e41b2d1d4c4b895fcbc2e812ca8c5fe2e722c583
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse4_1_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128           c6grid_00;
106     __m128           c6grid_10;
107     __m128           c6grid_20;
108     __m128           c6grid_30;
109     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
110     real             *vdwgridparam;
111     __m128           one_half  = _mm_set1_ps(0.5);
112     __m128           minus_one = _mm_set1_ps(-1.0);
113     __m128i          ewitab;
114     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
115     real             *ewtab;
116     __m128           dummy_mask,cutoff_mask;
117     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
118     __m128           one     = _mm_set1_ps(1.0);
119     __m128           two     = _mm_set1_ps(2.0);
120     x                = xx[0];
121     f                = ff[0];
122
123     nri              = nlist->nri;
124     iinr             = nlist->iinr;
125     jindex           = nlist->jindex;
126     jjnr             = nlist->jjnr;
127     shiftidx         = nlist->shift;
128     gid              = nlist->gid;
129     shiftvec         = fr->shift_vec[0];
130     fshift           = fr->fshift[0];
131     facel            = _mm_set1_ps(fr->epsfac);
132     charge           = mdatoms->chargeA;
133     nvdwtype         = fr->ntype;
134     vdwparam         = fr->nbfp;
135     vdwtype          = mdatoms->typeA;
136     vdwgridparam     = fr->ljpme_c6grid;
137     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
138     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
139     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
140
141     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
142     ewtab            = fr->ic->tabq_coul_FDV0;
143     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
144     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
145
146     /* Setup water-specific parameters */
147     inr              = nlist->iinr[0];
148     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
149     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
150     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
151     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153     /* Avoid stupid compiler warnings */
154     jnrA = jnrB = jnrC = jnrD = 0;
155     j_coord_offsetA = 0;
156     j_coord_offsetB = 0;
157     j_coord_offsetC = 0;
158     j_coord_offsetD = 0;
159
160     outeriter        = 0;
161     inneriter        = 0;
162
163     for(iidx=0;iidx<4*DIM;iidx++)
164     {
165         scratch[iidx] = 0.0;
166     }
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
184                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
185
186         fix0             = _mm_setzero_ps();
187         fiy0             = _mm_setzero_ps();
188         fiz0             = _mm_setzero_ps();
189         fix1             = _mm_setzero_ps();
190         fiy1             = _mm_setzero_ps();
191         fiz1             = _mm_setzero_ps();
192         fix2             = _mm_setzero_ps();
193         fiy2             = _mm_setzero_ps();
194         fiz2             = _mm_setzero_ps();
195         fix3             = _mm_setzero_ps();
196         fiy3             = _mm_setzero_ps();
197         fiz3             = _mm_setzero_ps();
198
199         /* Reset potential sums */
200         velecsum         = _mm_setzero_ps();
201         vvdwsum          = _mm_setzero_ps();
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
205         {
206
207             /* Get j neighbor index, and coordinate index */
208             jnrA             = jjnr[jidx];
209             jnrB             = jjnr[jidx+1];
210             jnrC             = jjnr[jidx+2];
211             jnrD             = jjnr[jidx+3];
212             j_coord_offsetA  = DIM*jnrA;
213             j_coord_offsetB  = DIM*jnrB;
214             j_coord_offsetC  = DIM*jnrC;
215             j_coord_offsetD  = DIM*jnrD;
216
217             /* load j atom coordinates */
218             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
219                                               x+j_coord_offsetC,x+j_coord_offsetD,
220                                               &jx0,&jy0,&jz0);
221
222             /* Calculate displacement vector */
223             dx00             = _mm_sub_ps(ix0,jx0);
224             dy00             = _mm_sub_ps(iy0,jy0);
225             dz00             = _mm_sub_ps(iz0,jz0);
226             dx10             = _mm_sub_ps(ix1,jx0);
227             dy10             = _mm_sub_ps(iy1,jy0);
228             dz10             = _mm_sub_ps(iz1,jz0);
229             dx20             = _mm_sub_ps(ix2,jx0);
230             dy20             = _mm_sub_ps(iy2,jy0);
231             dz20             = _mm_sub_ps(iz2,jz0);
232             dx30             = _mm_sub_ps(ix3,jx0);
233             dy30             = _mm_sub_ps(iy3,jy0);
234             dz30             = _mm_sub_ps(iz3,jz0);
235
236             /* Calculate squared distance and things based on it */
237             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
238             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
239             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
240             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
241
242             rinv00           = gmx_mm_invsqrt_ps(rsq00);
243             rinv10           = gmx_mm_invsqrt_ps(rsq10);
244             rinv20           = gmx_mm_invsqrt_ps(rsq20);
245             rinv30           = gmx_mm_invsqrt_ps(rsq30);
246
247             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
248             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
249             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
250             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
251
252             /* Load parameters for j particles */
253             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
254                                                               charge+jnrC+0,charge+jnrD+0);
255             vdwjidx0A        = 2*vdwtype[jnrA+0];
256             vdwjidx0B        = 2*vdwtype[jnrB+0];
257             vdwjidx0C        = 2*vdwtype[jnrC+0];
258             vdwjidx0D        = 2*vdwtype[jnrD+0];
259
260             fjx0             = _mm_setzero_ps();
261             fjy0             = _mm_setzero_ps();
262             fjz0             = _mm_setzero_ps();
263
264             /**************************
265              * CALCULATE INTERACTIONS *
266              **************************/
267
268             r00              = _mm_mul_ps(rsq00,rinv00);
269
270             /* Compute parameters for interactions between i and j atoms */
271             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
272                                          vdwparam+vdwioffset0+vdwjidx0B,
273                                          vdwparam+vdwioffset0+vdwjidx0C,
274                                          vdwparam+vdwioffset0+vdwjidx0D,
275                                          &c6_00,&c12_00);
276
277             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
278                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
279                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
280                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
281
282             /* Analytical LJ-PME */
283             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
284             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
285             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
286             exponent         = gmx_simd_exp_r(ewcljrsq);
287             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
