Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJEw_GeomW4W4_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4W4_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Water4
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW4W4_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
96     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
97     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
98     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
99     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
100     __m128           jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
101     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
102     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
103     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
104     __m128           dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
105     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
106     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
107     __m128           dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
108     __m128           dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
109     __m128           dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
110     __m128           dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
111     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
112     real             *charge;
113     int              nvdwtype;
114     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
115     int              *vdwtype;
116     real             *vdwparam;
117     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
118     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
119     __m128           c6grid_00;
120     __m128           c6grid_11;
121     __m128           c6grid_12;
122     __m128           c6grid_13;
123     __m128           c6grid_21;
124     __m128           c6grid_22;
125     __m128           c6grid_23;
126     __m128           c6grid_31;
127     __m128           c6grid_32;
128     __m128           c6grid_33;
129     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
130     real             *vdwgridparam;
131     __m128           one_half  = _mm_set1_ps(0.5);
132     __m128           minus_one = _mm_set1_ps(-1.0);
133     __m128i          ewitab;
134     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
135     real             *ewtab;
136     __m128           dummy_mask,cutoff_mask;
137     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
138     __m128           one     = _mm_set1_ps(1.0);
139     __m128           two     = _mm_set1_ps(2.0);
140     x                = xx[0];
141     f                = ff[0];
142
143     nri              = nlist->nri;
144     iinr             = nlist->iinr;
145     jindex           = nlist->jindex;
146     jjnr             = nlist->jjnr;
147     shiftidx         = nlist->shift;
148     gid              = nlist->gid;
149     shiftvec         = fr->shift_vec[0];
150     fshift           = fr->fshift[0];
151     facel            = _mm_set1_ps(fr->epsfac);
152     charge           = mdatoms->chargeA;
153     nvdwtype         = fr->ntype;
154     vdwparam         = fr->nbfp;
155     vdwtype          = mdatoms->typeA;
156     vdwgridparam     = fr->ljpme_c6grid;
157     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
158     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
159     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
160
161     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
162     ewtab            = fr->ic->tabq_coul_FDV0;
163     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
164     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
165
166     /* Setup water-specific parameters */
167     inr              = nlist->iinr[0];
168     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
169     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
170     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
171     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
172
173     jq1              = _mm_set1_ps(charge[inr+1]);
174     jq2              = _mm_set1_ps(charge[inr+2]);
175     jq3              = _mm_set1_ps(charge[inr+3]);
176     vdwjidx0A        = 2*vdwtype[inr+0];
177     c6_00            = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
178     c12_00           = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
179     c6grid_00        = _mm_set1_ps(vdwgridparam[vdwioffset0+vdwjidx0A]);
180     qq11             = _mm_mul_ps(iq1,jq1);
181     qq12             = _mm_mul_ps(iq1,jq2);
182     qq13             = _mm_mul_ps(iq1,jq3);
183     qq21             = _mm_mul_ps(iq2,jq1);
184     qq22             = _mm_mul_ps(iq2,jq2);
185     qq23             = _mm_mul_ps(iq2,jq3);
186     qq31             = _mm_mul_ps(iq3,jq1);
187     qq32             = _mm_mul_ps(iq3,jq2);
188     qq33             = _mm_mul_ps(iq3,jq3);
189
190     /* Avoid stupid compiler warnings */
191     jnrA = jnrB = jnrC = jnrD = 0;
192     j_coord_offsetA = 0;
193     j_coord_offsetB = 0;
194     j_coord_offsetC = 0;
195     j_coord_offsetD = 0;
196
197     outeriter        = 0;
198     inneriter        = 0;
199
200     for(iidx=0;iidx<4*DIM;iidx++)
201     {
202         scratch[iidx] = 0.0;
203     }
204
205     /* Start outer loop over neighborlists */
206     for(iidx=0; iidx<nri; iidx++)
207     {
208         /* Load shift vector for this list */
209         i_shift_offset   = DIM*shiftidx[iidx];
210
211         /* Load limits for loop over neighbors */
212         j_index_start    = jindex[iidx];
213         j_index_end      = jindex[iidx+1];
214
215         /* Get outer coordinate index */
216         inr              = iinr[iidx];
217         i_coord_offset   = DIM*inr;
218
219         /* Load i particle coords and add shift vector */
220         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
221                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
222
223         fix0             = _mm_setzero_ps();
224         fiy0             = _mm_setzero_ps();
225         fiz0             = _mm_setzero_ps();
226         fix1             = _mm_setzero_ps();
227         fiy1             = _mm_setzero_ps();
228         fiz1             = _mm_setzero_ps();
229         fix2             = _mm_setzero_ps();
230         fiy2             = _mm_setzero_ps();
231         fiz2             = _mm_setzero_ps();
232         fix3             = _mm_setzero_ps();
233         fiy3             = _mm_setzero_ps();
234         fiz3             = _mm_setzero_ps();
235
236         /* Reset potential sums */
237         velecsum         = _mm_setzero_ps();
238         vvdwsum          = _mm_setzero_ps();
239
240         /* Start inner kernel loop */
241         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
242         {
243
244             /* Get j neighbor index, and coordinate index */
245             jnrA             = jjnr[jidx];
246             jnrB             = jjnr[jidx+1];
247             jnrC             = jjnr[jidx+2];
248             jnrD             = jjnr[jidx+3];
249             j_coord_offsetA  = DIM*jnrA;
250             j_coord_offsetB  = DIM*jnrB;
251             j_coord_offsetC  = DIM*jnrC;
252             j_coord_offsetD  = DIM*jnrD;
253
254             /* load j atom coordinates */
255             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
256                                               x+j_coord_offsetC,x+j_coord_offsetD,
257                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
258                                               &jy2,&jz2,&jx3,&jy3,&jz3);
259
260             /* Calculate displacement vector */
261             dx00             = _mm_sub_ps(ix0,jx0);
262             dy00             = _mm_sub_ps(iy0,jy0);
263             dz00             = _mm_sub_ps(iz0,jz0);
264             dx11             = _mm_sub_ps(ix1,jx1);
265             dy11             = _mm_sub_ps(iy1,jy1);
266             dz11             = _mm_sub_ps(iz1,jz1);
267             dx12             = _mm_sub_ps(ix1,jx2);
268             dy12             = _mm_sub_ps(iy1,jy2);
269             dz12             = _mm_sub_ps(iz1,jz2);
270             dx13             = _mm_sub_ps(ix1,jx3);
271             dy13             = _mm_sub_ps(iy1,jy3);
272             dz13             = _mm_sub_ps(iz1,jz3);
273             dx21             = _mm_sub_ps(ix2,jx1);
274             dy21             = _mm_sub_ps(iy2,jy1);
275             dz21             = _mm_sub_ps(iz2,jz1);
276             dx22             = _mm_sub_ps(ix2,jx2);
277             dy22             = _mm_sub_ps(iy2,jy2);
278             dz22             = _mm_sub_ps(iz2,jz2);
279             dx23             = _mm_sub_ps(ix2,jx3);
280             dy23             = _mm_sub_ps(iy2,jy3);
281             dz23             = _mm_sub_ps(iz2,jz3);
282             dx31             = _mm_sub_ps(ix3,jx1);
283             dy31             = _mm_sub_ps(iy3,jy1);
284             dz31             = _mm_sub_ps(iz3,jz1);
285             dx32             = _mm_sub_ps(ix3,jx2);
286             dy32             = _mm_sub_ps(iy3,jy2);
287             dz32             = _mm_sub_ps(iz3,jz2);
288             dx33             = _mm_sub_ps(ix3,jx3);
289             dy33             = _mm_sub_ps(iy3,jy3);
290             dz33             = _mm_sub_ps(iz3,jz3);
291
292             /* Calculate squared distance and things based on it */
293             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
294             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
295             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
296             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
297             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
298             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
299             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
300             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
301             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
302             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
303
304             rinv00           = gmx_mm_invsqrt_ps(rsq00);
305             rinv11           = gmx_mm_invsqrt_ps(rsq11);
306             rinv12           = gmx_mm_invsqrt_ps(rsq12);
307             rinv13           = gmx_mm_invsqrt_ps(rsq13);
308             rinv21           = gmx_mm_invsqrt_ps(rsq21);
309             rinv22           = gmx_mm_invsqrt_ps(rsq22);
310             rinv23           = gmx_mm_invsqrt_ps(rsq23);
311             rinv31           = gmx_mm_invsqrt_ps(rsq31);
312             rinv32           = gmx_mm_invsqrt_ps(rsq32);
313             rinv33           = gmx_mm_invsqrt_ps(rsq33);
314
315             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
316             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
317             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
318             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
319             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
320             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
321             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
322             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
323             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
324             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
325
326             fjx0             = _mm_setzero_ps();
327             fjy0             = _mm_setzero_ps();
328             fjz0             = _mm_setzero_ps();
329             fjx1             = _mm_setzero_ps();
330             fjy1             = _mm_setzero_ps();
331             fjz1             = _mm_setzero_ps();
332             fjx2             = _mm_setzero_ps();
333             fjy2             = _mm_setzero_ps();
334             fjz2             = _mm_setzero_ps();
335             fjx3             = _mm_setzero_ps();
336             fjy3             = _mm_setzero_ps();
337             fjz3             = _mm_setzero_ps();
338
339             /**************************
340              * CALCULATE INTERACTIONS *
341              **************************/
342
343             r00              = _mm_mul_ps(rsq00,rinv00);
344
345             /* Analytical LJ-PME */
346             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
347             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
348             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
349             exponent         = gmx_simd_exp_r(ewcljrsq);
350             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
351             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
352             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
353             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
354             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
355             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
356             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
357             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
361
362             fscal            = fvdw;
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm_mul_ps(fscal,dx00);
366             ty               = _mm_mul_ps(fscal,dy00);
367             tz               = _mm_mul_ps(fscal,dz00);
368
369             /* Update vectorial force */
370             fix0             = _mm_add_ps(fix0,tx);
371             fiy0             = _mm_add_ps(fiy0,ty);
372             fiz0             = _mm_add_ps(fiz0,tz);
373
374             fjx0             = _mm_add_ps(fjx0,tx);
375             fjy0             = _mm_add_ps(fjy0,ty);
376             fjz0             = _mm_add_ps(fjz0,tz);
377
378             /**************************
379              * CALCULATE INTERACTIONS *
380              **************************/
381
382             r11              = _mm_mul_ps(rsq11,rinv11);
383
384             /* EWALD ELECTROSTATICS */
385
386             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
387             ewrt             = _mm_mul_ps(r11,ewtabscale);
388             ewitab           = _mm_cvttps_epi32(ewrt);
389             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
390             ewitab           = _mm_slli_epi32(ewitab,2);
391             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
392             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
393             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
394             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
395             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
396             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
397             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
398             velec            = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
399             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
400
401             /* Update potential sum for this i atom from the interaction with this j atom. */
402             velecsum         = _mm_add_ps(velecsum,velec);
403
404             fscal            = felec;
405
406             /* Calculate temporary vectorial force */
407             tx               = _mm_mul_ps(fscal,dx11);
408             ty               = _mm_mul_ps(fscal,dy11);
409             tz               = _mm_mul_ps(fscal,dz11);
410
411             /* Update vectorial force */
412             fix1             = _mm_add_ps(fix1,tx);
413             fiy1             = _mm_add_ps(fiy1,ty);
414             fiz1             = _mm_add_ps(fiz1,tz);
415
416             fjx1             = _mm_add_ps(fjx1,tx);
417             fjy1             = _mm_add_ps(fjy1,ty);
418             fjz1             = _mm_add_ps(fjz1,tz);
419
420             /**************************
421              * CALCULATE INTERACTIONS *
422              **************************/
423
424             r12              = _mm_mul_ps(rsq12,rinv12);
425
426             /* EWALD ELECTROSTATICS */
427
428             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
429             ewrt             = _mm_mul_ps(r12,ewtabscale);
430             ewitab           = _mm_cvttps_epi32(ewrt);
431             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
