Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse4_1_single.h"
50 #include "kernelutil_x86_sse4_1_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse4_1_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse4_1_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128           c6grid_00;
108     __m128           c6grid_10;
109     __m128           c6grid_20;
110     __m128           c6grid_30;
111     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
112     real             *vdwgridparam;
113     __m128           one_half  = _mm_set1_ps(0.5);
114     __m128           minus_one = _mm_set1_ps(-1.0);
115     __m128i          ewitab;
116     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
117     real             *ewtab;
118     __m128           dummy_mask,cutoff_mask;
119     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
120     __m128           one     = _mm_set1_ps(1.0);
121     __m128           two     = _mm_set1_ps(2.0);
122     x                = xx[0];
123     f                = ff[0];
124
125     nri              = nlist->nri;
126     iinr             = nlist->iinr;
127     jindex           = nlist->jindex;
128     jjnr             = nlist->jjnr;
129     shiftidx         = nlist->shift;
130     gid              = nlist->gid;
131     shiftvec         = fr->shift_vec[0];
132     fshift           = fr->fshift[0];
133     facel            = _mm_set1_ps(fr->epsfac);
134     charge           = mdatoms->chargeA;
135     nvdwtype         = fr->ntype;
136     vdwparam         = fr->nbfp;
137     vdwtype          = mdatoms->typeA;
138     vdwgridparam     = fr->ljpme_c6grid;
139     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
140     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
141     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
142
143     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
144     ewtab            = fr->ic->tabq_coul_FDV0;
145     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
146     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
147
148     /* Setup water-specific parameters */
149     inr              = nlist->iinr[0];
150     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
151     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
152     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
153     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155     /* Avoid stupid compiler warnings */
156     jnrA = jnrB = jnrC = jnrD = 0;
157     j_coord_offsetA = 0;
158     j_coord_offsetB = 0;
159     j_coord_offsetC = 0;
160     j_coord_offsetD = 0;
161
162     outeriter        = 0;
163     inneriter        = 0;
164
165     for(iidx=0;iidx<4*DIM;iidx++)
166     {
167         scratch[iidx] = 0.0;
168     }
169
170     /* Start outer loop over neighborlists */
171     for(iidx=0; iidx<nri; iidx++)
172     {
173         /* Load shift vector for this list */
174         i_shift_offset   = DIM*shiftidx[iidx];
175
176         /* Load limits for loop over neighbors */
177         j_index_start    = jindex[iidx];
178         j_index_end      = jindex[iidx+1];
179
180         /* Get outer coordinate index */
181         inr              = iinr[iidx];
182         i_coord_offset   = DIM*inr;
183
184         /* Load i particle coords and add shift vector */
185         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
186                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
187
188         fix0             = _mm_setzero_ps();
189         fiy0             = _mm_setzero_ps();
190         fiz0             = _mm_setzero_ps();
191         fix1             = _mm_setzero_ps();
192         fiy1             = _mm_setzero_ps();
193         fiz1             = _mm_setzero_ps();
194         fix2             = _mm_setzero_ps();
195         fiy2             = _mm_setzero_ps();
196         fiz2             = _mm_setzero_ps();
197         fix3             = _mm_setzero_ps();
198         fiy3             = _mm_setzero_ps();
199         fiz3             = _mm_setzero_ps();
200
201         /* Reset potential sums */
202         velecsum         = _mm_setzero_ps();
203         vvdwsum          = _mm_setzero_ps();
204
205         /* Start inner kernel loop */
206         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
207         {
208
209             /* Get j neighbor index, and coordinate index */
210             jnrA             = jjnr[jidx];
211             jnrB             = jjnr[jidx+1];
212             jnrC             = jjnr[jidx+2];
213             jnrD             = jjnr[jidx+3];
214             j_coord_offsetA  = DIM*jnrA;
215             j_coord_offsetB  = DIM*jnrB;
216             j_coord_offsetC  = DIM*jnrC;
217             j_coord_offsetD  = DIM*jnrD;
218
219             /* load j atom coordinates */
220             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
221                                               x+j_coord_offsetC,x+j_coord_offsetD,
222                                               &jx0,&jy0,&jz0);
223
224             /* Calculate displacement vector */
225             dx00             = _mm_sub_ps(ix0,jx0);
226             dy00             = _mm_sub_ps(iy0,jy0);
227             dz00             = _mm_sub_ps(iz0,jz0);
228             dx10             = _mm_sub_ps(ix1,jx0);
229             dy10             = _mm_sub_ps(iy1,jy0);
230             dz10             = _mm_sub_ps(iz1,jz0);
231             dx20             = _mm_sub_ps(ix2,jx0);
232             dy20             = _mm_sub_ps(iy2,jy0);
233             dz20             = _mm_sub_ps(iz2,jz0);
234             dx30             = _mm_sub_ps(ix3,jx0);
235             dy30             = _mm_sub_ps(iy3,jy0);
236             dz30             = _mm_sub_ps(iz3,jz0);
237
238             /* Calculate squared distance and things based on it */
239             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
240             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
241             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
242             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
243
244             rinv00           = gmx_mm_invsqrt_ps(rsq00);
245             rinv10           = gmx_mm_invsqrt_ps(rsq10);
246             rinv20           = gmx_mm_invsqrt_ps(rsq20);
247             rinv30           = gmx_mm_invsqrt_ps(rsq30);
248
249             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
250             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
251             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
252             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
253
254             /* Load parameters for j particles */
255             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
256                                                               charge+jnrC+0,charge+jnrD+0);
257             vdwjidx0A        = 2*vdwtype[jnrA+0];
258             vdwjidx0B        = 2*vdwtype[jnrB+0];
