Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJ_GeomP1P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128i          ewitab;
83     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
84     real             *ewtab;
85     __m128           dummy_mask,cutoff_mask;
86     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
87     __m128           one     = _mm_set1_ps(1.0);
88     __m128           two     = _mm_set1_ps(2.0);
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     facel            = _mm_set1_ps(fr->epsfac);
101     charge           = mdatoms->chargeA;
102     nvdwtype         = fr->ntype;
103     vdwparam         = fr->nbfp;
104     vdwtype          = mdatoms->typeA;
105
106     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
107     ewtab            = fr->ic->tabq_coul_FDV0;
108     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
109     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = jnrC = jnrD = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115     j_coord_offsetC = 0;
116     j_coord_offsetD = 0;
117
118     outeriter        = 0;
119     inneriter        = 0;
120
121     for(iidx=0;iidx<4*DIM;iidx++)
122     {
123         scratch[iidx] = 0.0;
124     }
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131
132         /* Load limits for loop over neighbors */
133         j_index_start    = jindex[iidx];
134         j_index_end      = jindex[iidx+1];
135
136         /* Get outer coordinate index */
137         inr              = iinr[iidx];
138         i_coord_offset   = DIM*inr;
139
140         /* Load i particle coords and add shift vector */
141         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
142
143         fix0             = _mm_setzero_ps();
144         fiy0             = _mm_setzero_ps();
145         fiz0             = _mm_setzero_ps();
146
147         /* Load parameters for i particles */
148         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
149         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151         /* Reset potential sums */
152         velecsum         = _mm_setzero_ps();
153         vvdwsum          = _mm_setzero_ps();
154
155         /* Start inner kernel loop */
156         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
157         {
158
159             /* Get j neighbor index, and coordinate index */
160             jnrA             = jjnr[jidx];
161             jnrB             = jjnr[jidx+1];
162             jnrC             = jjnr[jidx+2];
163             jnrD             = jjnr[jidx+3];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166             j_coord_offsetC  = DIM*jnrC;
167             j_coord_offsetD  = DIM*jnrD;
168
169             /* load j atom coordinates */
170             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               x+j_coord_offsetC,x+j_coord_offsetD,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_ps(ix0,jx0);
176             dy00             = _mm_sub_ps(iy0,jy0);
177             dz00             = _mm_sub_ps(iz0,jz0);
178
179             /* Calculate squared distance and things based on it */
180             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
181
182             rinv00           = gmx_mm_invsqrt_ps(rsq00);
183
184             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
185
186             /* Load parameters for j particles */
187             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
188                                                               charge+jnrC+0,charge+jnrD+0);
189             vdwjidx0A        = 2*vdwtype[jnrA+0];
190             vdwjidx0B        = 2*vdwtype[jnrB+0];
191             vdwjidx0C        = 2*vdwtype[jnrC+0];
192             vdwjidx0D        = 2*vdwtype[jnrD+0];
193
194             /**************************
195              * CALCULATE INTERACTIONS *
196              **************************/
197
198             r00              = _mm_mul_ps(rsq00,rinv00);
199
200             /* Compute parameters for interactions between i and j atoms */
201             qq00             = _mm_mul_ps(iq0,jq0);
202             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
203                                          vdwparam+vdwioffset0+vdwjidx0B,
204                                          vdwparam+vdwioffset0+vdwjidx0C,
205                                          vdwparam+vdwioffset0+vdwjidx0D,
206                                          &c6_00,&c12_00);
207
208             /* EWALD ELECTROSTATICS */
209
210             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
211             ewrt             = _mm_mul_ps(r00,ewtabscale);
212             ewitab           = _mm_cvttps_epi32(ewrt);
213             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
214             ewitab           = _mm_slli_epi32(ewitab,2);
215             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
216             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
217             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
218             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
219             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
220             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
221             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
222             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
223             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
224
225             /* LENNARD-JONES DISPERSION/REPULSION */
226
227             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
228             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