432             ewitab           = _mm_slli_epi32(ewitab,2);
433             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
434             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
435             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
436             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
437             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
438             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
439             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
440             velec            = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
441             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
442
443             /* Update potential sum for this i atom from the interaction with this j atom. */
444             velecsum         = _mm_add_ps(velecsum,velec);
445
446             fscal            = felec;
447
448             /* Calculate temporary vectorial force */
449             tx               = _mm_mul_ps(fscal,dx12);
450             ty               = _mm_mul_ps(fscal,dy12);
451             tz               = _mm_mul_ps(fscal,dz12);
452
453             /* Update vectorial force */
454             fix1             = _mm_add_ps(fix1,tx);
455             fiy1             = _mm_add_ps(fiy1,ty);
456             fiz1             = _mm_add_ps(fiz1,tz);
457
458             fjx2             = _mm_add_ps(fjx2,tx);
459             fjy2             = _mm_add_ps(fjy2,ty);
460             fjz2             = _mm_add_ps(fjz2,tz);
461
462             /**************************
463              * CALCULATE INTERACTIONS *
464              **************************/
465
466             r13              = _mm_mul_ps(rsq13,rinv13);
467
468             /* EWALD ELECTROSTATICS */
469
470             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
471             ewrt             = _mm_mul_ps(r13,ewtabscale);
472             ewitab           = _mm_cvttps_epi32(ewrt);
473             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
474             ewitab           = _mm_slli_epi32(ewitab,2);
475             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
476             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
477             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
478             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
479             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
480             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
481             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
482             velec            = _mm_mul_ps(qq13,_mm_sub_ps(rinv13,velec));
483             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
484
485             /* Update potential sum for this i atom from the interaction with this j atom. */
486             velecsum         = _mm_add_ps(velecsum,velec);
487
488             fscal            = felec;
489
490             /* Calculate temporary vectorial force */
491             tx               = _mm_mul_ps(fscal,dx13);
492             ty               = _mm_mul_ps(fscal,dy13);
493             tz               = _mm_mul_ps(fscal,dz13);
494
495             /* Update vectorial force */
496             fix1             = _mm_add_ps(fix1,tx);
497             fiy1             = _mm_add_ps(fiy1,ty);
498             fiz1             = _mm_add_ps(fiz1,tz);
499
500             fjx3             = _mm_add_ps(fjx3,tx);
501             fjy3             = _mm_add_ps(fjy3,ty);
502             fjz3             = _mm_add_ps(fjz3,tz);
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             r21              = _mm_mul_ps(rsq21,rinv21);
509
510             /* EWALD ELECTROSTATICS */
511
512             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
513             ewrt             = _mm_mul_ps(r21,ewtabscale);
514             ewitab           = _mm_cvttps_epi32(ewrt);
515             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
516             ewitab           = _mm_slli_epi32(ewitab,2);
517             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
518             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
519             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
520             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
521             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
522             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
523             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
524             velec            = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
525             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             velecsum         = _mm_add_ps(velecsum,velec);
529
530             fscal            = felec;
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm_mul_ps(fscal,dx21);
534             ty               = _mm_mul_ps(fscal,dy21);
535             tz               = _mm_mul_ps(fscal,dz21);
536
537             /* Update vectorial force */
538             fix2             = _mm_add_ps(fix2,tx);
539             fiy2             = _mm_add_ps(fiy2,ty);
540             fiz2             = _mm_add_ps(fiz2,tz);
541
542             fjx1             = _mm_add_ps(fjx1,tx);
543             fjy1             = _mm_add_ps(fjy1,ty);
544             fjz1             = _mm_add_ps(fjz1,tz);
545
546             /**************************
547              * CALCULATE INTERACTIONS *
548              **************************/
549
550             r22              = _mm_mul_ps(rsq22,rinv22);
551
552             /* EWALD ELECTROSTATICS */
553
554             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
555             ewrt             = _mm_mul_ps(r22,ewtabscale);
556             ewitab           = _mm_cvttps_epi32(ewrt);
557             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
558             ewitab           = _mm_slli_epi32(ewitab,2);
559             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
560             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
561             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
562             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
563             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
564             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
565             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
566             velec            = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
567             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             velecsum         = _mm_add_ps(velecsum,velec);
571
572             fscal            = felec;
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm_mul_ps(fscal,dx22);
576             ty               = _mm_mul_ps(fscal,dy22);
577             tz               = _mm_mul_ps(fscal,dz22);
578
579             /* Update vectorial force */
580             fix2             = _mm_add_ps(fix2,tx);
581             fiy2             = _mm_add_ps(fiy2,ty);
582             fiz2             = _mm_add_ps(fiz2,tz);
583
584             fjx2             = _mm_add_ps(fjx2,tx);
585             fjy2             = _mm_add_ps(fjy2,ty);
586             fjz2             = _mm_add_ps(fjz2,tz);
587
588             /**************************
589              * CALCULATE INTERACTIONS *
590              **************************/
591
592             r23              = _mm_mul_ps(rsq23,rinv23);
593
594             /* EWALD ELECTROSTATICS */
595
596             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
597             ewrt             = _mm_mul_ps(r23,ewtabscale);
598             ewitab           = _mm_cvttps_epi32(ewrt);
599             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
600             ewitab           = _mm_slli_epi32(ewitab,2);
601             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
602             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
603             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
604             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
605             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
606             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
607             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
608             velec            = _mm_mul_ps(qq23,_mm_sub_ps(rinv23,velec));
609             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
610
611             /* Update potential sum for this i atom from the interaction with this j atom. */
612             velecsum         = _mm_add_ps(velecsum,velec);
613
614             fscal            = felec;
615
616             /* Calculate temporary vectorial force */
617             tx               = _mm_mul_ps(fscal,dx23);
618             ty               = _mm_mul_ps(fscal,dy23);
619             tz               = _mm_mul_ps(fscal,dz23);
620
621             /* Update vectorial force */
622             fix2             = _mm_add_ps(fix2,tx);
623             fiy2             = _mm_add_ps(fiy2,ty);
624             fiz2             = _mm_add_ps(fiz2,tz);
625
626             fjx3             = _mm_add_ps(fjx3,tx);
627             fjy3             = _mm_add_ps(fjy3,ty);
628             fjz3             = _mm_add_ps(fjz3,tz);
629
630             /**************************
631              * CALCULATE INTERACTIONS *
632              **************************/
633
634             r31              = _mm_mul_ps(rsq31,rinv31);
635
636             /* EWALD ELECTROSTATICS */
637
638             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
639             ewrt             = _mm_mul_ps(r31,ewtabscale);
640             ewitab           = _mm_cvttps_epi32(ewrt);
641             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
642             ewitab           = _mm_slli_epi32(ewitab,2);
643             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
644             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
645             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
646             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
647             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
648             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
649             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
650             velec            = _mm_mul_ps(qq31,_mm_sub_ps(rinv31,velec));
651             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
652
653             /* Update potential sum for this i atom from the interaction with this j atom. */
654             velecsum         = _mm_add_ps(velecsum,velec);
655
656             fscal            = felec;
657
658             /* Calculate temporary vectorial force */
659             tx               = _mm_mul_ps(fscal,dx31);
660             ty               = _mm_mul_ps(fscal,dy31);
661             tz               = _mm_mul_ps(fscal,dz31);
662
663             /* Update vectorial force */
664             fix3             = _mm_add_ps(fix3,tx);
665             fiy3             = _mm_add_ps(fiy3,ty);
666             fiz3             = _mm_add_ps(fiz3,tz);
667
668             fjx1             = _mm_add_ps(fjx1,tx);
669             fjy1             = _mm_add_ps(fjy1,ty);
670             fjz1             = _mm_add_ps(fjz1,tz);
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             r32              = _mm_mul_ps(rsq32,rinv32);
677
678             /* EWALD ELECTROSTATICS */
679
680             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
681             ewrt             = _mm_mul_ps(r32,ewtabscale);
682             ewitab           = _mm_cvttps_epi32(ewrt);
683             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
684             ewitab           = _mm_slli_epi32(ewitab,2);
685             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
686             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
687             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
688             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
689             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
690             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
691             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
692             velec            = _mm_mul_ps(qq32,_mm_sub_ps(rinv32,velec));
693             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
694
695             /* Update potential sum for this i atom from the interaction with this j atom. */
696             velecsum         = _mm_add_ps(velecsum,velec);
697
698             fscal            = felec;
699
700             /* Calculate temporary vectorial force */
701             tx               = _mm_mul_ps(fscal,dx32);
702             ty               = _mm_mul_ps(fscal,dy32);
703             tz               = _mm_mul_ps(fscal,dz32);
704
705             /* Update vectorial force */
706             fix3             = _mm_add_ps(fix3,tx);
707             fiy3             = _mm_add_ps(fiy3,ty);
708             fiz3             = _mm_add_ps(fiz3,tz);
709
710             fjx2             = _mm_add_ps(fjx2,tx);
711             fjy2             = _mm_add_ps(fjy2,ty);
712             fjz2             = _mm_add_ps(fjz2,tz);
713
714             /**************************
715              * CALCULATE INTERACTIONS *
716              **************************/
717
718             r33              = _mm_mul_ps(rsq33,rinv33);
719
720             /* EWALD ELECTROSTATICS */
721
722             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
723             ewrt             = _mm_mul_ps(r33,ewtabscale);
724             ewitab           = _mm_cvttps_epi32(ewrt);
725             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
726             ewitab           = _mm_slli_epi32(ewitab,2);
727             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
728             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
729             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
730             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
731             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
732             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
733             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
734             velec            = _mm_mul_ps(qq33,_mm_sub_ps(rinv33,velec));
735             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
736
737             /* Update potential sum for this i atom from the interaction with this j atom. */
738             velecsum         = _mm_add_ps(velecsum,velec);
739
740             fscal            = felec;
741
742             /* Calculate temporary vectorial force */
743             tx               = _mm_mul_ps(fscal,dx33);
744             ty               = _mm_mul_ps(fscal,dy33);
745             tz               = _mm_mul_ps(fscal,dz33);
746
747             /* Update vectorial force */
748             fix3             = _mm_add_ps(fix3,tx);
749             fiy3             = _mm_add_ps(fiy3,ty);
750             fiz3             = _mm_add_ps(fiz3,tz);
751
752             fjx3             = _mm_add_ps(fjx3,tx);
753             fjy3             = _mm_add_ps(fjy3,ty);
754             fjz3             = _mm_add_ps(fjz3,tz);
755
756             fjptrA             = f+j_coord_offsetA;
757             fjptrB             = f+j_coord_offsetB;
758             fjptrC             = f+j_coord_offsetC;
759             fjptrD             = f+j_coord_offsetD;
760
761             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
762                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
763                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
764
765             /* Inner loop uses 423 flops */
766         }
767
768         if(jidx<j_index_end)
769         {
770
771             /* Get j neighbor index, and coordinate index */
772             jnrlistA         = jjnr[jidx];
773             jnrlistB         = jjnr[jidx+1];
774             jnrlistC         = jjnr[jidx+2];
775             jnrlistD         = jjnr[jidx+3];
776             /* Sign of each element will be negative for non-real atoms.