259             vdwjidx0C        = 2*vdwtype[jnrC+0];
260             vdwjidx0D        = 2*vdwtype[jnrD+0];
261
262             fjx0             = _mm_setzero_ps();
263             fjy0             = _mm_setzero_ps();
264             fjz0             = _mm_setzero_ps();
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             r00              = _mm_mul_ps(rsq00,rinv00);
271
272             /* Compute parameters for interactions between i and j atoms */
273             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
274                                          vdwparam+vdwioffset0+vdwjidx0B,
275                                          vdwparam+vdwioffset0+vdwjidx0C,
276                                          vdwparam+vdwioffset0+vdwjidx0D,
277                                          &c6_00,&c12_00);
278
279             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
280                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
281                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
282                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
283
284             /* Analytical LJ-PME */
285             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
286             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
287             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
288             exponent         = gmx_simd_exp_r(ewcljrsq);
289             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
290             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
291             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
292             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
293             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
294             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
295             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
296             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
300
301             fscal            = fvdw;
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm_mul_ps(fscal,dx00);
305             ty               = _mm_mul_ps(fscal,dy00);
306             tz               = _mm_mul_ps(fscal,dz00);
307
308             /* Update vectorial force */
309             fix0             = _mm_add_ps(fix0,tx);
310             fiy0             = _mm_add_ps(fiy0,ty);
311             fiz0             = _mm_add_ps(fiz0,tz);
312
313             fjx0             = _mm_add_ps(fjx0,tx);
314             fjy0             = _mm_add_ps(fjy0,ty);
315             fjz0             = _mm_add_ps(fjz0,tz);
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             r10              = _mm_mul_ps(rsq10,rinv10);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm_mul_ps(iq1,jq0);
325
326             /* EWALD ELECTROSTATICS */
327
328             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329             ewrt             = _mm_mul_ps(r10,ewtabscale);
330             ewitab           = _mm_cvttps_epi32(ewrt);
331             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
332             ewitab           = _mm_slli_epi32(ewitab,2);
333             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
334             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
335             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
336             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
337             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
338             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
339             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
340             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
341             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm_add_ps(velecsum,velec);
345
346             fscal            = felec;
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm_mul_ps(fscal,dx10);
350             ty               = _mm_mul_ps(fscal,dy10);
351             tz               = _mm_mul_ps(fscal,dz10);
352
353             /* Update vectorial force */
354             fix1             = _mm_add_ps(fix1,tx);
355             fiy1             = _mm_add_ps(fiy1,ty);
356             fiz1             = _mm_add_ps(fiz1,tz);
357
358             fjx0             = _mm_add_ps(fjx0,tx);
359             fjy0             = _mm_add_ps(fjy0,ty);
360             fjz0             = _mm_add_ps(fjz0,tz);
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             r20              = _mm_mul_ps(rsq20,rinv20);
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq20             = _mm_mul_ps(iq2,jq0);
370
371             /* EWALD ELECTROSTATICS */
372
373             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
374             ewrt             = _mm_mul_ps(r20,ewtabscale);
375             ewitab           = _mm_cvttps_epi32(ewrt);
376             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
377             ewitab           = _mm_slli_epi32(ewitab,2);
378             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
379             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
380             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
381             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
382             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
383             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
384             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
385             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
386             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velecsum         = _mm_add_ps(velecsum,velec);
390
391             fscal            = felec;
392
393             /* Calculate temporary vectorial force */
394             tx               = _mm_mul_ps(fscal,dx20);
395             ty               = _mm_mul_ps(fscal,dy20);
396             tz               = _mm_mul_ps(fscal,dz20);
397
398             /* Update vectorial force */
399             fix2             = _mm_add_ps(fix2,tx);
400             fiy2             = _mm_add_ps(fiy2,ty);
401             fiz2             = _mm_add_ps(fiz2,tz);
402
403             fjx0             = _mm_add_ps(fjx0,tx);
404             fjy0             = _mm_add_ps(fjy0,ty);
405             fjz0             = _mm_add_ps(fjz0,tz);
406
407             /**************************
408              * CALCULATE INTERACTIONS *
409              **************************/
410
411             r30              = _mm_mul_ps(rsq30,rinv30);
412
413             /* Compute parameters for interactions between i and j atoms */
414             qq30             = _mm_mul_ps(iq3,jq0);
415
416             /* EWALD ELECTROSTATICS */
417
418             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
419             ewrt             = _mm_mul_ps(r30,ewtabscale);