288             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
289             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
290             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
291             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
292             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
293             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
294             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
298
299             fscal            = fvdw;
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm_mul_ps(fscal,dx00);
303             ty               = _mm_mul_ps(fscal,dy00);
304             tz               = _mm_mul_ps(fscal,dz00);
305
306             /* Update vectorial force */
307             fix0             = _mm_add_ps(fix0,tx);
308             fiy0             = _mm_add_ps(fiy0,ty);
309             fiz0             = _mm_add_ps(fiz0,tz);
310
311             fjx0             = _mm_add_ps(fjx0,tx);
312             fjy0             = _mm_add_ps(fjy0,ty);
313             fjz0             = _mm_add_ps(fjz0,tz);
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             r10              = _mm_mul_ps(rsq10,rinv10);
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq10             = _mm_mul_ps(iq1,jq0);
323
324             /* EWALD ELECTROSTATICS */
325
326             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
327             ewrt             = _mm_mul_ps(r10,ewtabscale);
328             ewitab           = _mm_cvttps_epi32(ewrt);
329             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
330             ewitab           = _mm_slli_epi32(ewitab,2);
331             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
332             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
333             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
334             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
335             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
336             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
337             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
338             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
339             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm_add_ps(velecsum,velec);
343
344             fscal            = felec;
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_ps(fscal,dx10);
348             ty               = _mm_mul_ps(fscal,dy10);
349             tz               = _mm_mul_ps(fscal,dz10);
350
351             /* Update vectorial force */
352             fix1             = _mm_add_ps(fix1,tx);
353             fiy1             = _mm_add_ps(fiy1,ty);
354             fiz1             = _mm_add_ps(fiz1,tz);
355
356             fjx0             = _mm_add_ps(fjx0,tx);
357             fjy0             = _mm_add_ps(fjy0,ty);
358             fjz0             = _mm_add_ps(fjz0,tz);
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r20              = _mm_mul_ps(rsq20,rinv20);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq20             = _mm_mul_ps(iq2,jq0);
368
369             /* EWALD ELECTROSTATICS */
370
371             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
372             ewrt             = _mm_mul_ps(r20,ewtabscale);
373             ewitab           = _mm_cvttps_epi32(ewrt);
374             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
375             ewitab           = _mm_slli_epi32(ewitab,2);
376             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
377             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
378             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
379             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
380             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
381             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
382             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
383             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
384             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
385
386             /* Update potential sum for this i atom from the interaction with this j atom. */
387             velecsum         = _mm_add_ps(velecsum,velec);
388
389             fscal            = felec;
390
391             /* Calculate temporary vectorial force */
392             tx               = _mm_mul_ps(fscal,dx20);
393             ty               = _mm_mul_ps(fscal,dy20);
394             tz               = _mm_mul_ps(fscal,dz20);
395
396             /* Update vectorial force */
397             fix2             = _mm_add_ps(fix2,tx);
398             fiy2             = _mm_add_ps(fiy2,ty);
399             fiz2             = _mm_add_ps(fiz2,tz);
400
401             fjx0             = _mm_add_ps(fjx0,tx);
402             fjy0             = _mm_add_ps(fjy0,ty);
403             fjz0             = _mm_add_ps(fjz0,tz);
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             r30              = _mm_mul_ps(rsq30,rinv30);
410
411             /* Compute parameters for interactions between i and j atoms */
412             qq30             = _mm_mul_ps(iq3,jq0);
413
414             /* EWALD ELECTROSTATICS */
415
416             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
417             ewrt             = _mm_mul_ps(r30,ewtabscale);
418             ewitab           = _mm_cvttps_epi32(ewrt);
419             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
420             ewitab           = _mm_slli_epi32(ewitab,2);
421             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
422             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
423             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
424             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
425             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
426             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
427             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
428             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
429             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
430
431             /* Update potential sum for this i atom from the interaction with this j atom. */
432             velecsum         = _mm_add_ps(velecsum,velec);
433
434             fscal            = felec;
435
436             /* Calculate temporary vectorial force */
437             tx               = _mm_mul_ps(fscal,dx30);
438             ty               = _mm_mul_ps(fscal,dy30);
439             tz               = _mm_mul_ps(fscal,dz30);
440
441             /* Update vectorial force */
442             fix3             = _mm_add_ps(fix3,tx);
443             fiy3             = _mm_add_ps(fiy3,ty);
444             fiz3             = _mm_add_ps(fiz3,tz);
445
446             fjx0             = _mm_add_ps(fjx0,tx);
447             fjy0             = _mm_add_ps(fjy0,ty);
448             fjz0             = _mm_add_ps(fjz0,tz);
449
450             fjptrA             = f+j_coord_offsetA;
451             fjptrB             = f+j_coord_offsetB;
452             fjptrC             = f+j_coord_offsetC;
453             fjptrD             = f+j_coord_offsetD;
454
455             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
456
457             /* Inner loop uses 174 flops */
458         }
459
460         if(jidx<j_index_end)
461         {
462
463             /* Get j neighbor index, and coordinate index */
464             jnrlistA         = jjnr[jidx];
465             jnrlistB         = jjnr[jidx+1];
466             jnrlistC         = jjnr[jidx+2];
467             jnrlistD         = jjnr[jidx+3];
468             /* Sign of each element will be negative for non-real atoms.