777              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
778              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
779              */
780             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
781             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
782             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
783             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
784             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
785             j_coord_offsetA  = DIM*jnrA;
786             j_coord_offsetB  = DIM*jnrB;
787             j_coord_offsetC  = DIM*jnrC;
788             j_coord_offsetD  = DIM*jnrD;
789
790             /* load j atom coordinates */
791             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
792                                               x+j_coord_offsetC,x+j_coord_offsetD,
793                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
794                                               &jy2,&jz2,&jx3,&jy3,&jz3);
795
796             /* Calculate displacement vector */
797             dx00             = _mm_sub_ps(ix0,jx0);
798             dy00             = _mm_sub_ps(iy0,jy0);
799             dz00             = _mm_sub_ps(iz0,jz0);
800             dx11             = _mm_sub_ps(ix1,jx1);
801             dy11             = _mm_sub_ps(iy1,jy1);
802             dz11             = _mm_sub_ps(iz1,jz1);
803             dx12             = _mm_sub_ps(ix1,jx2);
804             dy12             = _mm_sub_ps(iy1,jy2);
805             dz12             = _mm_sub_ps(iz1,jz2);
806             dx13             = _mm_sub_ps(ix1,jx3);
807             dy13             = _mm_sub_ps(iy1,jy3);
808             dz13             = _mm_sub_ps(iz1,jz3);
809             dx21             = _mm_sub_ps(ix2,jx1);
810             dy21             = _mm_sub_ps(iy2,jy1);
811             dz21             = _mm_sub_ps(iz2,jz1);
812             dx22             = _mm_sub_ps(ix2,jx2);
813             dy22             = _mm_sub_ps(iy2,jy2);
814             dz22             = _mm_sub_ps(iz2,jz2);
815             dx23             = _mm_sub_ps(ix2,jx3);
816             dy23             = _mm_sub_ps(iy2,jy3);
817             dz23             = _mm_sub_ps(iz2,jz3);
818             dx31             = _mm_sub_ps(ix3,jx1);
819             dy31             = _mm_sub_ps(iy3,jy1);
820             dz31             = _mm_sub_ps(iz3,jz1);
821             dx32             = _mm_sub_ps(ix3,jx2);
822             dy32             = _mm_sub_ps(iy3,jy2);
823             dz32             = _mm_sub_ps(iz3,jz2);
824             dx33             = _mm_sub_ps(ix3,jx3);
825             dy33             = _mm_sub_ps(iy3,jy3);
826             dz33             = _mm_sub_ps(iz3,jz3);
827
828             /* Calculate squared distance and things based on it */
829             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
830             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
831             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
832             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
833             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
834             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
835             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
836             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
837             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
838             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
839
840             rinv00           = gmx_mm_invsqrt_ps(rsq00);
841             rinv11           = gmx_mm_invsqrt_ps(rsq11);
842             rinv12           = gmx_mm_invsqrt_ps(rsq12);
843             rinv13           = gmx_mm_invsqrt_ps(rsq13);
844             rinv21           = gmx_mm_invsqrt_ps(rsq21);
845             rinv22           = gmx_mm_invsqrt_ps(rsq22);
846             rinv23           = gmx_mm_invsqrt_ps(rsq23);
847             rinv31           = gmx_mm_invsqrt_ps(rsq31);
848             rinv32           = gmx_mm_invsqrt_ps(rsq32);
849             rinv33           = gmx_mm_invsqrt_ps(rsq33);
850
851             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
852             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
853             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
854             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
855             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
856             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
857             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
858             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
859             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
860             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
861
862             fjx0             = _mm_setzero_ps();
863             fjy0             = _mm_setzero_ps();
864             fjz0             = _mm_setzero_ps();
865             fjx1             = _mm_setzero_ps();
866             fjy1             = _mm_setzero_ps();
867             fjz1             = _mm_setzero_ps();
868             fjx2             = _mm_setzero_ps();
869             fjy2             = _mm_setzero_ps();
870             fjz2             = _mm_setzero_ps();
871             fjx3             = _mm_setzero_ps();
872             fjy3             = _mm_setzero_ps();
873             fjz3             = _mm_setzero_ps();
874
875             /**************************
876              * CALCULATE INTERACTIONS *
877              **************************/
878
879             r00              = _mm_mul_ps(rsq00,rinv00);
880             r00              = _mm_andnot_ps(dummy_mask,r00);
881
882             /* Analytical LJ-PME */
883             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
884             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
885             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
886             exponent         = gmx_simd_exp_r(ewcljrsq);
887             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
888             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
889             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
890             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
891             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
892             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
893             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
894             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
895
896             /* Update potential sum for this i atom from the interaction with this j atom. */
897             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
898             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
899
900             fscal            = fvdw;
901
902             fscal            = _mm_andnot_ps(dummy_mask,fscal);
903
904             /* Calculate temporary vectorial force */
905             tx               = _mm_mul_ps(fscal,dx00);
906             ty               = _mm_mul_ps(fscal,dy00);
907             tz               = _mm_mul_ps(fscal,dz00);
908
909             /* Update vectorial force */
910             fix0             = _mm_add_ps(fix0,tx);
911             fiy0             = _mm_add_ps(fiy0,ty);
912             fiz0             = _mm_add_ps(fiz0,tz);
913
914             fjx0             = _mm_add_ps(fjx0,tx);
915             fjy0             = _mm_add_ps(fjy0,ty);
916             fjz0             = _mm_add_ps(fjz0,tz);
917
918             /**************************
919              * CALCULATE INTERACTIONS *
920              **************************/
921
922             r11              = _mm_mul_ps(rsq11,rinv11);
923             r11              = _mm_andnot_ps(dummy_mask,r11);
924
925             /* EWALD ELECTROSTATICS */
926
927             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
928             ewrt             = _mm_mul_ps(r11,ewtabscale);
929             ewitab           = _mm_cvttps_epi32(ewrt);
930             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
931             ewitab           = _mm_slli_epi32(ewitab,2);
932             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
933             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
934             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
935             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
936             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
937             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
938             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
939             velec            = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
940             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
941
942             /* Update potential sum for this i atom from the interaction with this j atom. */
943             velec            = _mm_andnot_ps(dummy_mask,velec);
944             velecsum         = _mm_add_ps(velecsum,velec);
945
946             fscal            = felec;
947
948             fscal            = _mm_andnot_ps(dummy_mask,fscal);
949
950             /* Calculate temporary vectorial force */
951             tx               = _mm_mul_ps(fscal,dx11);
952             ty               = _mm_mul_ps(fscal,dy11);
953             tz               = _mm_mul_ps(fscal,dz11);
954
955             /* Update vectorial force */
956             fix1             = _mm_add_ps(fix1,tx);
957             fiy1             = _mm_add_ps(fiy1,ty);
958             fiz1             = _mm_add_ps(fiz1,tz);
959
960             fjx1             = _mm_add_ps(fjx1,tx);
961             fjy1             = _mm_add_ps(fjy1,ty);
962             fjz1             = _mm_add_ps(fjz1,tz);
963
964             /**************************
965              * CALCULATE INTERACTIONS *
966              **************************/
967
968             r12              = _mm_mul_ps(rsq12,rinv12);
969             r12              = _mm_andnot_ps(dummy_mask,r12);
970
971             /* EWALD ELECTROSTATICS */
972
973             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
974             ewrt             = _mm_mul_ps(r12,ewtabscale);
975             ewitab           = _mm_cvttps_epi32(ewrt);
976             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
977             ewitab           = _mm_slli_epi32(ewitab,2);
978             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
979             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
980             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
981             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
982             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
983             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
984             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
985             velec            = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
986             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
987
988             /* Update potential sum for this i atom from the interaction with this j atom. */
989             velec            = _mm_andnot_ps(dummy_mask,velec);
990             velecsum         = _mm_add_ps(velecsum,velec);
991
992             fscal            = felec;
993
994             fscal            = _mm_andnot_ps(dummy_mask,fscal);
995
996             /* Calculate temporary vectorial force */
997             tx               = _mm_mul_ps(fscal,dx12);
998             ty               = _mm_mul_ps(fscal,dy12);
999             tz               = _mm_mul_ps(fscal,dz12);
1000
1001             /* Update vectorial force */
1002             fix1             = _mm_add_ps(fix1,tx);
1003             fiy1             = _mm_add_ps(fiy1,ty);
1004             fiz1             = _mm_add_ps(fiz1,tz);
1005
1006             fjx2             = _mm_add_ps(fjx2,tx);
1007             fjy2             = _mm_add_ps(fjy2,ty);
1008             fjz2             = _mm_add_ps(fjz2,tz);
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             r13              = _mm_mul_ps(rsq13,rinv13);
1015             r13              = _mm_andnot_ps(dummy_mask,r13);
1016
1017             /* EWALD ELECTROSTATICS */
1018
1019             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1020             ewrt             = _mm_mul_ps(r13,ewtabscale);
1021             ewitab           = _mm_cvttps_epi32(ewrt);
1022             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1023             ewitab           = _mm_slli_epi32(ewitab,2);
1024             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1025             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1026             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1027             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1028             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1029             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1030             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1031             velec            = _mm_mul_ps(qq13,_mm_sub_ps(rinv13,velec));
1032             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
1033
1034             /* Update potential sum for this i atom from the interaction with this j atom. */
1035             velec            = _mm_andnot_ps(dummy_mask,velec);
1036             velecsum         = _mm_add_ps(velecsum,velec);
1037
1038             fscal            = felec;
1039
1040             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1041
1042             /* Calculate temporary vectorial force */
1043             tx               = _mm_mul_ps(fscal,dx13);
1044             ty               = _mm_mul_ps(fscal,dy13);
1045             tz               = _mm_mul_ps(fscal,dz13);
1046
1047             /* Update vectorial force */
1048             fix1             = _mm_add_ps(fix1,tx);
1049             fiy1             = _mm_add_ps(fiy1,ty);
1050             fiz1             = _mm_add_ps(fiz1,tz);
1051
1052             fjx3             = _mm_add_ps(fjx3,tx);
1053             fjy3             = _mm_add_ps(fjy3,ty);
1054             fjz3             = _mm_add_ps(fjz3,tz);
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             r21              = _mm_mul_ps(rsq21,rinv21);
1061             r21              = _mm_andnot_ps(dummy_mask,r21);
1062
1063             /* EWALD ELECTROSTATICS */
1064
1065             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1066             ewrt             = _mm_mul_ps(r21,ewtabscale);
1067             ewitab           = _mm_cvttps_epi32(ewrt);
1068             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1069             ewitab           = _mm_slli_epi32(ewitab,2);