420             ewitab           = _mm_cvttps_epi32(ewrt);
421             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
422             ewitab           = _mm_slli_epi32(ewitab,2);
423             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
424             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
425             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
426             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
427             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
428             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
429             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
430             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
431             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
432
433             /* Update potential sum for this i atom from the interaction with this j atom. */
434             velecsum         = _mm_add_ps(velecsum,velec);
435
436             fscal            = felec;
437
438             /* Calculate temporary vectorial force */
439             tx               = _mm_mul_ps(fscal,dx30);
440             ty               = _mm_mul_ps(fscal,dy30);
441             tz               = _mm_mul_ps(fscal,dz30);
442
443             /* Update vectorial force */
444             fix3             = _mm_add_ps(fix3,tx);
445             fiy3             = _mm_add_ps(fiy3,ty);
446             fiz3             = _mm_add_ps(fiz3,tz);
447
448             fjx0             = _mm_add_ps(fjx0,tx);
449             fjy0             = _mm_add_ps(fjy0,ty);
450             fjz0             = _mm_add_ps(fjz0,tz);
451
452             fjptrA             = f+j_coord_offsetA;
453             fjptrB             = f+j_coord_offsetB;
454             fjptrC             = f+j_coord_offsetC;
455             fjptrD             = f+j_coord_offsetD;
456
457             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
458
459             /* Inner loop uses 174 flops */
460         }
461
462         if(jidx<j_index_end)
463         {
464
465             /* Get j neighbor index, and coordinate index */
466             jnrlistA         = jjnr[jidx];
467             jnrlistB         = jjnr[jidx+1];
468             jnrlistC         = jjnr[jidx+2];
469             jnrlistD         = jjnr[jidx+3];
470             /* Sign of each element will be negative for non-real atoms.
471              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
472              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
473              */
474             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
475             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
476             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
477             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
478             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
479             j_coord_offsetA  = DIM*jnrA;
480             j_coord_offsetB  = DIM*jnrB;
481             j_coord_offsetC  = DIM*jnrC;
482             j_coord_offsetD  = DIM*jnrD;
483
484             /* load j atom coordinates */
485             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
486                                               x+j_coord_offsetC,x+j_coord_offsetD,
487                                               &jx0,&jy0,&jz0);
488
489             /* Calculate displacement vector */
490             dx00             = _mm_sub_ps(ix0,jx0);
491             dy00             = _mm_sub_ps(iy0,jy0);
492             dz00             = _mm_sub_ps(iz0,jz0);
493             dx10             = _mm_sub_ps(ix1,jx0);
494             dy10             = _mm_sub_ps(iy1,jy0);
495             dz10             = _mm_sub_ps(iz1,jz0);
496             dx20             = _mm_sub_ps(ix2,jx0);
497             dy20             = _mm_sub_ps(iy2,jy0);
498             dz20             = _mm_sub_ps(iz2,jz0);
499             dx30             = _mm_sub_ps(ix3,jx0);
500             dy30             = _mm_sub_ps(iy3,jy0);
501             dz30             = _mm_sub_ps(iz3,jz0);
502
503             /* Calculate squared distance and things based on it */
504             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
505             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
506             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
507             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
508
509             rinv00           = gmx_mm_invsqrt_ps(rsq00);
510             rinv10           = gmx_mm_invsqrt_ps(rsq10);
511             rinv20           = gmx_mm_invsqrt_ps(rsq20);
512             rinv30           = gmx_mm_invsqrt_ps(rsq30);
513
514             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
515             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
516             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
517             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
518
519             /* Load parameters for j particles */
520             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
521                                                               charge+jnrC+0,charge+jnrD+0);
522             vdwjidx0A        = 2*vdwtype[jnrA+0];
523             vdwjidx0B        = 2*vdwtype[jnrB+0];
524             vdwjidx0C        = 2*vdwtype[jnrC+0];
525             vdwjidx0D        = 2*vdwtype[jnrD+0];
526
527             fjx0             = _mm_setzero_ps();
528             fjy0             = _mm_setzero_ps();
529             fjz0             = _mm_setzero_ps();
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             r00              = _mm_mul_ps(rsq00,rinv00);
536             r00              = _mm_andnot_ps(dummy_mask,r00);
537
538             /* Compute parameters for interactions between i and j atoms */
539             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
540                                          vdwparam+vdwioffset0+vdwjidx0B,
541                                          vdwparam+vdwioffset0+vdwjidx0C,
542                                          vdwparam+vdwioffset0+vdwjidx0D,
543                                          &c6_00,&c12_00);
544
545             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
546                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
547                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
548                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
549
550             /* Analytical LJ-PME */
551             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
552             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
553             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
554             exponent         = gmx_simd_exp_r(ewcljrsq);
555             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