469              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
470              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
471              */
472             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
473             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
474             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
475             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
476             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
477             j_coord_offsetA  = DIM*jnrA;
478             j_coord_offsetB  = DIM*jnrB;
479             j_coord_offsetC  = DIM*jnrC;
480             j_coord_offsetD  = DIM*jnrD;
481
482             /* load j atom coordinates */
483             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
484                                               x+j_coord_offsetC,x+j_coord_offsetD,
485                                               &jx0,&jy0,&jz0);
486
487             /* Calculate displacement vector */
488             dx00             = _mm_sub_ps(ix0,jx0);
489             dy00             = _mm_sub_ps(iy0,jy0);
490             dz00             = _mm_sub_ps(iz0,jz0);
491             dx10             = _mm_sub_ps(ix1,jx0);
492             dy10             = _mm_sub_ps(iy1,jy0);
493             dz10             = _mm_sub_ps(iz1,jz0);
494             dx20             = _mm_sub_ps(ix2,jx0);
495             dy20             = _mm_sub_ps(iy2,jy0);
496             dz20             = _mm_sub_ps(iz2,jz0);
497             dx30             = _mm_sub_ps(ix3,jx0);
498             dy30             = _mm_sub_ps(iy3,jy0);
499             dz30             = _mm_sub_ps(iz3,jz0);
500
501             /* Calculate squared distance and things based on it */
502             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
503             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
504             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
505             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
506
507             rinv00           = gmx_mm_invsqrt_ps(rsq00);
508             rinv10           = gmx_mm_invsqrt_ps(rsq10);
509             rinv20           = gmx_mm_invsqrt_ps(rsq20);
510             rinv30           = gmx_mm_invsqrt_ps(rsq30);
511
512             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
513             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
514             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
515             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
516
517             /* Load parameters for j particles */
518             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
519                                                               charge+jnrC+0,charge+jnrD+0);
520             vdwjidx0A        = 2*vdwtype[jnrA+0];
521             vdwjidx0B        = 2*vdwtype[jnrB+0];
522             vdwjidx0C        = 2*vdwtype[jnrC+0];
523             vdwjidx0D        = 2*vdwtype[jnrD+0];
524
525             fjx0             = _mm_setzero_ps();
526             fjy0             = _mm_setzero_ps();
527             fjz0             = _mm_setzero_ps();
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             r00              = _mm_mul_ps(rsq00,rinv00);
534             r00              = _mm_andnot_ps(dummy_mask,r00);
535
536             /* Compute parameters for interactions between i and j atoms */
537             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
538                                          vdwparam+vdwioffset0+vdwjidx0B,
539                                          vdwparam+vdwioffset0+vdwjidx0C,
540                                          vdwparam+vdwioffset0+vdwjidx0D,
541                                          &c6_00,&c12_00);
542
543             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
544                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
545                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
546                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
547
548             /* Analytical LJ-PME */
549             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
550             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
551             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
552             exponent         = gmx_simd_exp_r(ewcljrsq);
553             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
554             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
555             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
556             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
557             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
558             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
559             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
560             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
564             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
565
566             fscal            = fvdw;
567
568             fscal            = _mm_andnot_ps(dummy_mask,fscal);
569
570             /* Calculate temporary vectorial force */
571             tx               = _mm_mul_ps(fscal,dx00);
572             ty               = _mm_mul_ps(fscal,dy00);
573             tz               = _mm_mul_ps(fscal,dz00);
574
575             /* Update vectorial force */
576             fix0             = _mm_add_ps(fix0,tx);
577             fiy0             = _mm_add_ps(fiy0,ty);
578             fiz0             = _mm_add_ps(fiz0,tz);
579
580             fjx0             = _mm_add_ps(fjx0,tx);
581             fjy0             = _mm_add_ps(fjy0,ty);
582             fjz0             = _mm_add_ps(fjz0,tz);
583
584             /**************************
585              * CALCULATE INTERACTIONS *
586              **************************/
587
588             r10              = _mm_mul_ps(rsq10,rinv10);
589             r10              = _mm_andnot_ps(dummy_mask,r10);
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq10             = _mm_mul_ps(iq1,jq0);
593
594             /* EWALD ELECTROSTATICS */
595
596             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
597             ewrt             = _mm_mul_ps(r10,ewtabscale);
598             ewitab           = _mm_cvttps_epi32(ewrt);
599             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
600             ewitab           = _mm_slli_epi32(ewitab,2);
601             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
602             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
603             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
604             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
605             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
606             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
607             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
608             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
609             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
610
611             /* Update potential sum for this i atom from the interaction with this j atom. */
612             velec            = _mm_andnot_ps(dummy_mask,velec);
613             velecsum         = _mm_add_ps(velecsum,velec);
614
615             fscal            = felec;
616
617             fscal            = _mm_andnot_ps(dummy_mask,fscal);
618
619             /* Calculate temporary vectorial force */
620             tx               = _mm_mul_ps(fscal,dx10);
621             ty               = _mm_mul_ps(fscal,dy10);