1070             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1071             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1072             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1073             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1074             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1075             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1076             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1077             velec            = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
1078             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1079
1080             /* Update potential sum for this i atom from the interaction with this j atom. */
1081             velec            = _mm_andnot_ps(dummy_mask,velec);
1082             velecsum         = _mm_add_ps(velecsum,velec);
1083
1084             fscal            = felec;
1085
1086             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1087
1088             /* Calculate temporary vectorial force */
1089             tx               = _mm_mul_ps(fscal,dx21);
1090             ty               = _mm_mul_ps(fscal,dy21);
1091             tz               = _mm_mul_ps(fscal,dz21);
1092
1093             /* Update vectorial force */
1094             fix2             = _mm_add_ps(fix2,tx);
1095             fiy2             = _mm_add_ps(fiy2,ty);
1096             fiz2             = _mm_add_ps(fiz2,tz);
1097
1098             fjx1             = _mm_add_ps(fjx1,tx);
1099             fjy1             = _mm_add_ps(fjy1,ty);
1100             fjz1             = _mm_add_ps(fjz1,tz);
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             r22              = _mm_mul_ps(rsq22,rinv22);
1107             r22              = _mm_andnot_ps(dummy_mask,r22);
1108
1109             /* EWALD ELECTROSTATICS */
1110
1111             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1112             ewrt             = _mm_mul_ps(r22,ewtabscale);
1113             ewitab           = _mm_cvttps_epi32(ewrt);
1114             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1115             ewitab           = _mm_slli_epi32(ewitab,2);
1116             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1117             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1118             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1119             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1120             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1121             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1122             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1123             velec            = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
1124             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1125
1126             /* Update potential sum for this i atom from the interaction with this j atom. */
1127             velec            = _mm_andnot_ps(dummy_mask,velec);
1128             velecsum         = _mm_add_ps(velecsum,velec);
1129
1130             fscal            = felec;
1131
1132             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1133
1134             /* Calculate temporary vectorial force */
1135             tx               = _mm_mul_ps(fscal,dx22);
1136             ty               = _mm_mul_ps(fscal,dy22);
1137             tz               = _mm_mul_ps(fscal,dz22);
1138
1139             /* Update vectorial force */
1140             fix2             = _mm_add_ps(fix2,tx);
1141             fiy2             = _mm_add_ps(fiy2,ty);
1142             fiz2             = _mm_add_ps(fiz2,tz);
1143
1144             fjx2             = _mm_add_ps(fjx2,tx);
1145             fjy2             = _mm_add_ps(fjy2,ty);
1146             fjz2             = _mm_add_ps(fjz2,tz);
1147
1148             /**************************
1149              * CALCULATE INTERACTIONS *
1150              **************************/
1151
1152             r23              = _mm_mul_ps(rsq23,rinv23);
1153             r23              = _mm_andnot_ps(dummy_mask,r23);
1154
1155             /* EWALD ELECTROSTATICS */
1156
1157             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1158             ewrt             = _mm_mul_ps(r23,ewtabscale);
1159             ewitab           = _mm_cvttps_epi32(ewrt);
1160             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1161             ewitab           = _mm_slli_epi32(ewitab,2);
1162             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1163             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1164             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1165             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1166             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1167             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1168             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1169             velec            = _mm_mul_ps(qq23,_mm_sub_ps(rinv23,velec));
1170             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
1171
1172             /* Update potential sum for this i atom from the interaction with this j atom. */
1173             velec            = _mm_andnot_ps(dummy_mask,velec);
1174             velecsum         = _mm_add_ps(velecsum,velec);
1175
1176             fscal            = felec;
1177
1178             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1179
1180             /* Calculate temporary vectorial force */
1181             tx               = _mm_mul_ps(fscal,dx23);
1182             ty               = _mm_mul_ps(fscal,dy23);
1183             tz               = _mm_mul_ps(fscal,dz23);
1184
1185             /* Update vectorial force */
1186             fix2             = _mm_add_ps(fix2,tx);
1187             fiy2             = _mm_add_ps(fiy2,ty);
1188             fiz2             = _mm_add_ps(fiz2,tz);
1189
1190             fjx3             = _mm_add_ps(fjx3,tx);
1191             fjy3             = _mm_add_ps(fjy3,ty);
1192             fjz3             = _mm_add_ps(fjz3,tz);
1193
1194             /**************************
1195              * CALCULATE INTERACTIONS *
1196              **************************/
1197
1198             r31              = _mm_mul_ps(rsq31,rinv31);
1199             r31              = _mm_andnot_ps(dummy_mask,r31);
1200
1201             /* EWALD ELECTROSTATICS */
1202
1203             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1204             ewrt             = _mm_mul_ps(r31,ewtabscale);
1205             ewitab           = _mm_cvttps_epi32(ewrt);
1206             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1207             ewitab           = _mm_slli_epi32(ewitab,2);
1208             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1209             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1210             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1211             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1212             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1213             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1214             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1215             velec            = _mm_mul_ps(qq31,_mm_sub_ps(rinv31,velec));
1216             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
1217
1218             /* Update potential sum for this i atom from the interaction with this j atom. */
1219             velec            = _mm_andnot_ps(dummy_mask,velec);
1220             velecsum         = _mm_add_ps(velecsum,velec);
1221
1222             fscal            = felec;
1223
1224             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1225
1226             /* Calculate temporary vectorial force */
1227             tx               = _mm_mul_ps(fscal,dx31);
1228             ty               = _mm_mul_ps(fscal,dy31);
1229             tz               = _mm_mul_ps(fscal,dz31);
1230
1231             /* Update vectorial force */
1232             fix3             = _mm_add_ps(fix3,tx);
1233             fiy3             = _mm_add_ps(fiy3,ty);
1234             fiz3             = _mm_add_ps(fiz3,tz);
1235
1236             fjx1             = _mm_add_ps(fjx1,tx);
1237             fjy1             = _mm_add_ps(fjy1,ty);
1238             fjz1             = _mm_add_ps(fjz1,tz);
1239
1240             /**************************
1241              * CALCULATE INTERACTIONS *
1242              **************************/
1243
1244             r32              = _mm_mul_ps(rsq32,rinv32);
1245             r32              = _mm_andnot_ps(dummy_mask,r32);
1246
1247             /* EWALD ELECTROSTATICS */
1248
1249             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1250             ewrt             = _mm_mul_ps(r32,ewtabscale);
1251             ewitab           = _mm_cvttps_epi32(ewrt);
1252             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1253             ewitab           = _mm_slli_epi32(ewitab,2);
1254             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1255             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1256             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1257             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1258             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1259             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1260             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1261             velec            = _mm_mul_ps(qq32,_mm_sub_ps(rinv32,velec));
1262             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
1263
1264             /* Update potential sum for this i atom from the interaction with this j atom. */
1265             velec            = _mm_andnot_ps(dummy_mask,velec);
1266             velecsum         = _mm_add_ps(velecsum,velec);
1267
1268             fscal            = felec;
1269
1270             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1271
1272             /* Calculate temporary vectorial force */
1273             tx               = _mm_mul_ps(fscal,dx32);
1274             ty               = _mm_mul_ps(fscal,dy32);
1275             tz               = _mm_mul_ps(fscal,dz32);
1276
1277             /* Update vectorial force */
1278             fix3             = _mm_add_ps(fix3,tx);
1279             fiy3             = _mm_add_ps(fiy3,ty);
1280             fiz3             = _mm_add_ps(fiz3,tz);
1281
1282             fjx2             = _mm_add_ps(fjx2,tx);
1283             fjy2             = _mm_add_ps(fjy2,ty);
1284             fjz2             = _mm_add_ps(fjz2,tz);
1285
1286             /**************************
1287              * CALCULATE INTERACTIONS *
1288              **************************/
1289
1290             r33              = _mm_mul_ps(rsq33,rinv33);
1291             r33              = _mm_andnot_ps(dummy_mask,r33);
1292
1293             /* EWALD ELECTROSTATICS */
1294
1295             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1296             ewrt             = _mm_mul_ps(r33,ewtabscale);
1297             ewitab           = _mm_cvttps_epi32(ewrt);
1298             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1299             ewitab           = _mm_slli_epi32(ewitab,2);
1300             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1301             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1302             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1303             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1304             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1305             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1306             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1307             velec            = _mm_mul_ps(qq33,_mm_sub_ps(rinv33,velec));
1308             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
1309
1310             /* Update potential sum for this i atom from the interaction with this j atom. */
1311             velec            = _mm_andnot_ps(dummy_mask,velec);
1312             velecsum         = _mm_add_ps(velecsum,velec);
1313
1314             fscal            = felec;
1315
1316             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1317
1318             /* Calculate temporary vectorial force */
1319             tx               = _mm_mul_ps(fscal,dx33);
1320             ty               = _mm_mul_ps(fscal,dy33);
1321             tz               = _mm_mul_ps(fscal,dz33);
1322
1323             /* Update vectorial force */
1324             fix3             = _mm_add_ps(fix3,tx);
1325             fiy3             = _mm_add_ps(fiy3,ty);
1326             fiz3             = _mm_add_ps(fiz3,tz);
1327
1328             fjx3             = _mm_add_ps(fjx3,tx);
1329             fjy3             = _mm_add_ps(fjy3,ty);
1330             fjz3             = _mm_add_ps(fjz3,tz);
1331
1332             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1333             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1334             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1335             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1336
1337             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1338                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
1339                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1340
1341             /* Inner loop uses 433 flops */
1342         }
1343
1344         /* End of innermost loop */
1345
1346         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1347                                               f+i_coord_offset,fshift+i_shift_offset);
1348
1349         ggid                        = gid[iidx];
1350         /* Update potential energies */
1351         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1352         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
1353
1354         /* Increment number of inner iterations */
1355         inneriter                  += j_index_end - j_index_start;
1356
1357         /* Outer loop uses 26 flops */
1358     }
1359
1360     /* Increment number of outer iterations */
1361     outeriter        += nri;
1362
1363     /* Update outer/inner flops */
1364
1365     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*26 + inneriter*433);
1366 }
1367 /*
1368  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4W4_F_sse4_1_single
1369  * Electrostatics interaction: Ewald
1370  * VdW interaction:            LJEwald
1371  * Geometry:                   Water4-Water4
1372  * Calculate force/pot:        Force
1373  */
1374 void
1375 nb_kernel_ElecEw_VdwLJEw_GeomW4W4_F_sse4_1_single
1376                     (t_nblist                    * gmx_restrict       nlist,
1377                      rvec                        * gmx_restrict          xx,
1378                      rvec                        * gmx_restrict          ff,
1379                      t_forcerec                  * gmx_restrict          fr,
1380                      t_mdatoms                   * gmx_restrict     mdatoms,
1381                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1382                      t_nrnb                      * gmx_restrict        nrnb)
1383 {
1384     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1385      * just 0 for non-waters.