556             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
557             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
558             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
559             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
560             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
561             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
562             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
563
564             /* Update potential sum for this i atom from the interaction with this j atom. */
565             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
566             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
567
568             fscal            = fvdw;
569
570             fscal            = _mm_andnot_ps(dummy_mask,fscal);
571
572             /* Calculate temporary vectorial force */
573             tx               = _mm_mul_ps(fscal,dx00);
574             ty               = _mm_mul_ps(fscal,dy00);
575             tz               = _mm_mul_ps(fscal,dz00);
576
577             /* Update vectorial force */
578             fix0             = _mm_add_ps(fix0,tx);
579             fiy0             = _mm_add_ps(fiy0,ty);
580             fiz0             = _mm_add_ps(fiz0,tz);
581
582             fjx0             = _mm_add_ps(fjx0,tx);
583             fjy0             = _mm_add_ps(fjy0,ty);
584             fjz0             = _mm_add_ps(fjz0,tz);
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             r10              = _mm_mul_ps(rsq10,rinv10);
591             r10              = _mm_andnot_ps(dummy_mask,r10);
592
593             /* Compute parameters for interactions between i and j atoms */
594             qq10             = _mm_mul_ps(iq1,jq0);
595
596             /* EWALD ELECTROSTATICS */
597
598             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
599             ewrt             = _mm_mul_ps(r10,ewtabscale);
600             ewitab           = _mm_cvttps_epi32(ewrt);
601             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
602             ewitab           = _mm_slli_epi32(ewitab,2);
603             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
604             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
605             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
606             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
607             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
608             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
609             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
610             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
611             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
612
613             /* Update potential sum for this i atom from the interaction with this j atom. */
614             velec            = _mm_andnot_ps(dummy_mask,velec);
615             velecsum         = _mm_add_ps(velecsum,velec);
616
617             fscal            = felec;
618
619             fscal            = _mm_andnot_ps(dummy_mask,fscal);
620
621             /* Calculate temporary vectorial force */
622             tx               = _mm_mul_ps(fscal,dx10);
623             ty               = _mm_mul_ps(fscal,dy10);
624             tz               = _mm_mul_ps(fscal,dz10);
625
626             /* Update vectorial force */
627             fix1             = _mm_add_ps(fix1,tx);
628             fiy1             = _mm_add_ps(fiy1,ty);
629             fiz1             = _mm_add_ps(fiz1,tz);
630
631             fjx0             = _mm_add_ps(fjx0,tx);
632             fjy0             = _mm_add_ps(fjy0,ty);
633             fjz0             = _mm_add_ps(fjz0,tz);
634
635             /**************************
636              * CALCULATE INTERACTIONS *
637              **************************/
638
639             r20              = _mm_mul_ps(rsq20,rinv20);
640             r20              = _mm_andnot_ps(dummy_mask,r20);
641
642             /* Compute parameters for interactions between i and j atoms */
643             qq20             = _mm_mul_ps(iq2,jq0);
644
645             /* EWALD ELECTROSTATICS */
646
647             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
648             ewrt             = _mm_mul_ps(r20,ewtabscale);
649             ewitab           = _mm_cvttps_epi32(ewrt);
650             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
651             ewitab           = _mm_slli_epi32(ewitab,2);
652             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
653             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
654             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
655             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
656             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
657             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
658             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
659             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
660             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
661
662             /* Update potential sum for this i atom from the interaction with this j atom. */
663             velec            = _mm_andnot_ps(dummy_mask,velec);
664             velecsum         = _mm_add_ps(velecsum,velec);
665
666             fscal            = felec;
667
668             fscal            = _mm_andnot_ps(dummy_mask,fscal);
669
670             /* Calculate temporary vectorial force */
671             tx               = _mm_mul_ps(fscal,dx20);
672             ty               = _mm_mul_ps(fscal,dy20);
673             tz               = _mm_mul_ps(fscal,dz20);
674
675             /* Update vectorial force */
676             fix2             = _mm_add_ps(fix2,tx);
677             fiy2             = _mm_add_ps(fiy2,ty);
678             fiz2             = _mm_add_ps(fiz2,tz);
679
680             fjx0             = _mm_add_ps(fjx0,tx);
681             fjy0             = _mm_add_ps(fjy0,ty);
682             fjz0             = _mm_add_ps(fjz0,tz);
683
684             /**************************
685              * CALCULATE INTERACTIONS *
686              **************************/
687
688             r30              = _mm_mul_ps(rsq30,rinv30);
689             r30              = _mm_andnot_ps(dummy_mask,r30);
690
691             /* Compute parameters for interactions between i and j atoms */
692             qq30             = _mm_mul_ps(iq3,jq0);
693
694             /* EWALD ELECTROSTATICS */
695
696             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
697             ewrt             = _mm_mul_ps(r30,ewtabscale);
698             ewitab           = _mm_cvttps_epi32(ewrt);
699             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
700             ewitab           = _mm_slli_epi32(ewitab,2);