622             tz               = _mm_mul_ps(fscal,dz10);
623
624             /* Update vectorial force */
625             fix1             = _mm_add_ps(fix1,tx);
626             fiy1             = _mm_add_ps(fiy1,ty);
627             fiz1             = _mm_add_ps(fiz1,tz);
628
629             fjx0             = _mm_add_ps(fjx0,tx);
630             fjy0             = _mm_add_ps(fjy0,ty);
631             fjz0             = _mm_add_ps(fjz0,tz);
632
633             /**************************
634              * CALCULATE INTERACTIONS *
635              **************************/
636
637             r20              = _mm_mul_ps(rsq20,rinv20);
638             r20              = _mm_andnot_ps(dummy_mask,r20);
639
640             /* Compute parameters for interactions between i and j atoms */
641             qq20             = _mm_mul_ps(iq2,jq0);
642
643             /* EWALD ELECTROSTATICS */
644
645             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
646             ewrt             = _mm_mul_ps(r20,ewtabscale);
647             ewitab           = _mm_cvttps_epi32(ewrt);
648             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
649             ewitab           = _mm_slli_epi32(ewitab,2);
650             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
651             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
652             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
653             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
654             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
655             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
656             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
657             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
658             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
659
660             /* Update potential sum for this i atom from the interaction with this j atom. */
661             velec            = _mm_andnot_ps(dummy_mask,velec);
662             velecsum         = _mm_add_ps(velecsum,velec);
663
664             fscal            = felec;
665
666             fscal            = _mm_andnot_ps(dummy_mask,fscal);
667
668             /* Calculate temporary vectorial force */
669             tx               = _mm_mul_ps(fscal,dx20);
670             ty               = _mm_mul_ps(fscal,dy20);
671             tz               = _mm_mul_ps(fscal,dz20);
672
673             /* Update vectorial force */
674             fix2             = _mm_add_ps(fix2,tx);
675             fiy2             = _mm_add_ps(fiy2,ty);
676             fiz2             = _mm_add_ps(fiz2,tz);
677
678             fjx0             = _mm_add_ps(fjx0,tx);
679             fjy0             = _mm_add_ps(fjy0,ty);
680             fjz0             = _mm_add_ps(fjz0,tz);
681
682             /**************************
683              * CALCULATE INTERACTIONS *
684              **************************/
685
686             r30              = _mm_mul_ps(rsq30,rinv30);
687             r30              = _mm_andnot_ps(dummy_mask,r30);
688
689             /* Compute parameters for interactions between i and j atoms */
690             qq30             = _mm_mul_ps(iq3,jq0);
691
692             /* EWALD ELECTROSTATICS */
693
694             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
695             ewrt             = _mm_mul_ps(r30,ewtabscale);
696             ewitab           = _mm_cvttps_epi32(ewrt);
697             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
698             ewitab           = _mm_slli_epi32(ewitab,2);
699             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
700             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
701             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
702             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
703             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
704             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
705             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
706             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
707             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
708
709             /* Update potential sum for this i atom from the interaction with this j atom. */
710             velec            = _mm_andnot_ps(dummy_mask,velec);
711             velecsum         = _mm_add_ps(velecsum,velec);
712
713             fscal            = felec;
714
715             fscal            = _mm_andnot_ps(dummy_mask,fscal);
716
717             /* Calculate temporary vectorial force */
718             tx               = _mm_mul_ps(fscal,dx30);
719             ty               = _mm_mul_ps(fscal,dy30);
720             tz               = _mm_mul_ps(fscal,dz30);
721
722             /* Update vectorial force */
723             fix3             = _mm_add_ps(fix3,tx);
724             fiy3             = _mm_add_ps(fiy3,ty);
725             fiz3             = _mm_add_ps(fiz3,tz);
726
727             fjx0             = _mm_add_ps(fjx0,tx);
728             fjy0             = _mm_add_ps(fjy0,ty);
729             fjz0             = _mm_add_ps(fjz0,tz);
730
731             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
732             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
733             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
734             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
735
736             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
737
738             /* Inner loop uses 178 flops */
739         }
740
741         /* End of innermost loop */
742
743         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
744                                               f+i_coord_offset,fshift+i_shift_offset);
745
746         ggid                        = gid[iidx];
747         /* Update potential energies */
748         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
749         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
750
751         /* Increment number of inner iterations */
752         inneriter                  += j_index_end - j_index_start;
753
754         /* Outer loop uses 26 flops */
755     }
756
757     /* Increment number of outer iterations */
758     outeriter        += nri;
759
760     /* Update outer/inner flops */
761
762     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*178);
763 }
764 /*
765  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse4_1_single
766  * Electrostatics interaction: Ewald
767  * VdW interaction:            LJEwald
768  * Geometry:                   Water4-Particle
769  * Calculate force/pot:        Force
770  */
771 void
772 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse4_1_single
773                     (t_nblist                    * gmx_restrict       nlist,
774                      rvec                        * gmx_restrict          xx,
775                      rvec                        * gmx_restrict          ff,
776                      t_forcerec                  * gmx_restrict          fr,
777                      t_mdatoms                   * gmx_restrict     mdatoms,
778                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
779                      t_nrnb                      * gmx_restrict        nrnb)
780 {
781     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
782      * just 0 for non-waters.
783      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
784      * jnr indices corresponding to data put in the four positions in the SIMD register.