229             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
230             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
231             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
232
233             /* Update potential sum for this i atom from the interaction with this j atom. */
234             velecsum         = _mm_add_ps(velecsum,velec);
235             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
236
237             fscal            = _mm_add_ps(felec,fvdw);
238
239             /* Calculate temporary vectorial force */
240             tx               = _mm_mul_ps(fscal,dx00);
241             ty               = _mm_mul_ps(fscal,dy00);
242             tz               = _mm_mul_ps(fscal,dz00);
243
244             /* Update vectorial force */
245             fix0             = _mm_add_ps(fix0,tx);
246             fiy0             = _mm_add_ps(fiy0,ty);
247             fiz0             = _mm_add_ps(fiz0,tz);
248
249             fjptrA             = f+j_coord_offsetA;
250             fjptrB             = f+j_coord_offsetB;
251             fjptrC             = f+j_coord_offsetC;
252             fjptrD             = f+j_coord_offsetD;
253             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
254
255             /* Inner loop uses 53 flops */
256         }
257
258         if(jidx<j_index_end)
259         {
260
261             /* Get j neighbor index, and coordinate index */
262             jnrlistA         = jjnr[jidx];
263             jnrlistB         = jjnr[jidx+1];
264             jnrlistC         = jjnr[jidx+2];
265             jnrlistD         = jjnr[jidx+3];
266             /* Sign of each element will be negative for non-real atoms.
267              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
268              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
269              */
270             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
271             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
272             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
273             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
274             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
275             j_coord_offsetA  = DIM*jnrA;
276             j_coord_offsetB  = DIM*jnrB;
277             j_coord_offsetC  = DIM*jnrC;
278             j_coord_offsetD  = DIM*jnrD;
279
280             /* load j atom coordinates */
281             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
282                                               x+j_coord_offsetC,x+j_coord_offsetD,
283                                               &jx0,&jy0,&jz0);
284
285             /* Calculate displacement vector */
286             dx00             = _mm_sub_ps(ix0,jx0);
287             dy00             = _mm_sub_ps(iy0,jy0);
288             dz00             = _mm_sub_ps(iz0,jz0);
289
290             /* Calculate squared distance and things based on it */
291             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
292
293             rinv00           = gmx_mm_invsqrt_ps(rsq00);
294
295             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
296
297             /* Load parameters for j particles */
298             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
299                                                               charge+jnrC+0,charge+jnrD+0);
300             vdwjidx0A        = 2*vdwtype[jnrA+0];
301             vdwjidx0B        = 2*vdwtype[jnrB+0];
302             vdwjidx0C        = 2*vdwtype[jnrC+0];
303             vdwjidx0D        = 2*vdwtype[jnrD+0];
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             r00              = _mm_mul_ps(rsq00,rinv00);
310             r00              = _mm_andnot_ps(dummy_mask,r00);
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq00             = _mm_mul_ps(iq0,jq0);
314             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
315                                          vdwparam+vdwioffset0+vdwjidx0B,
316                                          vdwparam+vdwioffset0+vdwjidx0C,
317                                          vdwparam+vdwioffset0+vdwjidx0D,
318                                          &c6_00,&c12_00);
319
320             /* EWALD ELECTROSTATICS */
321
322             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
323             ewrt             = _mm_mul_ps(r00,ewtabscale);
324             ewitab           = _mm_cvttps_epi32(ewrt);
325             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
326             ewitab           = _mm_slli_epi32(ewitab,2);
327             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
328             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
329             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
330             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
331             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
332             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
333             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
334             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
335             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
336
337             /* LENNARD-JONES DISPERSION/REPULSION */
338
339             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
340             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
341             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
342             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
343             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm_andnot_ps(dummy_mask,velec);
347             velecsum         = _mm_add_ps(velecsum,velec);