701             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
702             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
703             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
704             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
705             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
706             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
707             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
708             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
709             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
710
711             /* Update potential sum for this i atom from the interaction with this j atom. */
712             velec            = _mm_andnot_ps(dummy_mask,velec);
713             velecsum         = _mm_add_ps(velecsum,velec);
714
715             fscal            = felec;
716
717             fscal            = _mm_andnot_ps(dummy_mask,fscal);
718
719             /* Calculate temporary vectorial force */
720             tx               = _mm_mul_ps(fscal,dx30);
721             ty               = _mm_mul_ps(fscal,dy30);
722             tz               = _mm_mul_ps(fscal,dz30);
723
724             /* Update vectorial force */
725             fix3             = _mm_add_ps(fix3,tx);
726             fiy3             = _mm_add_ps(fiy3,ty);
727             fiz3             = _mm_add_ps(fiz3,tz);
728
729             fjx0             = _mm_add_ps(fjx0,tx);
730             fjy0             = _mm_add_ps(fjy0,ty);
731             fjz0             = _mm_add_ps(fjz0,tz);
732
733             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
734             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
735             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
736             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
737
738             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
739
740             /* Inner loop uses 178 flops */
741         }
742
743         /* End of innermost loop */
744
745         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
746                                               f+i_coord_offset,fshift+i_shift_offset);
747
748         ggid                        = gid[iidx];
749         /* Update potential energies */
750         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
751         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
752
753         /* Increment number of inner iterations */
754         inneriter                  += j_index_end - j_index_start;
755
756         /* Outer loop uses 26 flops */
757     }
758
759     /* Increment number of outer iterations */
760     outeriter        += nri;
761
762     /* Update outer/inner flops */
763
764     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*178);
765 }
766 /*
767  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse4_1_single
768  * Electrostatics interaction: Ewald
769  * VdW interaction:            LJEwald
770  * Geometry:                   Water4-Particle
771  * Calculate force/pot:        Force
772  */
773 void
774 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse4_1_single
775                     (t_nblist                    * gmx_restrict       nlist,
776                      rvec                        * gmx_restrict          xx,
777                      rvec                        * gmx_restrict          ff,
778                      t_forcerec                  * gmx_restrict          fr,
779                      t_mdatoms                   * gmx_restrict     mdatoms,
780                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
781                      t_nrnb                      * gmx_restrict        nrnb)
782 {
783     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
784      * just 0 for non-waters.
785      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
786      * jnr indices corresponding to data put in the four positions in the SIMD register.
787      */
788     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
789     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
790     int              jnrA,jnrB,jnrC,jnrD;
791     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
792     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
793     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
794     real             rcutoff_scalar;
795     real             *shiftvec,*fshift,*x,*f;
796     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
797     real             scratch[4*DIM];
798     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
799     int              vdwioffset0;
800     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
801     int              vdwioffset1;
802     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
803     int              vdwioffset2;
804     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
805     int              vdwioffset3;
806     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
807     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
808     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
809     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
810     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
811     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
812     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
813     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
814     real             *charge;
815     int              nvdwtype;
816     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
817     int              *vdwtype;
818     real             *vdwparam;
819     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
820     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
821     __m128           c6grid_00;
822     __m128           c6grid_10;
823     __m128           c6grid_20;
824     __m128           c6grid_30;
825     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
826     real             *vdwgridparam;
827     __m128           one_half  = _mm_set1_ps(0.5);
828     __m128           minus_one = _mm_set1_ps(-1.0);
829     __m128i          ewitab;
830     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
831     real             *ewtab;
832     __m128           dummy_mask,cutoff_mask;
833     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
834     __m128           one     = _mm_set1_ps(1.0);
835     __m128           two     = _mm_set1_ps(2.0);
836     x                = xx[0];
837     f                = ff[0];
838
839     nri              = nlist->nri;
840     iinr             = nlist->iinr;
841     jindex           = nlist->jindex;
842     jjnr             = nlist->jjnr;
843     shiftidx         = nlist->shift;
844     gid              = nlist->gid;
845     shiftvec         = fr->shift_vec[0];
846     fshift           = fr->fshift[0];
847     facel            = _mm_set1_ps(fr->epsfac);