1386      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
1387      * jnr indices corresponding to data put in the four positions in the SIMD register.
1388      */
1389     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1390     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1391     int              jnrA,jnrB,jnrC,jnrD;
1392     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1393     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1394     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1395     real             rcutoff_scalar;
1396     real             *shiftvec,*fshift,*x,*f;
1397     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1398     real             scratch[4*DIM];
1399     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1400     int              vdwioffset0;
1401     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1402     int              vdwioffset1;
1403     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1404     int              vdwioffset2;
1405     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1406     int              vdwioffset3;
1407     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1408     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1409     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1410     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1411     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1412     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1413     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1414     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
1415     __m128           jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1416     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1417     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1418     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1419     __m128           dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1420     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1421     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1422     __m128           dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1423     __m128           dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1424     __m128           dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1425     __m128           dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1426     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
1427     real             *charge;
1428     int              nvdwtype;
1429     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1430     int              *vdwtype;
1431     real             *vdwparam;
1432     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
1433     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
1434     __m128           c6grid_00;
1435     __m128           c6grid_11;
1436     __m128           c6grid_12;
1437     __m128           c6grid_13;
1438     __m128           c6grid_21;
1439     __m128           c6grid_22;
1440     __m128           c6grid_23;
1441     __m128           c6grid_31;
1442     __m128           c6grid_32;
1443     __m128           c6grid_33;
1444     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
1445     real             *vdwgridparam;
1446     __m128           one_half  = _mm_set1_ps(0.5);
1447     __m128           minus_one = _mm_set1_ps(-1.0);
1448     __m128i          ewitab;
1449     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1450     real             *ewtab;
1451     __m128           dummy_mask,cutoff_mask;
1452     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
1453     __m128           one     = _mm_set1_ps(1.0);
1454     __m128           two     = _mm_set1_ps(2.0);
1455     x                = xx[0];
1456     f                = ff[0];
1457
1458     nri              = nlist->nri;
1459     iinr             = nlist->iinr;
1460     jindex           = nlist->jindex;
1461     jjnr             = nlist->jjnr;
1462     shiftidx         = nlist->shift;
1463     gid              = nlist->gid;
1464     shiftvec         = fr->shift_vec[0];
1465     fshift           = fr->fshift[0];
1466     facel            = _mm_set1_ps(fr->epsfac);
1467     charge           = mdatoms->chargeA;
1468     nvdwtype         = fr->ntype;
1469     vdwparam         = fr->nbfp;
1470     vdwtype          = mdatoms->typeA;
1471     vdwgridparam     = fr->ljpme_c6grid;
1472     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
1473     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
1474     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
1475
1476     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
1477     ewtab            = fr->ic->tabq_coul_F;
1478     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
1479     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
1480
1481     /* Setup water-specific parameters */
1482     inr              = nlist->iinr[0];
1483     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
1484     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
1485     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
1486     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1487
1488     jq1              = _mm_set1_ps(charge[inr+1]);
1489     jq2              = _mm_set1_ps(charge[inr+2]);
1490     jq3              = _mm_set1_ps(charge[inr+3]);
1491     vdwjidx0A        = 2*vdwtype[inr+0];
1492     c6_00            = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
1493     c12_00           = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
1494     c6grid_00        = _mm_set1_ps(vdwgridparam[vdwioffset0+vdwjidx0A]);
1495     qq11             = _mm_mul_ps(iq1,jq1);
1496     qq12             = _mm_mul_ps(iq1,jq2);
1497     qq13             = _mm_mul_ps(iq1,jq3);
1498     qq21             = _mm_mul_ps(iq2,jq1);
1499     qq22             = _mm_mul_ps(iq2,jq2);
1500     qq23             = _mm_mul_ps(iq2,jq3);
1501     qq31             = _mm_mul_ps(iq3,jq1);
1502     qq32             = _mm_mul_ps(iq3,jq2);
1503     qq33             = _mm_mul_ps(iq3,jq3);
1504
1505     /* Avoid stupid compiler warnings */
1506     jnrA = jnrB = jnrC = jnrD = 0;
1507     j_coord_offsetA = 0;
1508     j_coord_offsetB = 0;
1509     j_coord_offsetC = 0;
1510     j_coord_offsetD = 0;
1511
1512     outeriter        = 0;
1513     inneriter        = 0;
1514
1515     for(iidx=0;iidx<4*DIM;iidx++)
1516     {
1517         scratch[iidx] = 0.0;
1518     }
1519
1520     /* Start outer loop over neighborlists */
1521     for(iidx=0; iidx<nri; iidx++)
1522     {
1523         /* Load shift vector for this list */
1524         i_shift_offset   = DIM*shiftidx[iidx];
1525
1526         /* Load limits for loop over neighbors */
1527         j_index_start    = jindex[iidx];
1528         j_index_end      = jindex[iidx+1];
1529
1530         /* Get outer coordinate index */
1531         inr              = iinr[iidx];
1532         i_coord_offset   = DIM*inr;
1533
1534         /* Load i particle coords and add shift vector */
1535         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1536                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1537
1538         fix0             = _mm_setzero_ps();
1539         fiy0             = _mm_setzero_ps();
1540         fiz0             = _mm_setzero_ps();
1541         fix1             = _mm_setzero_ps();
1542         fiy1             = _mm_setzero_ps();
1543         fiz1             = _mm_setzero_ps();
1544         fix2             = _mm_setzero_ps();
1545         fiy2             = _mm_setzero_ps();
1546         fiz2             = _mm_setzero_ps();
1547         fix3             = _mm_setzero_ps();
1548         fiy3             = _mm_setzero_ps();
1549         fiz3             = _mm_setzero_ps();
1550
1551         /* Start inner kernel loop */
1552         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1553         {
1554
1555             /* Get j neighbor index, and coordinate index */
1556             jnrA             = jjnr[jidx];
1557             jnrB             = jjnr[jidx+1];
1558             jnrC             = jjnr[jidx+2];
1559             jnrD             = jjnr[jidx+3];
1560             j_coord_offsetA  = DIM*jnrA;
1561             j_coord_offsetB  = DIM*jnrB;
1562             j_coord_offsetC  = DIM*jnrC;
1563             j_coord_offsetD  = DIM*jnrD;
1564
1565             /* load j atom coordinates */
1566             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1567                                               x+j_coord_offsetC,x+j_coord_offsetD,
1568                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1569                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1570
1571             /* Calculate displacement vector */
1572             dx00             = _mm_sub_ps(ix0,jx0);
1573             dy00             = _mm_sub_ps(iy0,jy0);
1574             dz00             = _mm_sub_ps(iz0,jz0);
1575             dx11             = _mm_sub_ps(ix1,jx1);
1576             dy11             = _mm_sub_ps(iy1,jy1);
1577             dz11             = _mm_sub_ps(iz1,jz1);
1578             dx12             = _mm_sub_ps(ix1,jx2);
1579             dy12             = _mm_sub_ps(iy1,jy2);
1580             dz12             = _mm_sub_ps(iz1,jz2);
1581             dx13             = _mm_sub_ps(ix1,jx3);
1582             dy13             = _mm_sub_ps(iy1,jy3);
1583             dz13             = _mm_sub_ps(iz1,jz3);
1584             dx21             = _mm_sub_ps(ix2,jx1);
1585             dy21             = _mm_sub_ps(iy2,jy1);
1586             dz21             = _mm_sub_ps(iz2,jz1);
1587             dx22             = _mm_sub_ps(ix2,jx2);
1588             dy22             = _mm_sub_ps(iy2,jy2);
1589             dz22             = _mm_sub_ps(iz2,jz2);
1590             dx23             = _mm_sub_ps(ix2,jx3);
1591             dy23             = _mm_sub_ps(iy2,jy3);
1592             dz23             = _mm_sub_ps(iz2,jz3);
1593             dx31             = _mm_sub_ps(ix3,jx1);
1594             dy31             = _mm_sub_ps(iy3,jy1);
1595             dz31             = _mm_sub_ps(iz3,jz1);
1596             dx32             = _mm_sub_ps(ix3,jx2);
1597             dy32             = _mm_sub_ps(iy3,jy2);
1598             dz32             = _mm_sub_ps(iz3,jz2);
1599             dx33             = _mm_sub_ps(ix3,jx3);
1600             dy33             = _mm_sub_ps(iy3,jy3);
1601             dz33             = _mm_sub_ps(iz3,jz3);
1602
1603             /* Calculate squared distance and things based on it */
1604             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1605             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1606             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1607             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
1608             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1609             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1610             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
1611             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
1612             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
1613             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
1614
1615             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1616             rinv11           = gmx_mm_invsqrt_ps(rsq11);
1617             rinv12           = gmx_mm_invsqrt_ps(rsq12);
1618             rinv13           = gmx_mm_invsqrt_ps(rsq13);
1619             rinv21           = gmx_mm_invsqrt_ps(rsq21);
1620             rinv22           = gmx_mm_invsqrt_ps(rsq22);
1621             rinv23           = gmx_mm_invsqrt_ps(rsq23);
1622             rinv31           = gmx_mm_invsqrt_ps(rsq31);
1623             rinv32           = gmx_mm_invsqrt_ps(rsq32);
1624             rinv33           = gmx_mm_invsqrt_ps(rsq33);
1625
1626             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1627             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
1628             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
1629             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
1630             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
1631             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
1632             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
1633             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
1634             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
1635             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
1636
1637             fjx0             = _mm_setzero_ps();
1638             fjy0             = _mm_setzero_ps();
1639             fjz0             = _mm_setzero_ps();
1640             fjx1             = _mm_setzero_ps();
1641             fjy1             = _mm_setzero_ps();
1642             fjz1             = _mm_setzero_ps();
1643             fjx2             = _mm_setzero_ps();
1644             fjy2             = _mm_setzero_ps();
1645             fjz2             = _mm_setzero_ps();
1646             fjx3             = _mm_setzero_ps();
1647             fjy3             = _mm_setzero_ps();
1648             fjz3             = _mm_setzero_ps();
1649
1650             /**************************
1651              * CALCULATE INTERACTIONS *
1652              **************************/
1653
1654             r00              = _mm_mul_ps(rsq00,rinv00);
1655
1656             /* Analytical LJ-PME */