348             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
349             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
350
351             fscal            = _mm_add_ps(felec,fvdw);
352
353             fscal            = _mm_andnot_ps(dummy_mask,fscal);
354
355             /* Calculate temporary vectorial force */
356             tx               = _mm_mul_ps(fscal,dx00);
357             ty               = _mm_mul_ps(fscal,dy00);
358             tz               = _mm_mul_ps(fscal,dz00);
359
360             /* Update vectorial force */
361             fix0             = _mm_add_ps(fix0,tx);
362             fiy0             = _mm_add_ps(fiy0,ty);
363             fiz0             = _mm_add_ps(fiz0,tz);
364
365             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
366             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
367             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
368             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
369             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
370
371             /* Inner loop uses 54 flops */
372         }
373
374         /* End of innermost loop */
375
376         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
377                                               f+i_coord_offset,fshift+i_shift_offset);
378
379         ggid                        = gid[iidx];
380         /* Update potential energies */
381         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
382         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
383
384         /* Increment number of inner iterations */
385         inneriter                  += j_index_end - j_index_start;
386
387         /* Outer loop uses 9 flops */
388     }
389
390     /* Increment number of outer iterations */
391     outeriter        += nri;
392
393     /* Update outer/inner flops */
394
395     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
396 }
397 /*
398  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_sse4_1_single
399  * Electrostatics interaction: Ewald
400  * VdW interaction:            LennardJones
401  * Geometry:                   Particle-Particle
402  * Calculate force/pot:        Force
403  */
404 void
405 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_sse4_1_single
406                     (t_nblist * gmx_restrict                nlist,
407                      rvec * gmx_restrict                    xx,
408                      rvec * gmx_restrict                    ff,
409                      t_forcerec * gmx_restrict              fr,
410                      t_mdatoms * gmx_restrict               mdatoms,
411                      nb_kernel_data_t * gmx_restrict        kernel_data,
412                      t_nrnb * gmx_restrict                  nrnb)
413 {
414     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
415      * just 0 for non-waters.
416      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
417      * jnr indices corresponding to data put in the four positions in the SIMD register.
418      */
419     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
420     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
421     int              jnrA,jnrB,jnrC,jnrD;
422     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
423     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
424     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
425     real             rcutoff_scalar;
426     real             *shiftvec,*fshift,*x,*f;
427     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
428     real             scratch[4*DIM];
429     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
430     int              vdwioffset0;
431     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
432     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
433     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
434     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
435     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
436     real             *charge;
437     int              nvdwtype;
438     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
439     int              *vdwtype;
440     real             *vdwparam;
441     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
442     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
443     __m128i          ewitab;
444     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
445     real             *ewtab;
446     __m128           dummy_mask,cutoff_mask;
447     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
448     __m128           one     = _mm_set1_ps(1.0);
449     __m128           two     = _mm_set1_ps(2.0);
450     x                = xx[0];
451     f                = ff[0];
452
453     nri              = nlist->nri;
454     iinr             = nlist->iinr;
455     jindex           = nlist->jindex;
456     jjnr             = nlist->jjnr;
457     shiftidx         = nlist->shift;
458     gid              = nlist->gid;
459     shiftvec         = fr->shift_vec[0];
460     fshift           = fr->fshift[0];
461     facel            = _mm_set1_ps(fr->epsfac);
462     charge           = mdatoms->chargeA;
463     nvdwtype         = fr->ntype;
464     vdwparam         = fr->nbfp;
465     vdwtype          = mdatoms->typeA;
466
467     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
468     ewtab            = fr->ic->tabq_coul_F;
469     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
470     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
471
472     /* Avoid stupid compiler warnings */
473     jnrA = jnrB = jnrC = jnrD = 0;
474     j_coord_offsetA = 0;
475     j_coord_offsetB = 0;