848     charge           = mdatoms->chargeA;
849     nvdwtype         = fr->ntype;
850     vdwparam         = fr->nbfp;
851     vdwtype          = mdatoms->typeA;
852     vdwgridparam     = fr->ljpme_c6grid;
853     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
854     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
855     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
856
857     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
858     ewtab            = fr->ic->tabq_coul_F;
859     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
860     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
861
862     /* Setup water-specific parameters */
863     inr              = nlist->iinr[0];
864     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
865     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
866     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
867     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
868
869     /* Avoid stupid compiler warnings */
870     jnrA = jnrB = jnrC = jnrD = 0;
871     j_coord_offsetA = 0;
872     j_coord_offsetB = 0;
873     j_coord_offsetC = 0;
874     j_coord_offsetD = 0;
875
876     outeriter        = 0;
877     inneriter        = 0;
878
879     for(iidx=0;iidx<4*DIM;iidx++)
880     {
881         scratch[iidx] = 0.0;
882     }
883
884     /* Start outer loop over neighborlists */
885     for(iidx=0; iidx<nri; iidx++)
886     {
887         /* Load shift vector for this list */
888         i_shift_offset   = DIM*shiftidx[iidx];
889
890         /* Load limits for loop over neighbors */
891         j_index_start    = jindex[iidx];
892         j_index_end      = jindex[iidx+1];
893
894         /* Get outer coordinate index */
895         inr              = iinr[iidx];
896         i_coord_offset   = DIM*inr;
897
898         /* Load i particle coords and add shift vector */
899         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
900                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
901
902         fix0             = _mm_setzero_ps();
903         fiy0             = _mm_setzero_ps();
904         fiz0             = _mm_setzero_ps();
905         fix1             = _mm_setzero_ps();
906         fiy1             = _mm_setzero_ps();
907         fiz1             = _mm_setzero_ps();
908         fix2             = _mm_setzero_ps();
909         fiy2             = _mm_setzero_ps();
910         fiz2             = _mm_setzero_ps();
911         fix3             = _mm_setzero_ps();
912         fiy3             = _mm_setzero_ps();
913         fiz3             = _mm_setzero_ps();
914
915         /* Start inner kernel loop */
916         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
917         {
918
919             /* Get j neighbor index, and coordinate index */
920             jnrA             = jjnr[jidx];
921             jnrB             = jjnr[jidx+1];
922             jnrC             = jjnr[jidx+2];
923             jnrD             = jjnr[jidx+3];
924             j_coord_offsetA  = DIM*jnrA;
925             j_coord_offsetB  = DIM*jnrB;
926             j_coord_offsetC  = DIM*jnrC;
927             j_coord_offsetD  = DIM*jnrD;
928
929             /* load j atom coordinates */
930             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
931                                               x+j_coord_offsetC,x+j_coord_offsetD,
932                                               &jx0,&jy0,&jz0);
933
934             /* Calculate displacement vector */
935             dx00             = _mm_sub_ps(ix0,jx0);
936             dy00             = _mm_sub_ps(iy0,jy0);
937             dz00             = _mm_sub_ps(iz0,jz0);
938             dx10             = _mm_sub_ps(ix1,jx0);
939             dy10             = _mm_sub_ps(iy1,jy0);
940             dz10             = _mm_sub_ps(iz1,jz0);
941             dx20             = _mm_sub_ps(ix2,jx0);
942             dy20             = _mm_sub_ps(iy2,jy0);
943             dz20             = _mm_sub_ps(iz2,jz0);
944             dx30             = _mm_sub_ps(ix3,jx0);
945             dy30             = _mm_sub_ps(iy3,jy0);
946             dz30             = _mm_sub_ps(iz3,jz0);
947
948             /* Calculate squared distance and things based on it */
949             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
950             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
951             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
952             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
953
954             rinv00           = gmx_mm_invsqrt_ps(rsq00);
955             rinv10           = gmx_mm_invsqrt_ps(rsq10);
956             rinv20           = gmx_mm_invsqrt_ps(rsq20);
957             rinv30           = gmx_mm_invsqrt_ps(rsq30);
958
959             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
960             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
961             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
962             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
963
964             /* Load parameters for j particles */
965             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
966                                                               charge+jnrC+0,charge+jnrD+0);
967             vdwjidx0A        = 2*vdwtype[jnrA+0];
968             vdwjidx0B        = 2*vdwtype[jnrB+0];
969             vdwjidx0C        = 2*vdwtype[jnrC+0];
970             vdwjidx0D        = 2*vdwtype[jnrD+0];
971
972             fjx0             = _mm_setzero_ps();
973             fjy0             = _mm_setzero_ps();
974             fjz0             = _mm_setzero_ps();
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             r00              = _mm_mul_ps(rsq00,rinv00);
981
982             /* Compute parameters for interactions between i and j atoms */
983             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
984                                          vdwparam+vdwioffset0+vdwjidx0B,
985                                          vdwparam+vdwioffset0+vdwjidx0C,
986                                          vdwparam+vdwioffset0+vdwjidx0D,
987                                          &c6_00,&c12_00);
988
989             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
990                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
991                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
992                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
993
994             /* Analytical LJ-PME */
995             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
996             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
997             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
998             exponent         = gmx_simd_exp_r(ewcljrsq);
