx);
574             fjy0             = _mm_add_ps(fjy0,ty);
575             fjz0             = _mm_add_ps(fjz0,tz);
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             r20              = _mm_mul_ps(rsq20,rinv20);
582             r20              = _mm_andnot_ps(dummy_mask,r20);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq20             = _mm_mul_ps(iq2,jq0);
586
587             /* EWALD ELECTROSTATICS */
588
589             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
590             ewrt             = _mm_mul_ps(r20,ewtabscale);
591             ewitab           = _mm_cvttps_epi32(ewrt);
592             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
593             ewitab           = _mm_slli_epi32(ewitab,2);
594             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
595             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
596             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
597             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
598             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
599             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
600             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
601             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
602             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
603
604             /* Update potential sum for this i atom from the interaction with this j atom. */
605             velec            = _mm_andnot_ps(dummy_mask,velec);
606             velecsum         = _mm_add_ps(velecsum,velec);
607
608             fscal            = felec;
609
610             fscal            = _mm_andnot_ps(dummy_mask,fscal);
611
612             /* Calculate temporary vectorial force */
613             tx               = _mm_mul_ps(fscal,dx20);
614             ty               = _mm_mul_ps(fscal,dy20);
615             tz               = _mm_mul_ps(fscal,dz20);
616
617             /* Update vectorial force */
618             fix2             = _mm_add_ps(fix2,tx);
619             fiy2             = _mm_add_ps(fiy2,ty);
620             fiz2             = _mm_add_ps(fiz2,tz);
621
622             fjx0             = _mm_add_ps(fjx0,tx);
623             fjy0             = _mm_add_ps(fjy0,ty);
624             fjz0             = _mm_add_ps(fjz0,tz);
625
626             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
627             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
628             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
629             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
630
631             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
632
633             /* Inner loop uses 138 flops */
634         }
635
636         /* End of innermost loop */
637
638         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
639                                               f+i_coord_offset,fshift+i_shift_offset);
640
641         ggid                        = gid[iidx];
642         /* Update potential energies */
643         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
644         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
645
646         /* Increment number of inner iterations */
647         inneriter                  += j_index_end - j_index_start;
648
649         /* Outer loop uses 20 flops */
650     }
651
652     /* Increment number of outer iterations */
653     outeriter        += nri;
654
655     /* Update outer/inner flops */
656
657     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*138);
658 }
659 /*
660  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse4_1_single
661  * Electrostatics interaction: Ewald
662  * VdW interaction:            LennardJones
663  * Geometry:                   Water3-Particle
664  * Calculate force/pot:        Force
665  */
666 void
667 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse4_1_single
668                     (t_nblist                    * gmx_restrict       nlist,
669                      rvec                        * gmx_restrict          xx,
670                      rvec                        * gmx_restrict          ff,
671                      t_forcerec                  * gmx_restrict          fr,
672                      t_mdatoms                   * gmx_restrict     mdatoms,
673                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
674                      t_nrnb                      * gmx_restrict        nrnb)
675 {
676     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
677      * just 0 for non-waters.
678      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
679      * jnr indices corresponding to data put in the four positions in the SIMD register.