1657             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1658             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1659             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1660             exponent         = gmx_simd_exp_r(ewcljrsq);
1661             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1662             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1663             /* f6A = 6 * C6grid * (1 - poly) */
1664             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1665             /* f6B = C6grid * exponent * beta^6 */
1666             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1667             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1668             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1669
1670             fscal            = fvdw;
1671
1672             /* Calculate temporary vectorial force */
1673             tx               = _mm_mul_ps(fscal,dx00);
1674             ty               = _mm_mul_ps(fscal,dy00);
1675             tz               = _mm_mul_ps(fscal,dz00);
1676
1677             /* Update vectorial force */
1678             fix0             = _mm_add_ps(fix0,tx);
1679             fiy0             = _mm_add_ps(fiy0,ty);
1680             fiz0             = _mm_add_ps(fiz0,tz);
1681
1682             fjx0             = _mm_add_ps(fjx0,tx);
1683             fjy0             = _mm_add_ps(fjy0,ty);
1684             fjz0             = _mm_add_ps(fjz0,tz);
1685
1686             /**************************
1687              * CALCULATE INTERACTIONS *
1688              **************************/
1689
1690             r11              = _mm_mul_ps(rsq11,rinv11);
1691
1692             /* EWALD ELECTROSTATICS */
1693
1694             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1695             ewrt             = _mm_mul_ps(r11,ewtabscale);
1696             ewitab           = _mm_cvttps_epi32(ewrt);
1697             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1698             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1699                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1700                                          &ewtabF,&ewtabFn);
1701             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1702             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1703
1704             fscal            = felec;
1705
1706             /* Calculate temporary vectorial force */
1707             tx               = _mm_mul_ps(fscal,dx11);
1708             ty               = _mm_mul_ps(fscal,dy11);
1709             tz               = _mm_mul_ps(fscal,dz11);
1710
1711             /* Update vectorial force */
1712             fix1             = _mm_add_ps(fix1,tx);
1713             fiy1             = _mm_add_ps(fiy1,ty);
1714             fiz1             = _mm_add_ps(fiz1,tz);
1715
1716             fjx1             = _mm_add_ps(fjx1,tx);
1717             fjy1             = _mm_add_ps(fjy1,ty);
1718             fjz1             = _mm_add_ps(fjz1,tz);
1719
1720             /**************************
1721              * CALCULATE INTERACTIONS *
1722              **************************/
1723
1724             r12              = _mm_mul_ps(rsq12,rinv12);
1725
1726             /* EWALD ELECTROSTATICS */
1727
1728             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1729             ewrt             = _mm_mul_ps(r12,ewtabscale);
1730             ewitab           = _mm_cvttps_epi32(ewrt);
1731             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1732             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1733                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1734                                          &ewtabF,&ewtabFn);
1735             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1736             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1737
1738             fscal            = felec;
1739
1740             /* Calculate temporary vectorial force */
1741             tx               = _mm_mul_ps(fscal,dx12);
1742             ty               = _mm_mul_ps(fscal,dy12);
1743             tz               = _mm_mul_ps(fscal,dz12);
1744
1745             /* Update vectorial force */
1746             fix1             = _mm_add_ps(fix1,tx);
1747             fiy1             = _mm_add_ps(fiy1,ty);
1748             fiz1             = _mm_add_ps(fiz1,tz);
1749
1750             fjx2             = _mm_add_ps(fjx2,tx);
1751             fjy2             = _mm_add_ps(fjy2,ty);
1752             fjz2             = _mm_add_ps(fjz2,tz);
1753
1754             /**************************
1755              * CALCULATE INTERACTIONS *
1756              **************************/
1757
1758             r13              = _mm_mul_ps(rsq13,rinv13);
1759
1760             /* EWALD ELECTROSTATICS */
1761
1762             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1763             ewrt             = _mm_mul_ps(r13,ewtabscale);
1764             ewitab           = _mm_cvttps_epi32(ewrt);
1765             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1766             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1767                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1768                                          &ewtabF,&ewtabFn);
1769             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1770             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
1771
1772             fscal            = felec;
1773
1774             /* Calculate temporary vectorial force */
1775             tx               = _mm_mul_ps(fscal,dx13);
1776             ty               = _mm_mul_ps(fscal,dy13);
1777             tz               = _mm_mul_ps(fscal,dz13);
1778
1779             /* Update vectorial force */
1780             fix1             = _mm_add_ps(fix1,tx);
1781             fiy1             = _mm_add_ps(fiy1,ty);
1782             fiz1             = _mm_add_ps(fiz1,tz);
1783
1784             fjx3             = _mm_add_ps(fjx3,tx);
1785             fjy3             = _mm_add_ps(fjy3,ty);
1786             fjz3             = _mm_add_ps(fjz3,tz);
1787
1788             /**************************
1789              * CALCULATE INTERACTIONS *
1790              **************************/
1791
1792             r21              = _mm_mul_ps(rsq21,rinv21);
1793
1794             /* EWALD ELECTROSTATICS */
1795
1796             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1797             ewrt             = _mm_mul_ps(r21,ewtabscale);
1798             ewitab           = _mm_cvttps_epi32(ewrt);
1799             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1800             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1801                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1802                                          &ewtabF,&ewtabFn);
1803             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1804             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1805
1806             fscal            = felec;
1807
1808             /* Calculate temporary vectorial force */
1809             tx               = _mm_mul_ps(fscal,dx21);
1810             ty               = _mm_mul_ps(fscal,dy21);
1811             tz               = _mm_mul_ps(fscal,dz21);
1812
1813             /* Update vectorial force */
1814             fix2             = _mm_add_ps(fix2,tx);
1815             fiy2             = _mm_add_ps(fiy2,ty);
1816             fiz2             = _mm_add_ps(fiz2,tz);
1817
1818             fjx1             = _mm_add_ps(fjx1,tx);
1819             fjy1             = _mm_add_ps(fjy1,ty);
1820             fjz1             = _mm_add_ps(fjz1,tz);
1821
1822             /**************************
1823              * CALCULATE INTERACTIONS *
1824              **************************/
1825
1826             r22              = _mm_mul_ps(rsq22,rinv22);
1827
1828             /* EWALD ELECTROSTATICS */
1829
1830             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1831             ewrt             = _mm_mul_ps(r22,ewtabscale);
1832             ewitab           = _mm_cvttps_epi32(ewrt);
1833             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1834             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1835                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1836                                          &ewtabF,&ewtabFn);
1837             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1838             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1839
1840             fscal            = felec;
1841
1842             /* Calculate temporary vectorial force */
1843             tx               = _mm_mul_ps(fscal,dx22);
1844             ty               = _mm_mul_ps(fscal,dy22);
1845             tz               = _mm_mul_ps(fscal,dz22);
1846
1847             /* Update vectorial force */
1848             fix2             = _mm_add_ps(fix2,tx);
1849             fiy2             = _mm_add_ps(fiy2,ty);
1850             fiz2             = _mm_add_ps(fiz2,tz);
1851
1852             fjx2             = _mm_add_ps(fjx2,tx);
1853             fjy2             = _mm_add_ps(fjy2,ty);
1854             fjz2             = _mm_add_ps(fjz2,tz);
1855
1856             /**************************
1857              * CALCULATE INTERACTIONS *
1858              **************************/
1859
1860             r23              = _mm_mul_ps(rsq23,rinv23);
1861
1862             /* EWALD ELECTROSTATICS */
1863
1864             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1865             ewrt             = _mm_mul_ps(r23,ewtabscale);
1866             ewitab           = _mm_cvttps_epi32(ewrt);
1867             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1868             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1869                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1870                                          &ewtabF,&ewtabFn);
1871             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1872             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
1873
1874             fscal            = felec;
1875
1876             /* Calculate temporary vectorial force */
1877             tx               = _mm_mul_ps(fscal,dx23);
1878             ty               = _mm_mul_ps(fscal,dy23);
1879             tz               = _mm_mul_ps(fscal,dz23);
1880
1881             /* Update vectorial force */
1882             fix2             = _mm_add_ps(fix2,tx);
1883             fiy2             = _mm_add_ps(fiy2,ty);
1884             fiz2             = _mm_add_ps(fiz2,tz);
1885
1886             fjx3             = _mm_add_ps(fjx3,tx);
1887             fjy3             = _mm_add_ps(fjy3,ty);
1888             fjz3             = _mm_add_ps(fjz3,tz);
1889
1890             /**************************
1891              * CALCULATE INTERACTIONS *
1892              **************************/
1893
1894             r31              = _mm_mul_ps(rsq31,rinv31);
1895
1896             /* EWALD ELECTROSTATICS */
1897
1898             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1899             ewrt             = _mm_mul_ps(r31,ewtabscale);
1900             ewitab           = _mm_cvttps_epi32(ewrt);
1901             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1902             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1903                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1904                                          &ewtabF,&ewtabFn);
1905             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1906             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
1907
1908             fscal            = felec;
1909
1910             /* Calculate temporary vectorial force */
1911             tx               = _mm_mul_ps(fscal,dx31);
1912             ty               = _mm_mul_ps(fscal,dy31);
1913             tz               = _mm_mul_ps(fscal,dz31);
1914
1915             /* Update vectorial force */
1916             fix3             = _mm_add_ps(fix3,tx);
1917             fiy3             = _mm_add_ps(fiy3,ty);
1918             fiz3             = _mm_add_ps(fiz3,tz);
1919
1920             fjx1             = _mm_add_ps(fjx1,tx);
1921             fjy1             = _mm_add_ps(fjy1,ty);
1922             fjz1             = _mm_add_ps(fjz1,tz);
1923
1924             /**************************
1925              * CALCULATE INTERACTIONS *
1926              **************************/
1927
1928             r32              = _mm_mul_ps(rsq32,rinv32);
1929
1930             /* EWALD ELECTROSTATICS */
1931
1932             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1933             ewrt             = _mm_mul_ps(r32,ewtabscale);
1934             ewitab           = _mm_cvttps_epi32(ewrt);
1935             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1936             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1937                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1938                                          &ewtabF,&ewtabFn);
1939             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1940             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
1941
1942             fscal            = felec;
1943
1944             /* Calculate temporary vectorial force */
1945             tx               = _mm_mul_ps(fscal,dx32);
1946             ty               = _mm_mul_ps(fscal,dy32);