999             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1000             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1001             /* f6A = 6 * C6grid * (1 - poly) */
1002             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1003             /* f6B = C6grid * exponent * beta^6 */
1004             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1005             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1006             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1007
1008             fscal            = fvdw;
1009
1010             /* Calculate temporary vectorial force */
1011             tx               = _mm_mul_ps(fscal,dx00);
1012             ty               = _mm_mul_ps(fscal,dy00);
1013             tz               = _mm_mul_ps(fscal,dz00);
1014
1015             /* Update vectorial force */
1016             fix0             = _mm_add_ps(fix0,tx);
1017             fiy0             = _mm_add_ps(fiy0,ty);
1018             fiz0             = _mm_add_ps(fiz0,tz);
1019
1020             fjx0             = _mm_add_ps(fjx0,tx);
1021             fjy0             = _mm_add_ps(fjy0,ty);
1022             fjz0             = _mm_add_ps(fjz0,tz);
1023
1024             /**************************
1025              * CALCULATE INTERACTIONS *
1026              **************************/
1027
1028             r10              = _mm_mul_ps(rsq10,rinv10);
1029
1030             /* Compute parameters for interactions between i and j atoms */
1031             qq10             = _mm_mul_ps(iq1,jq0);
1032
1033             /* EWALD ELECTROSTATICS */
1034
1035             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1036             ewrt             = _mm_mul_ps(r10,ewtabscale);
1037             ewitab           = _mm_cvttps_epi32(ewrt);
1038             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1039             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1040                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1041                                          &ewtabF,&ewtabFn);
1042             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1043             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1044
1045             fscal            = felec;
1046
1047             /* Calculate temporary vectorial force */
1048             tx               = _mm_mul_ps(fscal,dx10);
1049             ty               = _mm_mul_ps(fscal,dy10);
1050             tz               = _mm_mul_ps(fscal,dz10);
1051
1052             /* Update vectorial force */
1053             fix1             = _mm_add_ps(fix1,tx);
1054             fiy1             = _mm_add_ps(fiy1,ty);
1055             fiz1             = _mm_add_ps(fiz1,tz);
1056
1057             fjx0             = _mm_add_ps(fjx0,tx);
1058             fjy0             = _mm_add_ps(fjy0,ty);
1059             fjz0             = _mm_add_ps(fjz0,tz);
1060
1061             /**************************
1062              * CALCULATE INTERACTIONS *
1063              **************************/
1064
1065             r20              = _mm_mul_ps(rsq20,rinv20);
1066
1067             /* Compute parameters for interactions between i and j atoms */
1068             qq20             = _mm_mul_ps(iq2,jq0);
1069
1070             /* EWALD ELECTROSTATICS */
1071
1072             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1073             ewrt             = _mm_mul_ps(r20,ewtabscale);
1074             ewitab           = _mm_cvttps_epi32(ewrt);
1075             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1076             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1077                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1078                                          &ewtabF,&ewtabFn);
1079             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1080             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1081
1082             fscal            = felec;
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = _mm_mul_ps(fscal,dx20);
1086             ty               = _mm_mul_ps(fscal,dy20);
1087             tz               = _mm_mul_ps(fscal,dz20);
1088
1089             /* Update vectorial force */
1090             fix2             = _mm_add_ps(fix2,tx);
1091             fiy2             = _mm_add_ps(fiy2,ty);
1092             fiz2             = _mm_add_ps(fiz2,tz);
1093
1094             fjx0             = _mm_add_ps(fjx0,tx);
1095             fjy0             = _mm_add_ps(fjy0,ty);
1096             fjz0             = _mm_add_ps(fjz0,tz);
1097
1098             /**************************
1099              * CALCULATE INTERACTIONS *
1100              **************************/
1101
1102             r30              = _mm_mul_ps(rsq30,rinv30);
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             qq30             = _mm_mul_ps(iq3,jq0);
1106
1107             /* EWALD ELECTROSTATICS */
1108
1109             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1110             ewrt             = _mm_mul_ps(r30,ewtabscale);
1111             ewitab           = _mm_cvttps_epi32(ewrt);
1112             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1113             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1114                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1115                                          &ewtabF,&ewtabFn);
1116             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1117             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1118
1119             fscal            = felec;
1120
1121             /* Calculate temporary vectorial force */
1122             tx               = _mm_mul_ps(fscal,dx30);
1123             ty               = _mm_mul_ps(fscal,dy30);
1124             tz               = _mm_mul_ps(fscal,dz30);
1125
1126             /* Update vectorial force */
1127             fix3             = _mm_add_ps(fix3,tx);
1128             fiy3             = _mm_add_ps(fiy3,ty);
1129             fiz3             = _mm_add_ps(fiz3,tz);
1130
1131             fjx0             = _mm_add_ps(fjx0,tx);
1132             fjy0             = _mm_add_ps(fjy0,ty);
1133             fjz0             = _mm_add_ps(fjz0,tz);
1134
1135             fjptrA             = f+j_coord_offsetA;
1136             fjptrB             = f+j_coord_offsetB;
1137             fjptrC             = f+j_coord_offsetC;
1138             fjptrD             = f+j_coord_offsetD;
1139
1140             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1141
1142             /* Inner loop uses 154 flops */
1143         }
1144
1145         if(jidx<j_index_end)
1146         {
1147
1148             /* Get j neighbor index, and coordinate index */
1149             jnrlistA         = jjnr[jidx];
1150             jnrlistB         = jjnr[jidx+1];
1151             jnrlistC         = jjnr[jidx+2];
1152             jnrlistD         = jjnr[jidx+3];
1153             /* Sign of each element will be negative for non-real atoms.