680      */
681     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
682     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
683     int              jnrA,jnrB,jnrC,jnrD;
684     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
685     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
686     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
687     real             rcutoff_scalar;
688     real             *shiftvec,*fshift,*x,*f;
689     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
690     real             scratch[4*DIM];
691     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
692     int              vdwioffset0;
693     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
694     int              vdwioffset1;
695     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
696     int              vdwioffset2;
697     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
698     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
699     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
700     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
701     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
702     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
703     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
704     real             *charge;
705     int              nvdwtype;
706     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
707     int              *vdwtype;
708     real             *vdwparam;
709     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
710     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
711     __m128i          ewitab;
712     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
713     real             *ewtab;
714     __m128           dummy_mask,cutoff_mask;
715     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
716     __m128           one     = _mm_set1_ps(1.0);
717     __m128           two     = _mm_set1_ps(2.0);
718     x                = xx[0];
719     f                = ff[0];
720
721     nri              = nlist->nri;
722     iinr             = nlist->iinr;
723     jindex           = nlist->jindex;
724     jjnr             = nlist->jjnr;
725     shiftidx         = nlist->shift;
726     gid              = nlist->gid;
727     shiftvec         = fr->shift_vec[0];
728     fshift           = fr->fshift[0];
729     facel            = _mm_set1_ps(fr->epsfac);
730     charge           = mdatoms->chargeA;
731     nvdwtype         = fr->ntype;
732     vdwparam         = fr->nbfp;
733     vdwtype          = mdatoms->typeA;
734
735     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
736     ewtab            = fr->ic->tabq_coul_F;
737     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
738     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
739
740     /* Setup water-specific parameters */
741     inr              = nlist->iinr[0];
742     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
743     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
744     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
745     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
746
747     /* Avoid stupid compiler warnings */
748     jnrA = jnrB = jnrC = jnrD = 0;
749     j_coord_offsetA = 0;
750     j_coord_offsetB = 0;
751     j_coord_offsetC = 0;
752     j_coord_offsetD = 0;
753
754     outeriter        = 0;
755     inneriter        = 0;
756
757     for(iidx=0;iidx<4*DIM;iidx++)
758     {
759         scratch[iidx] = 0.0;
760     }
761
762     /* Start outer loop over neighborlists */
763     for(iidx=0; iidx<nri; iidx++)
764     {
765         /* Load shift vector for this list */
766         i_shift_offset   = DIM*shiftidx[iidx];
767
768         /* Load limits for loop over neighbors */
769         j_index_start    = jindex[iidx];
770         j_index_end      = jindex[iidx+1];
771
772         /* Get outer coordinate index */
773         inr              = iinr[iidx];
774         i_coord_offset   = DIM*inr;
775
776         /* Load i particle coords and add shift vector */
777         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
778                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
779
780         fix0             = _mm_setzero_ps();
781         fiy0             = _mm_setzero_ps();
782         fiz0             = _mm_setzero_ps();
783         fix1             = _mm_setzero_ps();
784         fiy1             = _mm_setzero_ps();
785         fiz1             = _mm_setzero_ps();
786         fix2             = _mm_setzero_ps();
787         fiy2             = _mm_setzero_ps();
788         fiz2             = _mm_setzero_ps();
789
790         /* Start inner kernel loop */
791         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
792         {
793
794             /* Get j neighbor index, and coordinate index */
795             jnrA             = jjnr[jidx];
796             jnrB             = jjnr[jidx+1];
797             jnrC             = jjnr[jidx+2];
798             jnrD             = jjnr[jidx+3];
799             j_coord_offsetA  = DIM*jnrA;
800             j_coord_offsetB  = DIM*jnrB;
801             j_coord_offsetC  = DIM*jnrC;
802             j_coord_offsetD  = DIM*jnrD;
803
804             /* load j atom coordinates */
805             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
806                                               x+j_coord_offsetC,x+j_coord_offsetD,
807                                               &jx0,&jy0,&jz0);
808
809             /* Calculate displacement vector */
810             dx00             = _mm_sub_ps(ix0,jx0);
811             dy00             = _mm_sub_ps(iy0,jy0);
812             dz00             = _mm_sub_ps(iz0,jz0);
813             dx10             = _mm_sub_ps(ix1,jx0);
814             dy10             = _mm_sub_ps(iy1,jy0);
815             dz10             = _mm_sub_ps(iz1,jz0);
816             dx20             = _mm_sub_ps(ix2,jx0);
817             dy20             = _mm_sub_ps(iy2,jy0);
818             dz20             = _mm_sub_ps(iz2,jz0);
819
820             /* Calculate squared distance and things based on it */
821             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
822             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
823             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
824
825             rinv00           = gmx_mm_invsqrt_ps(rsq00);
826             rinv10           = gmx_mm_invsqrt_ps(rsq10);
827             rinv20           = gmx_mm_invsqrt_ps(rsq20);
828
829             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
830             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
831             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
832
833             /* Load parameters for j particles */