785      */
786     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
787     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
788     int              jnrA,jnrB,jnrC,jnrD;
789     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
790     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
791     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
792     real             rcutoff_scalar;
793     real             *shiftvec,*fshift,*x,*f;
794     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
795     real             scratch[4*DIM];
796     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
797     int              vdwioffset0;
798     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
799     int              vdwioffset1;
800     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
801     int              vdwioffset2;
802     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
803     int              vdwioffset3;
804     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
805     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
806     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
807     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
808     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
809     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
810     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
811     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
812     real             *charge;
813     int              nvdwtype;
814     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
815     int              *vdwtype;
816     real             *vdwparam;
817     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
818     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
819     __m128           c6grid_00;
820     __m128           c6grid_10;
821     __m128           c6grid_20;
822     __m128           c6grid_30;
823     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
824     real             *vdwgridparam;
825     __m128           one_half  = _mm_set1_ps(0.5);
826     __m128           minus_one = _mm_set1_ps(-1.0);
827     __m128i          ewitab;
828     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
829     real             *ewtab;
830     __m128           dummy_mask,cutoff_mask;
831     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
832     __m128           one     = _mm_set1_ps(1.0);
833     __m128           two     = _mm_set1_ps(2.0);
834     x                = xx[0];
835     f                = ff[0];
836
837     nri              = nlist->nri;
838     iinr             = nlist->iinr;
839     jindex           = nlist->jindex;
840     jjnr             = nlist->jjnr;
841     shiftidx         = nlist->shift;
842     gid              = nlist->gid;
843     shiftvec         = fr->shift_vec[0];
844     fshift           = fr->fshift[0];
845     facel            = _mm_set1_ps(fr->epsfac);
846     charge           = mdatoms->chargeA;
847     nvdwtype         = fr->ntype;
848     vdwparam         = fr->nbfp;
849     vdwtype          = mdatoms->typeA;
850     vdwgridparam     = fr->ljpme_c6grid;
851     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
852     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
853     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
854
855     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
856     ewtab            = fr->ic->tabq_coul_F;
857     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
858     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
859
860     /* Setup water-specific parameters */
861     inr              = nlist->iinr[0];
862     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
863     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
864     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
865     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
866
867     /* Avoid stupid compiler warnings */
868     jnrA = jnrB = jnrC = jnrD = 0;
869     j_coord_offsetA = 0;
870     j_coord_offsetB = 0;
871     j_coord_offsetC = 0;
872     j_coord_offsetD = 0;
873
874     outeriter        = 0;
875     inneriter        = 0;
876
877     for(iidx=0;iidx<4*DIM;iidx++)
878     {
879         scratch[iidx] = 0.0;
880     }
881
882     /* Start outer loop over neighborlists */
883     for(iidx=0; iidx<nri; iidx++)
884     {
885         /* Load shift vector for this list */
886         i_shift_offset   = DIM*shiftidx[iidx];
887
888         /* Load limits for loop over neighbors */
889         j_index_start    = jindex[iidx];
890         j_index_end      = jindex[iidx+1];
891
892         /* Get outer coordinate index */
893         inr              = iinr[iidx];
894         i_coord_offset   = DIM*inr;
895
896         /* Load i particle coords and add shift vector */
897         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
898                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
899
900         fix0             = _mm_setzero_ps();
901         fiy0             = _mm_setzero_ps();
902         fiz0             = _mm_setzero_ps();
903         fix1             = _mm_setzero_ps();
904         fiy1             = _mm_setzero_ps();
905         fiz1             = _mm_setzero_ps();
906         fix2             = _mm_setzero_ps();
907         fiy2             = _mm_setzero_ps();
908         fiz2             = _mm_setzero_ps();
909         fix3             = _mm_setzero_ps();
910         fiy3             = _mm_setzero_ps();
911         fiz3             = _mm_setzero_ps();
912
913         /* Start inner kernel loop */
914         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
915         {
916
917             /* Get j neighbor index, and coordinate index */
918             jnrA             = jjnr[jidx];
919             jnrB             = jjnr[jidx+1];
920             jnrC             = jjnr[jidx+2];
921             jnrD             = jjnr[jidx+3];
922             j_coord_offsetA  = DIM*jnrA;
923             j_coord_offsetB  = DIM*jnrB;
924             j_coord_offsetC  = DIM*jnrC;
925             j_coord_offsetD  = DIM*jnrD;
926
927             /* load j atom coordinates */
928             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
929                                               x+j_coord_offsetC,x+j_coord_offsetD,
930                                               &jx0,&jy0,&jz0);
931
932             /* Calculate displacement vector */
933             dx00             = _mm_sub_ps(ix0,jx0);
934             dy00             = _mm_sub_ps(iy0,jy0);
935             dz00             = _mm_sub_ps(iz0,jz0);
936             dx10             = _mm_sub_ps(ix1,jx0);
937             dy10             = _mm_sub_ps(iy1,jy0);
938             dz10             = _mm_sub_ps(iz1,jz0);
939             dx20             = _mm_sub_ps(ix2,jx0);
940             dy20             = _mm_sub_ps(iy2,jy0);
941             dz20             = _mm_sub_ps(iz2,jz0);
942             dx30             = _mm_sub_ps(ix3,jx0);
943             dy30             = _mm_sub_ps(iy3,jy0);
944             dz30             = _mm_sub_ps(iz3,jz0);
945
946             /* Calculate squared distance and things based on it */
947             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
948             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