1947             tz               = _mm_mul_ps(fscal,dz32);
1948
1949             /* Update vectorial force */
1950             fix3             = _mm_add_ps(fix3,tx);
1951             fiy3             = _mm_add_ps(fiy3,ty);
1952             fiz3             = _mm_add_ps(fiz3,tz);
1953
1954             fjx2             = _mm_add_ps(fjx2,tx);
1955             fjy2             = _mm_add_ps(fjy2,ty);
1956             fjz2             = _mm_add_ps(fjz2,tz);
1957
1958             /**************************
1959              * CALCULATE INTERACTIONS *
1960              **************************/
1961
1962             r33              = _mm_mul_ps(rsq33,rinv33);
1963
1964             /* EWALD ELECTROSTATICS */
1965
1966             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1967             ewrt             = _mm_mul_ps(r33,ewtabscale);
1968             ewitab           = _mm_cvttps_epi32(ewrt);
1969             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1970             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1971                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1972                                          &ewtabF,&ewtabFn);
1973             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1974             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
1975
1976             fscal            = felec;
1977
1978             /* Calculate temporary vectorial force */
1979             tx               = _mm_mul_ps(fscal,dx33);
1980             ty               = _mm_mul_ps(fscal,dy33);
1981             tz               = _mm_mul_ps(fscal,dz33);
1982
1983             /* Update vectorial force */
1984             fix3             = _mm_add_ps(fix3,tx);
1985             fiy3             = _mm_add_ps(fiy3,ty);
1986             fiz3             = _mm_add_ps(fiz3,tz);
1987
1988             fjx3             = _mm_add_ps(fjx3,tx);
1989             fjy3             = _mm_add_ps(fjy3,ty);
1990             fjz3             = _mm_add_ps(fjz3,tz);
1991
1992             fjptrA             = f+j_coord_offsetA;
1993             fjptrB             = f+j_coord_offsetB;
1994             fjptrC             = f+j_coord_offsetC;
1995             fjptrD             = f+j_coord_offsetD;
1996
1997             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1998                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
1999                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2000
2001             /* Inner loop uses 373 flops */
2002         }
2003
2004         if(jidx<j_index_end)
2005         {
2006
2007             /* Get j neighbor index, and coordinate index */
2008             jnrlistA         = jjnr[jidx];
2009             jnrlistB         = jjnr[jidx+1];
2010             jnrlistC         = jjnr[jidx+2];
2011             jnrlistD         = jjnr[jidx+3];
2012             /* Sign of each element will be negative for non-real atoms.
2013              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
2014              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
2015              */
2016             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
2017             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
2018             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
2019             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
2020             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
2021             j_coord_offsetA  = DIM*jnrA;
2022             j_coord_offsetB  = DIM*jnrB;
2023             j_coord_offsetC  = DIM*jnrC;
2024             j_coord_offsetD  = DIM*jnrD;
2025
2026             /* load j atom coordinates */
2027             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
2028                                               x+j_coord_offsetC,x+j_coord_offsetD,
2029                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
2030                                               &jy2,&jz2,&jx3,&jy3,&jz3);
2031
2032             /* Calculate displacement vector */
2033             dx00             = _mm_sub_ps(ix0,jx0);
2034             dy00             = _mm_sub_ps(iy0,jy0);
2035             dz00             = _mm_sub_ps(iz0,jz0);
2036             dx11             = _mm_sub_ps(ix1,jx1);
2037             dy11             = _mm_sub_ps(iy1,jy1);
2038             dz11             = _mm_sub_ps(iz1,jz1);
2039             dx12             = _mm_sub_ps(ix1,jx2);
2040             dy12             = _mm_sub_ps(iy1,jy2);
2041             dz12             = _mm_sub_ps(iz1,jz2);
2042             dx13             = _mm_sub_ps(ix1,jx3);
2043             dy13             = _mm_sub_ps(iy1,jy3);
2044             dz13             = _mm_sub_ps(iz1,jz3);
2045             dx21             = _mm_sub_ps(ix2,jx1);
2046             dy21             = _mm_sub_ps(iy2,jy1);
2047             dz21             = _mm_sub_ps(iz2,jz1);
2048             dx22             = _mm_sub_ps(ix2,jx2);
2049             dy22             = _mm_sub_ps(iy2,jy2);
2050             dz22             = _mm_sub_ps(iz2,jz2);
2051             dx23             = _mm_sub_ps(ix2,jx3);
2052             dy23             = _mm_sub_ps(iy2,jy3);
2053             dz23             = _mm_sub_ps(iz2,jz3);
2054             dx31             = _mm_sub_ps(ix3,jx1);
2055             dy31             = _mm_sub_ps(iy3,jy1);
2056             dz31             = _mm_sub_ps(iz3,jz1);
2057             dx32             = _mm_sub_ps(ix3,jx2);
2058             dy32             = _mm_sub_ps(iy3,jy2);
2059             dz32             = _mm_sub_ps(iz3,jz2);
2060             dx33             = _mm_sub_ps(ix3,jx3);
2061             dy33             = _mm_sub_ps(iy3,jy3);
2062             dz33             = _mm_sub_ps(iz3,jz3);
2063
2064             /* Calculate squared distance and things based on it */
2065             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
2066             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
2067             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
2068             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
2069             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
2070             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
2071             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
2072             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
2073             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
2074             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
2075
2076             rinv00           = gmx_mm_invsqrt_ps(rsq00);
2077             rinv11           = gmx_mm_invsqrt_ps(rsq11);
2078             rinv12           = gmx_mm_invsqrt_ps(rsq12);
2079             rinv13           = gmx_mm_invsqrt_ps(rsq13);
2080             rinv21           = gmx_mm_invsqrt_ps(rsq21);
2081             rinv22           = gmx_mm_invsqrt_ps(rsq22);
2082             rinv23           = gmx_mm_invsqrt_ps(rsq23);
2083             rinv31           = gmx_mm_invsqrt_ps(rsq31);
2084             rinv32           = gmx_mm_invsqrt_ps(rsq32);
2085             rinv33           = gmx_mm_invsqrt_ps(rsq33);
2086
2087             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
2088             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
2089             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
2090             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
2091             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
2092             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
2093             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
2094             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
2095             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
2096             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
2097
2098             fjx0             = _mm_setzero_ps();
2099             fjy0             = _mm_setzero_ps();
2100             fjz0             = _mm_setzero_ps();
2101             fjx1             = _mm_setzero_ps();
2102             fjy1             = _mm_setzero_ps();
2103             fjz1             = _mm_setzero_ps();
2104             fjx2             = _mm_setzero_ps();
2105             fjy2             = _mm_setzero_ps();
2106             fjz2             = _mm_setzero_ps();
2107             fjx3             = _mm_setzero_ps();
2108             fjy3             = _mm_setzero_ps();
2109             fjz3             = _mm_setzero_ps();
2110
2111             /**************************
2112              * CALCULATE INTERACTIONS *
2113              **************************/
2114
2115             r00              = _mm_mul_ps(rsq00,rinv00);
2116             r00              = _mm_andnot_ps(dummy_mask,r00);
2117
2118             /* Analytical LJ-PME */
2119             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
2120             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
2121             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
2122             exponent         = gmx_simd_exp_r(ewcljrsq);
2123             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
2124             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
2125             /* f6A = 6 * C6grid * (1 - poly) */
2126             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
2127             /* f6B = C6grid * exponent * beta^6 */
2128             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
2129             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
2130             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
2131
2132             fscal            = fvdw;
2133
2134             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2135
2136             /* Calculate temporary vectorial force */
2137             tx               = _mm_mul_ps(fscal,dx00);
2138             ty               = _mm_mul_ps(fscal,dy00);
2139             tz               = _mm_mul_ps(fscal,dz00);
2140
2141             /* Update vectorial force */
2142             fix0             = _mm_add_ps(fix0,tx);
2143             fiy0             = _mm_add_ps(fiy0,ty);
2144             fiz0             = _mm_add_ps(fiz0,tz);
2145
2146             fjx0             = _mm_add_ps(fjx0,tx);
2147             fjy0             = _mm_add_ps(fjy0,ty);
2148             fjz0             = _mm_add_ps(fjz0,tz);
2149
2150             /**************************
2151              * CALCULATE INTERACTIONS *
2152              **************************/
2153
2154             r11              = _mm_mul_ps(rsq11,rinv11);
2155             r11              = _mm_andnot_ps(dummy_mask,r11);
2156
2157             /* EWALD ELECTROSTATICS */
2158
2159             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2160             ewrt             = _mm_mul_ps(r11,ewtabscale);
2161             ewitab           = _mm_cvttps_epi32(ewrt);
2162             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2163             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2164                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2165                                          &ewtabF,&ewtabFn);
2166             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2167             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
2168
2169             fscal            = felec;
2170
2171             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2172
2173             /* Calculate temporary vectorial force */
2174             tx               = _mm_mul_ps(fscal,dx11);
2175             ty               = _mm_mul_ps(fscal,dy11);
2176             tz               = _mm_mul_ps(fscal,dz11);
2177
2178             /* Update vectorial force */
2179             fix1             = _mm_add_ps(fix1,tx);
2180             fiy1             = _mm_add_ps(fiy1,ty);
2181             fiz1             = _mm_add_ps(fiz1,tz);
2182
2183             fjx1             = _mm_add_ps(fjx1,tx);
2184             fjy1             = _mm_add_ps(fjy1,ty);
2185             fjz1             = _mm_add_ps(fjz1,tz);
2186
2187             /**************************
2188              * CALCULATE INTERACTIONS *
2189              **************************/
2190
2191             r12              = _mm_mul_ps(rsq12,rinv12);
2192             r12              = _mm_andnot_ps(dummy_mask,r12);
2193
2194             /* EWALD ELECTROSTATICS */
2195
2196             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2197             ewrt             = _mm_mul_ps(r12,ewtabscale);
2198             ewitab           = _mm_cvttps_epi32(ewrt);
2199             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2200             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2201                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2202                                          &ewtabF,&ewtabFn);
2203             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2204             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
2205
2206             fscal            = felec;
2207
2208             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2209
2210             /* Calculate temporary vectorial force */
2211             tx               = _mm_mul_ps(fscal,dx12);
2212             ty               = _mm_mul_ps(fscal,dy12);
2213             tz               = _mm_mul_ps(fscal,dz12);
2214