834             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
835                                                               charge+jnrC+0,charge+jnrD+0);
836             vdwjidx0A        = 2*vdwtype[jnrA+0];
837             vdwjidx0B        = 2*vdwtype[jnrB+0];
838             vdwjidx0C        = 2*vdwtype[jnrC+0];
839             vdwjidx0D        = 2*vdwtype[jnrD+0];
840
841             fjx0             = _mm_setzero_ps();
842             fjy0             = _mm_setzero_ps();
843             fjz0             = _mm_setzero_ps();
844
845             /**************************
846              * CALCULATE INTERACTIONS *
847              **************************/
848
849             r00              = _mm_mul_ps(rsq00,rinv00);
850
851             /* Compute parameters for interactions between i and j atoms */
852             qq00             = _mm_mul_ps(iq0,jq0);
853             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
854                                          vdwparam+vdwioffset0+vdwjidx0B,
855                                          vdwparam+vdwioffset0+vdwjidx0C,
856                                          vdwparam+vdwioffset0+vdwjidx0D,
857                                          &c6_00,&c12_00);
858
859             /* EWALD ELECTROSTATICS */
860
861             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
862             ewrt             = _mm_mul_ps(r00,ewtabscale);
863             ewitab           = _mm_cvttps_epi32(ewrt);
864             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
865             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
866                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
867                                          &ewtabF,&ewtabFn);
868             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
869             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
870
871             /* LENNARD-JONES DISPERSION/REPULSION */
872
873             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
874             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
875
876             fscal            = _mm_add_ps(felec,fvdw);
877
878             /* Calculate temporary vectorial force */
879             tx               = _mm_mul_ps(fscal,dx00);
880             ty               = _mm_mul_ps(fscal,dy00);
881             tz               = _mm_mul_ps(fscal,dz00);
882
883             /* Update vectorial force */
884             fix0             = _mm_add_ps(fix0,tx);
885             fiy0             = _mm_add_ps(fiy0,ty);
886             fiz0             = _mm_add_ps(fiz0,tz);
887
888             fjx0             = _mm_add_ps(fjx0,tx);
889             fjy0             = _mm_add_ps(fjy0,ty);
890             fjz0             = _mm_add_ps(fjz0,tz);
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             r10              = _mm_mul_ps(rsq10,rinv10);
897
898             /* Compute parameters for interactions between i and j atoms */
899             qq10             = _mm_mul_ps(iq1,jq0);
900
901             /* EWALD ELECTROSTATICS */
902
903             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
904             ewrt             = _mm_mul_ps(r10,ewtabscale);
905             ewitab           = _mm_cvttps_epi32(ewrt);
906             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
907             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
908                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
909                                          &ewtabF,&ewtabFn);
910             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
911             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
912
913             fscal            = felec;
914
915             /* Calculate temporary vectorial force */
916             tx               = _mm_mul_ps(fscal,dx10);
917             ty               = _mm_mul_ps(fscal,dy10);
918             tz               = _mm_mul_ps(fscal,dz10);
919
920             /* Update vectorial force */
921             fix1             = _mm_add_ps(fix1,tx);
922             fiy1             = _mm_add_ps(fiy1,ty);
923             fiz1             = _mm_add_ps(fiz1,tz);
924
925             fjx0             = _mm_add_ps(fjx0,tx);
926             fjy0             = _mm_add_ps(fjy0,ty);
927             fjz0             = _mm_add_ps(fjz0,tz);
928
929             /**************************
930              * CALCULATE INTERACTIONS *
931              **************************/
932
933             r20              = _mm_mul_ps(rsq20,rinv20);
934
935             /* Compute parameters for interactions between i and j atoms */
936             qq20             = _mm_mul_ps(iq2,jq0);
937
938             /* EWALD ELECTROSTATICS */
939
940             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
941             ewrt             = _mm_mul_ps(r20,ewtabscale);
942             ewitab           = _mm_cvttps_epi32(ewrt);
943             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
944             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
945                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
946                                          &ewtabF,&ewtabFn);
947             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
948             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
949
950             fscal            = felec;
951
952             /* Calculate temporary vectorial force */
953             tx               = _mm_mul_ps(fscal,dx20);
954             ty               = _mm_mul_ps(fscal,dy20);
955             tz               = _mm_mul_ps(fscal,dz20);
956
957             /* Update vectorial force */
958             fix2             = _mm_add_ps(fix2,tx);
959             fiy2             = _mm_add_ps(fiy2,ty);
960             fiz2             = _mm_add_ps(fiz2,tz);
961
962             fjx0             = _mm_add_ps(fjx0,tx);
963             fjy0             = _mm_add_ps(fjy0,ty);
964             fjz0             = _mm_add_ps(fjz0,tz);
965
966             fjptrA             = f+j_coord_offsetA;
967             fjptrB             = f+j_coord_offsetB;
968             fjptrC             = f+j_coord_offsetC;
969             fjptrD             = f+j_coord_offsetD;
970
971             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
972
973             /* Inner loop uses 115 flops */
974         }
975
976         if(jidx<j_index_end)
977         {
978
979             /* Get j neighbor index, and coordinate index */
980             jnrlistA         = jjnr[jidx];
981             jnrlistB         = jjnr[jidx+1];
982             jnrlistC         = jjnr[jidx+2];
983             jnrlistD         = jjnr[jidx+3];
984             /* Sign of each element will be negative for non-real atoms.