476     j_coord_offsetC = 0;
477     j_coord_offsetD = 0;
478
479     outeriter        = 0;
480     inneriter        = 0;
481
482     for(iidx=0;iidx<4*DIM;iidx++)
483     {
484         scratch[iidx] = 0.0;
485     }
486
487     /* Start outer loop over neighborlists */
488     for(iidx=0; iidx<nri; iidx++)
489     {
490         /* Load shift vector for this list */
491         i_shift_offset   = DIM*shiftidx[iidx];
492
493         /* Load limits for loop over neighbors */
494         j_index_start    = jindex[iidx];
495         j_index_end      = jindex[iidx+1];
496
497         /* Get outer coordinate index */
498         inr              = iinr[iidx];
499         i_coord_offset   = DIM*inr;
500
501         /* Load i particle coords and add shift vector */
502         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
503
504         fix0             = _mm_setzero_ps();
505         fiy0             = _mm_setzero_ps();
506         fiz0             = _mm_setzero_ps();
507
508         /* Load parameters for i particles */
509         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
510         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
511
512         /* Start inner kernel loop */
513         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
514         {
515
516             /* Get j neighbor index, and coordinate index */
517             jnrA             = jjnr[jidx];
518             jnrB             = jjnr[jidx+1];
519             jnrC             = jjnr[jidx+2];
520             jnrD             = jjnr[jidx+3];
521             j_coord_offsetA  = DIM*jnrA;
522             j_coord_offsetB  = DIM*jnrB;
523             j_coord_offsetC  = DIM*jnrC;
524             j_coord_offsetD  = DIM*jnrD;
525
526             /* load j atom coordinates */
527             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
528                                               x+j_coord_offsetC,x+j_coord_offsetD,
529                                               &jx0,&jy0,&jz0);
530
531             /* Calculate displacement vector */
532             dx00             = _mm_sub_ps(ix0,jx0);
533             dy00             = _mm_sub_ps(iy0,jy0);
534             dz00             = _mm_sub_ps(iz0,jz0);
535
536             /* Calculate squared distance and things based on it */
537             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
538
539             rinv00           = gmx_mm_invsqrt_ps(rsq00);
540
541             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
542
543             /* Load parameters for j particles */
544             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
545                                                               charge+jnrC+0,charge+jnrD+0);
546             vdwjidx0A        = 2*vdwtype[jnrA+0];
547             vdwjidx0B        = 2*vdwtype[jnrB+0];
548             vdwjidx0C        = 2*vdwtype[jnrC+0];
549             vdwjidx0D        = 2*vdwtype[jnrD+0];
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             r00              = _mm_mul_ps(rsq00,rinv00);
556
557             /* Compute parameters for interactions between i and j atoms */
558             qq00             = _mm_mul_ps(iq0,jq0);
559             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
560                                          vdwparam+vdwioffset0+vdwjidx0B,
561                                          vdwparam+vdwioffset0+vdwjidx0C,
562                                          vdwparam+vdwioffset0+vdwjidx0D,
563                                          &c6_00,&c12_00);
564
565             /* EWALD ELECTROSTATICS */
566
567             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
568             ewrt             = _mm_mul_ps(r00,ewtabscale);
569             ewitab           = _mm_cvttps_epi32(ewrt);
570             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
571             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
572                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
573                                          &ewtabF,&ewtabFn);
574             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
575             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
576
577             /* LENNARD-JONES DISPERSION/REPULSION */
578
579             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
580             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
581
582             fscal            = _mm_add_ps(felec,fvdw);
583
584             /* Calculate temporary vectorial force */
585             tx               = _mm_mul_ps(fscal,dx00);
586             ty               = _mm_mul_ps(fscal,dy00);
587             tz               = _mm_mul_ps(fscal,dz00);
588
589             /* Update vectorial force */
590             fix0             = _mm_add_ps(fix0,tx);
591             fiy0             = _mm_add_ps(fiy0,ty);
592             fiz0             = _mm_add_ps(fiz0,tz);
593
594             fjptrA             = f+j_coord_offsetA;
595             fjptrB             = f+j_coord_offsetB;
596             fjptrC             = f+j_coord_offsetC;
597             fjptrD             = f+j_coord_offsetD;
598             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
599
600             /* Inner loop uses 43 flops */
601         }
602
603         if(jidx<j_index_end)
604         {
605
606             /* Get j neighbor index, and coordinate index */
607             jnrlistA         = jjnr[jidx];
608             jnrlistB         = jjnr[jidx+1];
609             jnrlistC         = jjnr[jidx+2];
610             jnrlistD         = jjnr[jidx+3];
611             /* Sign of each element will be negative for non-real atoms.