2215             /* Update vectorial force */
2216             fix1             = _mm_add_ps(fix1,tx);
2217             fiy1             = _mm_add_ps(fiy1,ty);
2218             fiz1             = _mm_add_ps(fiz1,tz);
2219
2220             fjx2             = _mm_add_ps(fjx2,tx);
2221             fjy2             = _mm_add_ps(fjy2,ty);
2222             fjz2             = _mm_add_ps(fjz2,tz);
2223
2224             /**************************
2225              * CALCULATE INTERACTIONS *
2226              **************************/
2227
2228             r13              = _mm_mul_ps(rsq13,rinv13);
2229             r13              = _mm_andnot_ps(dummy_mask,r13);
2230
2231             /* EWALD ELECTROSTATICS */
2232
2233             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2234             ewrt             = _mm_mul_ps(r13,ewtabscale);
2235             ewitab           = _mm_cvttps_epi32(ewrt);
2236             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2237             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2238                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2239                                          &ewtabF,&ewtabFn);
2240             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2241             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
2242
2243             fscal            = felec;
2244
2245             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2246
2247             /* Calculate temporary vectorial force */
2248             tx               = _mm_mul_ps(fscal,dx13);
2249             ty               = _mm_mul_ps(fscal,dy13);
2250             tz               = _mm_mul_ps(fscal,dz13);
2251
2252             /* Update vectorial force */
2253             fix1             = _mm_add_ps(fix1,tx);
2254             fiy1             = _mm_add_ps(fiy1,ty);
2255             fiz1             = _mm_add_ps(fiz1,tz);
2256
2257             fjx3             = _mm_add_ps(fjx3,tx);
2258             fjy3             = _mm_add_ps(fjy3,ty);
2259             fjz3             = _mm_add_ps(fjz3,tz);
2260
2261             /**************************
2262              * CALCULATE INTERACTIONS *
2263              **************************/
2264
2265             r21              = _mm_mul_ps(rsq21,rinv21);
2266             r21              = _mm_andnot_ps(dummy_mask,r21);
2267
2268             /* EWALD ELECTROSTATICS */
2269
2270             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2271             ewrt             = _mm_mul_ps(r21,ewtabscale);
2272             ewitab           = _mm_cvttps_epi32(ewrt);
2273             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2274             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2275                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2276                                          &ewtabF,&ewtabFn);
2277             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2278             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
2279
2280             fscal            = felec;
2281
2282             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2283
2284             /* Calculate temporary vectorial force */
2285             tx               = _mm_mul_ps(fscal,dx21);
2286             ty               = _mm_mul_ps(fscal,dy21);
2287             tz               = _mm_mul_ps(fscal,dz21);
2288
2289             /* Update vectorial force */
2290             fix2             = _mm_add_ps(fix2,tx);
2291             fiy2             = _mm_add_ps(fiy2,ty);
2292             fiz2             = _mm_add_ps(fiz2,tz);
2293
2294             fjx1             = _mm_add_ps(fjx1,tx);
2295             fjy1             = _mm_add_ps(fjy1,ty);
2296             fjz1             = _mm_add_ps(fjz1,tz);
2297
2298             /**************************
2299              * CALCULATE INTERACTIONS *
2300              **************************/
2301
2302             r22              = _mm_mul_ps(rsq22,rinv22);
2303             r22              = _mm_andnot_ps(dummy_mask,r22);
2304
2305             /* EWALD ELECTROSTATICS */
2306
2307             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2308             ewrt             = _mm_mul_ps(r22,ewtabscale);
2309             ewitab           = _mm_cvttps_epi32(ewrt);
2310             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2311             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2312                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2313                                          &ewtabF,&ewtabFn);
2314             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2315             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
2316
2317             fscal            = felec;
2318
2319             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2320
2321             /* Calculate temporary vectorial force */
2322             tx               = _mm_mul_ps(fscal,dx22);
2323             ty               = _mm_mul_ps(fscal,dy22);
2324             tz               = _mm_mul_ps(fscal,dz22);
2325
2326             /* Update vectorial force */
2327             fix2             = _mm_add_ps(fix2,tx);
2328             fiy2             = _mm_add_ps(fiy2,ty);
2329             fiz2             = _mm_add_ps(fiz2,tz);
2330
2331             fjx2             = _mm_add_ps(fjx2,tx);
2332             fjy2             = _mm_add_ps(fjy2,ty);
2333             fjz2             = _mm_add_ps(fjz2,tz);
2334
2335             /**************************
2336              * CALCULATE INTERACTIONS *
2337              **************************/
2338
2339             r23              = _mm_mul_ps(rsq23,rinv23);
2340             r23              = _mm_andnot_ps(dummy_mask,r23);
2341
2342             /* EWALD ELECTROSTATICS */
2343
2344             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2345             ewrt             = _mm_mul_ps(r23,ewtabscale);
2346             ewitab           = _mm_cvttps_epi32(ewrt);
2347             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2348             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2349                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2350                                          &ewtabF,&ewtabFn);
2351             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2352             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
2353
2354             fscal            = felec;
2355
2356             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2357
2358             /* Calculate temporary vectorial force */
2359             tx               = _mm_mul_ps(fscal,dx23);
2360             ty               = _mm_mul_ps(fscal,dy23);
2361             tz               = _mm_mul_ps(fscal,dz23);
2362
2363             /* Update vectorial force */
2364             fix2             = _mm_add_ps(fix2,tx);
2365             fiy2             = _mm_add_ps(fiy2,ty);
2366             fiz2             = _mm_add_ps(fiz2,tz);
2367
2368             fjx3             = _mm_add_ps(fjx3,tx);
2369             fjy3             = _mm_add_ps(fjy3,ty);
2370             fjz3             = _mm_add_ps(fjz3,tz);
2371
2372             /**************************
2373              * CALCULATE INTERACTIONS *
2374              **************************/
2375
2376             r31              = _mm_mul_ps(rsq31,rinv31);
2377             r31              = _mm_andnot_ps(dummy_mask,r31);
2378
2379             /* EWALD ELECTROSTATICS */
2380
2381             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2382             ewrt             = _mm_mul_ps(r31,ewtabscale);
2383             ewitab           = _mm_cvttps_epi32(ewrt);
2384             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2385             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2386                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2387                                          &ewtabF,&ewtabFn);
2388             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2389             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
2390
2391             fscal            = felec;
2392
2393             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2394
2395             /* Calculate temporary vectorial force */
2396             tx               = _mm_mul_ps(fscal,dx31);
2397             ty               = _mm_mul_ps(fscal,dy31);
2398             tz               = _mm_mul_ps(fscal,dz31);
2399
2400             /* Update vectorial force */
2401             fix3             = _mm_add_ps(fix3,tx);
2402             fiy3             = _mm_add_ps(fiy3,ty);
2403             fiz3             = _mm_add_ps(fiz3,tz);
2404
2405             fjx1             = _mm_add_ps(fjx1,tx);
2406             fjy1             = _mm_add_ps(fjy1,ty);
2407             fjz1             = _mm_add_ps(fjz1,tz);
2408
2409             /**************************
2410              * CALCULATE INTERACTIONS *
2411              **************************/
2412
2413             r32              = _mm_mul_ps(rsq32,rinv32);
2414             r32              = _mm_andnot_ps(dummy_mask,r32);
2415
2416             /* EWALD ELECTROSTATICS */
2417
2418             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2419             ewrt             = _mm_mul_ps(r32,ewtabscale);
2420             ewitab           = _mm_cvttps_epi32(ewrt);
2421             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2422             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2423                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2424                                          &ewtabF,&ewtabFn);
2425             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2426             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
2427
2428             fscal            = felec;
2429
2430             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2431
2432             /* Calculate temporary vectorial force */
2433             tx               = _mm_mul_ps(fscal,dx32);
2434             ty               = _mm_mul_ps(fscal,dy32);
2435             tz               = _mm_mul_ps(fscal,dz32);
2436
2437             /* Update vectorial force */
2438             fix3             = _mm_add_ps(fix3,tx);
2439             fiy3             = _mm_add_ps(fiy3,ty);
2440             fiz3             = _mm_add_ps(fiz3,tz);
2441
2442             fjx2             = _mm_add_ps(fjx2,tx);
2443             fjy2             = _mm_add_ps(fjy2,ty);
2444             fjz2             = _mm_add_ps(fjz2,tz);
2445
2446             /**************************
2447              * CALCULATE INTERACTIONS *
2448              **************************/
2449
2450             r33              = _mm_mul_ps(rsq33,rinv33);
2451             r33              = _mm_andnot_ps(dummy_mask,r33);
2452
2453             /* EWALD ELECTROSTATICS */
2454
2455             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2456             ewrt             = _mm_mul_ps(r33,ewtabscale);
2457             ewitab           = _mm_cvttps_epi32(ewrt);
2458             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2459             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2460                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2461                                          &ewtabF,&ewtabFn);
2462             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2463             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
2464
2465             fscal            = felec;
2466
2467             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2468
2469             /* Calculate temporary vectorial force */
2470             tx               = _mm_mul_ps(fscal,dx33);
2471             ty               = _mm_mul_ps(fscal,dy33);
2472             tz               = _mm_mul_ps(fscal,dz33);
2473
2474             /* Update vectorial force */
2475             fix3             = _mm_add_ps(fix3,tx);
2476             fiy3             = _mm_add_ps(fiy3,ty);
2477             fiz3             = _mm_add_ps(fiz3,tz);
2478
2479             fjx3             = _mm_add_ps(fjx3,tx);
2480             fjy3             = _mm_add_ps(fjy3,ty);
2481             fjz3             = _mm_add_ps(fjz3,tz);
2482
2483             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2484             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2485             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2486             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2487
2488             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
2489                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
2490                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2491
2492             /* Inner loop uses 383 flops */
2493         }
2494
2495         /* End of innermost loop */
2496
2497         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2498                                               f+i_coord_offset,fshift+i_shift_offset);
2499
2500         /* Increment number of inner iterations */
2501         inneriter                  += j_index_end - j_index_start;
2502
2503         /* Outer loop uses 24 flops */
2504     }
2505
2506     /* Increment number of outer iterations */
2507     outeriter        += nri;
2508
2509     /* Update outer/inner flops */
2510
2511     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*24 + inneriter*383);
2512 }