985              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
986              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
987              */
988             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
989             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
990             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
991             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
992             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
993             j_coord_offsetA  = DIM*jnrA;
994             j_coord_offsetB  = DIM*jnrB;
995             j_coord_offsetC  = DIM*jnrC;
996             j_coord_offsetD  = DIM*jnrD;
997
998             /* load j atom coordinates */
999             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1000                                               x+j_coord_offsetC,x+j_coord_offsetD,
1001                                               &jx0,&jy0,&jz0);
1002
1003             /* Calculate displacement vector */
1004             dx00             = _mm_sub_ps(ix0,jx0);
1005             dy00             = _mm_sub_ps(iy0,jy0);
1006             dz00             = _mm_sub_ps(iz0,jz0);
1007             dx10             = _mm_sub_ps(ix1,jx0);
1008             dy10             = _mm_sub_ps(iy1,jy0);
1009             dz10             = _mm_sub_ps(iz1,jz0);
1010             dx20             = _mm_sub_ps(ix2,jx0);
1011             dy20             = _mm_sub_ps(iy2,jy0);
1012             dz20             = _mm_sub_ps(iz2,jz0);
1013
1014             /* Calculate squared distance and things based on it */
1015             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1016             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1017             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1018
1019             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1020             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1021             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1022
1023             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1024             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1025             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1026
1027             /* Load parameters for j particles */
1028             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1029                                                               charge+jnrC+0,charge+jnrD+0);
1030             vdwjidx0A        = 2*vdwtype[jnrA+0];
1031             vdwjidx0B        = 2*vdwtype[jnrB+0];
1032             vdwjidx0C        = 2*vdwtype[jnrC+0];
1033             vdwjidx0D        = 2*vdwtype[jnrD+0];
1034
1035             fjx0             = _mm_setzero_ps();
1036             fjy0             = _mm_setzero_ps();
1037             fjz0             = _mm_setzero_ps();
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             r00              = _mm_mul_ps(rsq00,rinv00);
1044             r00              = _mm_andnot_ps(dummy_mask,r00);
1045
1046             /* Compute parameters for interactions between i and j atoms */
1047             qq00             = _mm_mul_ps(iq0,jq0);
1048             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1049                                          vdwparam+vdwioffset0+vdwjidx0B,
1050                                          vdwparam+vdwioffset0+vdwjidx0C,
1051                                          vdwparam+vdwioffset0+vdwjidx0D,
1052                                          &c6_00,&c12_00);
1053
1054             /* EWALD ELECTROSTATICS */
1055
1056             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1057             ewrt             = _mm_mul_ps(r00,ewtabscale);
1058             ewitab           = _mm_cvttps_epi32(ewrt);
1059             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1060             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1061                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1062                                          &ewtabF,&ewtabFn);
1063             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1064             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1065
1066             /* LENNARD-JONES DISPERSION/REPULSION */
1067
1068             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1069             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1070
1071             fscal            = _mm_add_ps(felec,fvdw);
1072
1073             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1074
1075             /* Calculate temporary vectorial force */
1076             tx               = _mm_mul_ps(fscal,dx00);
1077             ty               = _mm_mul_ps(fscal,dy00);
1078             tz               = _mm_mul_ps(fscal,dz00);
1079
1080             /* Update vectorial force */
1081             fix0             = _mm_add_ps(fix0,tx);
1082             fiy0             = _mm_add_ps(fiy0,ty);