612              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
613              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
614              */
615             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
616             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
617             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
618             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
619             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
620             j_coord_offsetA  = DIM*jnrA;
621             j_coord_offsetB  = DIM*jnrB;
622             j_coord_offsetC  = DIM*jnrC;
623             j_coord_offsetD  = DIM*jnrD;
624
625             /* load j atom coordinates */
626             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
627                                               x+j_coord_offsetC,x+j_coord_offsetD,
628                                               &jx0,&jy0,&jz0);
629
630             /* Calculate displacement vector */
631             dx00             = _mm_sub_ps(ix0,jx0);
632             dy00             = _mm_sub_ps(iy0,jy0);
633             dz00             = _mm_sub_ps(iz0,jz0);
634
635             /* Calculate squared distance and things based on it */
636             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
637
638             rinv00           = gmx_mm_invsqrt_ps(rsq00);
639
640             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
641
642             /* Load parameters for j particles */
643             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
644                                                               charge+jnrC+0,charge+jnrD+0);
645             vdwjidx0A        = 2*vdwtype[jnrA+0];
646             vdwjidx0B        = 2*vdwtype[jnrB+0];
647             vdwjidx0C        = 2*vdwtype[jnrC+0];
648             vdwjidx0D        = 2*vdwtype[jnrD+0];
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             r00              = _mm_mul_ps(rsq00,rinv00);
655             r00              = _mm_andnot_ps(dummy_mask,r00);
656
657             /* Compute parameters for interactions between i and j atoms */
658             qq00             = _mm_mul_ps(iq0,jq0);
659             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
660                                          vdwparam+vdwioffset0+vdwjidx0B,
661                                          vdwparam+vdwioffset0+vdwjidx0C,
662                                          vdwparam+vdwioffset0+vdwjidx0D,
663                                          &c6_00,&c12_00);
664
665             /* EWALD ELECTROSTATICS */
666
667             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
668             ewrt             = _mm_mul_ps(r00,ewtabscale);
669             ewitab           = _mm_cvttps_epi32(ewrt);
670             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
671             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
672                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
673                                          &ewtabF,&ewtabFn);
674             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
675             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
676
677             /* LENNARD-JONES DISPERSION/REPULSION */
678
679             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
680             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
681
682             fscal            = _mm_add_ps(felec,fvdw);
683
684             fscal            = _mm_andnot_ps(dummy_mask,fscal);
685
686             /* Calculate temporary vectorial force */
687             tx               = _mm_mul_ps(fscal,dx00);
688             ty               = _mm_mul_ps(fscal,dy00);
689             tz               = _mm_mul_ps(fscal,dz00);
690
691             /* Update vectorial force */
692             fix0             = _mm_add_ps(fix0,tx);
693             fiy0             = _mm_add_ps(fiy0,ty);
694             fiz0             = _mm_add_ps(fiz0,tz);
695
696             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
697             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
698             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
699             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
700             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
701
702             /* Inner loop uses 44 flops */
703         }
704
705         /* End of innermost loop */
706
707         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
708                                               f+i_coord_offset,fshift+i_shift_offset);
709
710         /* Increment number of inner iterations */
711         inneriter                  += j_index_end - j_index_start;
712
713         /* Outer loop uses 7 flops */
714     }
715
716     /* Increment number of outer iterations */
717     outeriter        += nri;
718
719     /* Update outer/inner flops */
720
721     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*44);
722 }