949             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
950             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
951
952             rinv00           = gmx_mm_invsqrt_ps(rsq00);
953             rinv10           = gmx_mm_invsqrt_ps(rsq10);
954             rinv20           = gmx_mm_invsqrt_ps(rsq20);
955             rinv30           = gmx_mm_invsqrt_ps(rsq30);
956
957             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
958             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
959             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
960             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
961
962             /* Load parameters for j particles */
963             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
964                                                               charge+jnrC+0,charge+jnrD+0);
965             vdwjidx0A        = 2*vdwtype[jnrA+0];
966             vdwjidx0B        = 2*vdwtype[jnrB+0];
967             vdwjidx0C        = 2*vdwtype[jnrC+0];
968             vdwjidx0D        = 2*vdwtype[jnrD+0];
969
970             fjx0             = _mm_setzero_ps();
971             fjy0             = _mm_setzero_ps();
972             fjz0             = _mm_setzero_ps();
973
974             /**************************
975              * CALCULATE INTERACTIONS *
976              **************************/
977
978             r00              = _mm_mul_ps(rsq00,rinv00);
979
980             /* Compute parameters for interactions between i and j atoms */
981             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
982                                          vdwparam+vdwioffset0+vdwjidx0B,
983                                          vdwparam+vdwioffset0+vdwjidx0C,
984                                          vdwparam+vdwioffset0+vdwjidx0D,
985                                          &c6_00,&c12_00);
986
987             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
988                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
989                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
990                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
991
992             /* Analytical LJ-PME */
993             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
994             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
995             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
996             exponent         = gmx_simd_exp_r(ewcljrsq);
997             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
998             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
999             /* f6A = 6 * C6grid * (1 - poly) */
1000             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1001             /* f6B = C6grid * exponent * beta^6 */
1002             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1003             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1004             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1005
1006             fscal            = fvdw;
1007
1008             /* Calculate temporary vectorial force */
1009             tx               = _mm_mul_ps(fscal,dx00);
1010             ty               = _mm_mul_ps(fscal,dy00);
1011             tz               = _mm_mul_ps(fscal,dz00);
1012
1013             /* Update vectorial force */
1014             fix0             = _mm_add_ps(fix0,tx);
1015             fiy0             = _mm_add_ps(fiy0,ty);
1016             fiz0             = _mm_add_ps(fiz0,tz);
1017
1018             fjx0             = _mm_add_ps(fjx0,tx);
1019             fjy0             = _mm_add_ps(fjy0,ty);
1020             fjz0             = _mm_add_ps(fjz0,tz);
1021
1022             /**************************
1023              * CALCULATE INTERACTIONS *
1024              **************************/
1025
1026             r10              = _mm_mul_ps(rsq10,rinv10);
1027
1028             /* Compute parameters for interactions between i and j atoms */
1029             qq10             = _mm_mul_ps(iq1,jq0);
1030
1031             /* EWALD ELECTROSTATICS */
1032
1033             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1034             ewrt             = _mm_mul_ps(r10,ewtabscale);
1035             ewitab           = _mm_cvttps_epi32(ewrt);
1036             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1037             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1038                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1039                                          &ewtabF,&ewtabFn);
1040             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1041             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1042
1043             fscal            = felec;
1044
1045             /* Calculate temporary vectorial force */
1046             tx               = _mm_mul_ps(fscal,dx10);
1047             ty               = _mm_mul_ps(fscal,dy10);
1048             tz               = _mm_mul_ps(fscal,dz10);
1049
1050             /* Update vectorial force */
1051             fix1             = _mm_add_ps(fix1,tx);
1052             fiy1             = _mm_add_ps(fiy1,ty);
1053             fiz1             = _mm_add_ps(fiz1,tz);
1054
1055             fjx0             = _mm_add_ps(fjx0,tx);
1056             fjy0             = _mm_add_ps(fjy0,ty);
1057             fjz0             = _mm_add_ps(fjz0,tz);
1058
1059             /**************************
1060              * CALCULATE INTERACTIONS *
1061              **************************/
1062
1063             r20              = _mm_mul_ps(rsq20,rinv20);
1064
1065             /* Compute parameters for interactions between i and j atoms */
1066             qq20             = _mm_mul_ps(iq2,jq0);
1067
1068             /* EWALD ELECTROSTATICS */
1069
1070             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1071             ewrt             = _mm_mul_ps(r20,ewtabscale);
1072             ewitab           = _mm_cvttps_epi32(ewrt);
1073             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1074             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1075                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1076                                          &ewtabF,&ewtabFn);
1077             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1078             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1079
1080             fscal            = felec;
1081
1082             /* Calculate temporary vectorial force */
1083             tx               = _mm_mul_ps(fscal,dx20);
1084             ty               = _mm_mul_ps(fscal,dy20);
1085             tz               = _mm_mul_ps(fscal,dz20);
1086
1087             /* Update vectorial force */
1088             fix2             = _mm_add_ps(fix2,tx);
1089             fiy2             = _mm_add_ps(fiy2,ty);
1090             fiz2             = _mm_add_ps(fiz2,tz);
1091
1092             fjx0             = _mm_add_ps(fjx0,tx);
1093             fjy0             = _mm_add_ps(fjy0,ty);
1094             fjz0             = _mm_add_ps(fjz0,tz);
1095
1096             /**************************
1097              * CALCULATE INTERACTIONS *
1098              **************************/
1099
1100             r30              = _mm_mul_ps(rsq30,rinv30);
1101