1083             fiz0             = _mm_add_ps(fiz0,tz);
1084
1085             fjx0             = _mm_add_ps(fjx0,tx);
1086             fjy0             = _mm_add_ps(fjy0,ty);
1087             fjz0             = _mm_add_ps(fjz0,tz);
1088
1089             /**************************
1090              * CALCULATE INTERACTIONS *
1091              **************************/
1092
1093             r10              = _mm_mul_ps(rsq10,rinv10);
1094             r10              = _mm_andnot_ps(dummy_mask,r10);
1095
1096             /* Compute parameters for interactions between i and j atoms */
1097             qq10             = _mm_mul_ps(iq1,jq0);
1098
1099             /* EWALD ELECTROSTATICS */
1100
1101             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1102             ewrt             = _mm_mul_ps(r10,ewtabscale);
1103             ewitab           = _mm_cvttps_epi32(ewrt);
1104             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1105             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1106                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1107                                          &ewtabF,&ewtabFn);
1108             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1109             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1110
1111             fscal            = felec;
1112
1113             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1114
1115             /* Calculate temporary vectorial force */
1116             tx               = _mm_mul_ps(fscal,dx10);
1117             ty               = _mm_mul_ps(fscal,dy10);
1118             tz               = _mm_mul_ps(fscal,dz10);
1119
1120             /* Update vectorial force */
1121             fix1             = _mm_add_ps(fix1,tx);
1122             fiy1             = _mm_add_ps(fiy1,ty);
1123             fiz1             = _mm_add_ps(fiz1,tz);
1124
1125             fjx0             = _mm_add_ps(fjx0,tx);
1126             fjy0             = _mm_add_ps(fjy0,ty);
1127             fjz0             = _mm_add_ps(fjz0,tz);
1128
1129             /**************************
1130              * CALCULATE INTERACTIONS *
1131              **************************/
1132
1133             r20              = _mm_mul_ps(rsq20,rinv20);
1134             r20              = _mm_andnot_ps(dummy_mask,r20);
1135
1136             /* Compute parameters for interactions between i and j atoms */
1137             qq20             = _mm_mul_ps(iq2,jq0);
1138
1139             /* EWALD ELECTROSTATICS */
1140
1141             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1142             ewrt             = _mm_mul_ps(r20,ewtabscale);
1143             ewitab           = _mm_cvttps_epi32(ewrt);
1144             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1145             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1146                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1147                                          &ewtabF,&ewtabFn);
1148             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1149             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1150
1151             fscal            = felec;
1152
1153             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1154
1155             /* Calculate temporary vectorial force */
1156             tx               = _mm_mul_ps(fscal,dx20);
1157             ty               = _mm_mul_ps(fscal,dy20);
1158             tz               = _mm_mul_ps(fscal,dz20);
1159
1160             /* Update vectorial force */
1161             fix2             = _mm_add_ps(fix2,tx);
1162             fiy2             = _mm_add_ps(fiy2,ty);
1163             fiz2             = _mm_add_ps(fiz2,tz);
1164
1165             fjx0             = _mm_add_ps(fjx0,tx);
1166             fjy0             = _mm_add_ps(fjy0,ty);
1167             fjz0             = _mm_add_ps(fjz0,tz);
1168
1169             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1170             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1171             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1172             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1173
1174             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1175
1176             /* Inner loop uses 118 flops */
1177         }
1178
1179         /* End of innermost loop */
1180
1181         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1182                                               f+i_coord_offset,fshift+i_shift_offset);
1183
1184         /* Increment number of inner iterations */
1185         inneriter                  += j_index_end - j_index_start;
1186
1187         /* Outer loop uses 18 flops */
1188     }
1189
1190     /* Increment number of outer iterations */
1191     outeriter        += nri;
1192
1193     /* Update outer/inner flops */
1194
1195     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1196 }