1102             /* Compute parameters for interactions between i and j atoms */
1103             qq30             = _mm_mul_ps(iq3,jq0);
1104
1105             /* EWALD ELECTROSTATICS */
1106
1107             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1108             ewrt             = _mm_mul_ps(r30,ewtabscale);
1109             ewitab           = _mm_cvttps_epi32(ewrt);
1110             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1111             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1112                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1113                                          &ewtabF,&ewtabFn);
1114             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1115             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1116
1117             fscal            = felec;
1118
1119             /* Calculate temporary vectorial force */
1120             tx               = _mm_mul_ps(fscal,dx30);
1121             ty               = _mm_mul_ps(fscal,dy30);
1122             tz               = _mm_mul_ps(fscal,dz30);
1123
1124             /* Update vectorial force */
1125             fix3             = _mm_add_ps(fix3,tx);
1126             fiy3             = _mm_add_ps(fiy3,ty);
1127             fiz3             = _mm_add_ps(fiz3,tz);
1128
1129             fjx0             = _mm_add_ps(fjx0,tx);
1130             fjy0             = _mm_add_ps(fjy0,ty);
1131             fjz0             = _mm_add_ps(fjz0,tz);
1132
1133             fjptrA             = f+j_coord_offsetA;
1134             fjptrB             = f+j_coord_offsetB;
1135             fjptrC             = f+j_coord_offsetC;
1136             fjptrD             = f+j_coord_offsetD;
1137
1138             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1139
1140             /* Inner loop uses 154 flops */
1141         }
1142
1143         if(jidx<j_index_end)
1144         {
1145
1146             /* Get j neighbor index, and coordinate index */
1147             jnrlistA         = jjnr[jidx];
1148             jnrlistB         = jjnr[jidx+1];
1149             jnrlistC         = jjnr[jidx+2];
1150             jnrlistD         = jjnr[jidx+3];
1151             /* Sign of each element will be negative for non-real atoms.
1152              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1153              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1154              */
1155             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1156             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1157             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1158             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1159             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1160             j_coord_offsetA  = DIM*jnrA;
1161             j_coord_offsetB  = DIM*jnrB;
1162             j_coord_offsetC  = DIM*jnrC;
1163             j_coord_offsetD  = DIM*jnrD;
1164
1165             /* load j atom coordinates */
1166             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1167                                               x+j_coord_offsetC,x+j_coord_offsetD,
1168                                               &jx0,&jy0,&jz0);
1169
1170             /* Calculate displacement vector */
1171             dx00             = _mm_sub_ps(ix0,jx0);
1172             dy00             = _mm_sub_ps(iy0,jy0);
1173             dz00             = _mm_sub_ps(iz0,jz0);
1174             dx10             = _mm_sub_ps(ix1,jx0);
1175             dy10             = _mm_sub_ps(iy1,jy0);
1176             dz10             = _mm_sub_ps(iz1,jz0);
1177             dx20             = _mm_sub_ps(ix2,jx0);
1178             dy20             = _mm_sub_ps(iy2,jy0);
1179             dz20             = _mm_sub_ps(iz2,jz0);
1180             dx30             = _mm_sub_ps(ix3,jx0);
1181             dy30             = _mm_sub_ps(iy3,jy0);
1182             dz30             = _mm_sub_ps(iz3,jz0);
1183
1184             /* Calculate squared distance and things based on it */
1185             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1186             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1187             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1188             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1189
1190             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1191             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1192             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1193             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1194
1195             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1196             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1197             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1198             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1199
1200             /* Load parameters for j particles */
1201             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1202                                                               charge+jnrC+0,charge+jnrD+0);
1203             vdwjidx0A        = 2*vdwtype[jnrA+0];
1204             vdwjidx0B        = 2*vdwtype[jnrB+0];
1205             vdwjidx0C        = 2*vdwtype[jnrC+0];
1206             vdwjidx0D        = 2*vdwtype[jnrD+0];
1207
1208             fjx0             = _mm_setzero_ps();
1209             fjy0             = _mm_setzero_ps();
1210             fjz0             = _mm_setzero_ps();
1211
1212             /**************************
1213              * CALCULATE INTERACTIONS *
1214              **************************/
1215
1216             r00              = _mm_mul_ps(rsq00,rinv00);
1217             r00              = _mm_andnot_ps(dummy_mask,r00);
1218
1219             /* Compute parameters for interactions between i and j atoms */
1220             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1221                                          vdwparam+vdwioffset0+vdwjidx0B,
1222                                          vdwparam+vdwioffset0+vdwjidx0C,
1223                                          vdwparam+vdwioffset0+vdwjidx0D,
1224                                          &c6_00,&c12_00);
1225
1226             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1227                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1228                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1229                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1230
1231             /* Analytical LJ-PME */
1232             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1233             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1234             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1235             exponent         = gmx_simd_exp_r(ewcljrsq);
1236             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1237             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1238             /* f6A = 6 * C6grid * (1 - poly) */
1239             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1240             /* f6B = C6grid * exponent * beta^6 */
1241             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1242             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1243             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1244
1245             fscal            = fvdw;
1246
1247             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1248
1249             /* Calculate temporary vectorial force */
1250             tx               = _mm_mul_ps(fscal,dx00);
1251             ty               = _mm_mul_ps(fscal,dy00);
1252             tz               = _mm_mul_ps(fscal,dz00);
1253
1254             /* Update vectorial force */
1255             fix0             = _mm_add_ps(fix0,tx);
1256             fiy0             = _mm_add_ps(fiy0,ty);
1257             fiz0             = _mm_add_ps(fiz0,tz);
1258
1259             fjx0             = _mm_add_ps(fjx0,tx);
1260             fjy0             = _mm_add_ps(fjy0,ty);
1261             fjz0             = _mm_add_ps(fjz0,tz);
1262
1263             /**************************
1264              * CALCULATE INTERACTIONS *
1265              **************************/
1266
1267             r10              = _mm_mul_ps(rsq10,rinv10);
1268             r10              = _mm_andnot_ps(dummy_mask,r10);
1269
1270             /* Compute parameters for interactions between i and j atoms */
1271             qq10             = _mm_mul_ps(iq1,jq0);
1272
1273             /* EWALD ELECTROSTATICS */
1274
1275             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1276             ewrt             = _mm_mul_ps(r10,ewtabscale);
1277             ewitab           = _mm_cvttps_epi32(ewrt);
1278             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1279             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1280                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1281                                          &ewtabF,&ewtabFn);
1282             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1283             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1284
1285             fscal            = felec;
1286
1287             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1288
1289             /* Calculate temporary vectorial force */
1290             tx               = _mm_mul_ps(fscal,dx10);
1291             ty               = _mm_mul_ps(fscal,dy10);
1292             tz               = _mm_mul_ps(fscal,dz10);
1293
1294             /* Update vectorial force */
1295             fix1             = _mm_add_ps(fix1,tx);
1296             fiy1             = _mm_add_ps(fiy1,ty);
1297             fiz1             = _mm_add_ps(fiz1,tz);
1298
1299             fjx0             = _mm_add_ps(fjx0,tx);
1300             fjy0             = _mm_add_ps(fjy0,ty);
1301             fjz0             = _mm_add_ps(fjz0,tz);
1302
1303             /**************************
1304              * CALCULATE INTERACTIONS *
1305              **************************/
1306
1307             r20              = _mm_mul_ps(rsq20,rinv20);
1308             r20              = _mm_andnot_ps(dummy_mask,r20);
1309
1310             /* Compute parameters for interactions between i and j atoms */
1311             qq20             = _mm_mul_ps(iq2,jq0);
1312
1313             /* EWALD ELECTROSTATICS */
1314
1315             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1316             ewrt             = _mm_mul_ps(r20,ewtabscale);
1317             ewitab           = _mm_cvttps_epi32(ewrt);
1318             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1319             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1320                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1321                                          &ewtabF,&ewtabFn);
1322             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1323             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1324
1325             fscal            = felec;
1326
1327             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1328
1329             /* Calculate temporary vectorial force */
1330             tx               = _mm_mul_ps(fscal,dx20);
1331             ty               = _mm_mul_ps(fscal,dy20);
1332             tz               = _mm_mul_ps(fscal,dz20);
1333
1334             /* Update vectorial force */
1335             fix2             = _mm_add_ps(fix2,tx);
1336             fiy2             = _mm_add_ps(fiy2,ty);
1337             fiz2             = _mm_add_ps(fiz2,tz);
1338
1339             fjx0             = _mm_add_ps(fjx0,tx);
1340             fjy0             = _mm_add_ps(fjy0,ty);
1341             fjz0             = _mm_add_ps(fjz0,tz);
1342
1343             /**************************
1344              * CALCULATE INTERACTIONS *
1345              **************************/
1346
1347             r30              = _mm_mul_ps(rsq30,rinv30);
1348             r30              = _mm_andnot_ps(dummy_mask,r30);
1349
1350             /* Compute parameters for interactions between i and j atoms */
1351             qq30             = _mm_mul_ps(iq3,jq0);
1352
1353             /* EWALD ELECTROSTATICS */
1354
1355             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1356             ewrt             = _mm_mul_ps(r30,ewtabscale);
1357             ewitab           = _mm_cvttps_epi32(ewrt);
1358             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1359             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1360                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1361                                          &ewtabF,&ewtabFn);
1362             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1363             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1364
1365             fscal            = felec;
1366
1367             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1368
1369             /* Calculate temporary vectorial force */
1370             tx               = _mm_mul_ps(fscal,dx30);
1371             ty               = _mm_mul_ps(fscal,dy30);
1372             tz               = _mm_mul_ps(fscal,dz30);
1373
1374             /* Update vectorial force */
1375             fix3             = _mm_add_ps(fix3,tx);
1376             fiy3             = _mm_add_ps(fiy3,ty);
1377             fiz3             = _mm_add_ps(fiz3,tz);
1378
1379             fjx0             = _mm_add_ps(fjx0,tx);
1380             fjy0             = _mm_add_ps(fjy0,ty);
1381             fjz0             = _mm_add_ps(fjz0,tz);
1382
1383             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1384             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1385             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1386             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1387
1388             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1389
1390             /* Inner loop uses 158 flops */
1391         }
1392
1393         /* End of innermost loop */
1394
1395         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1396                                               f+i_coord_offset,fshift+i_shift_offset);
1397
1398         /* Increment number of inner iterations */
1399         inneriter                  += j_index_end - j_index_start;
1400
1401         /* Outer loop uses 24 flops */
1402     }
1403
1404     /* Increment number of outer iterations */
1405     outeriter        += nri;
1406
1407     /* Update outer/inner flops */
1408
1409     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*158);
1410 }