1154              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1155              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1156              */
1157             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1158             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1159             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1160             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1161             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1162             j_coord_offsetA  = DIM*jnrA;
1163             j_coord_offsetB  = DIM*jnrB;
1164             j_coord_offsetC  = DIM*jnrC;
1165             j_coord_offsetD  = DIM*jnrD;
1166
1167             /* load j atom coordinates */
1168             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1169                                               x+j_coord_offsetC,x+j_coord_offsetD,
1170                                               &jx0,&jy0,&jz0);
1171
1172             /* Calculate displacement vector */
1173             dx00             = _mm_sub_ps(ix0,jx0);
1174             dy00             = _mm_sub_ps(iy0,jy0);
1175             dz00             = _mm_sub_ps(iz0,jz0);
1176             dx10             = _mm_sub_ps(ix1,jx0);
1177             dy10             = _mm_sub_ps(iy1,jy0);
1178             dz10             = _mm_sub_ps(iz1,jz0);
1179             dx20             = _mm_sub_ps(ix2,jx0);
1180             dy20             = _mm_sub_ps(iy2,jy0);
1181             dz20             = _mm_sub_ps(iz2,jz0);
1182             dx30             = _mm_sub_ps(ix3,jx0);
1183             dy30             = _mm_sub_ps(iy3,jy0);
1184             dz30             = _mm_sub_ps(iz3,jz0);
1185
1186             /* Calculate squared distance and things based on it */
1187             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1188             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1189             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1190             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1191
1192             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1193             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1194             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1195             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1196
1197             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1198             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1199             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1200             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1201
1202             /* Load parameters for j particles */
1203             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1204                                                               charge+jnrC+0,charge+jnrD+0);
1205             vdwjidx0A        = 2*vdwtype[jnrA+0];
1206             vdwjidx0B        = 2*vdwtype[jnrB+0];
1207             vdwjidx0C        = 2*vdwtype[jnrC+0];
1208             vdwjidx0D        = 2*vdwtype[jnrD+0];
1209
1210             fjx0             = _mm_setzero_ps();
1211             fjy0             = _mm_setzero_ps();
1212             fjz0             = _mm_setzero_ps();
1213
1214             /**************************
1215              * CALCULATE INTERACTIONS *
1216              **************************/
1217
1218             r00              = _mm_mul_ps(rsq00,rinv00);
1219             r00              = _mm_andnot_ps(dummy_mask,r00);
1220
1221             /* Compute parameters for interactions between i and j atoms */
1222             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1223                                          vdwparam+vdwioffset0+vdwjidx0B,
1224                                          vdwparam+vdwioffset0+vdwjidx0C,
1225                                          vdwparam+vdwioffset0+vdwjidx0D,
1226                                          &c6_00,&c12_00);
1227
1228             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1229                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1230                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1231                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1232
1233             /* Analytical LJ-PME */
1234             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1235             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1236             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1237             exponent         = gmx_simd_exp_r(ewcljrsq);
1238             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1239             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1240             /* f6A = 6 * C6grid * (1 - poly) */
1241             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1242             /* f6B = C6grid * exponent * beta^6 */
1243             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1244             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1245             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1246
1247             fscal            = fvdw;
1248
1249             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1250
1251             /* Calculate temporary vectorial force */
1252             tx               = _mm_mul_ps(fscal,dx00);
1253             ty               = _mm_mul_ps(fscal,dy00);
1254             tz               = _mm_mul_ps(fscal,dz00);
1255
1256             /* Update vectorial force */
1257             fix0             = _mm_add_ps(fix0,tx);
1258             fiy0             = _mm_add_ps(fiy0,ty);
1259             fiz0             = _mm_add_ps(fiz0,tz);
1260
1261             fjx0             = _mm_add_ps(fjx0,tx);
1262             fjy0             = _mm_add_ps(fjy0,ty);
1263             fjz0             = _mm_add_ps(fjz0,tz);
1264
1265             /**************************
1266              * CALCULATE INTERACTIONS *
1267              **************************/
1268
1269             r10              = _mm_mul_ps(rsq10,rinv10);
1270             r10              = _mm_andnot_ps(dummy_mask,r10);
1271
1272             /* Compute parameters for interactions between i and j atoms */
1273             qq10             = _mm_mul_ps(iq1,jq0);
1274
1275             /* EWALD ELECTROSTATICS */
1276
1277             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1278             ewrt             = _mm_mul_ps(r10,ewtabscale);
1279             ewitab           = _mm_cvttps_epi32(ewrt);
1280             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1281             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1282                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1283                                          &ewtabF,&ewtabFn);
1284             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1285             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1286
1287             fscal            = felec;
1288
1289             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1290
1291             /* Calculate temporary vectorial force */
1292             tx               = _mm_mul_ps(fscal,dx10);
1293             ty               = _mm_mul_ps(fscal,dy10);
1294             tz               = _mm_mul_ps(fscal,dz10);
1295
1296             /* Update vectorial force */
1297             fix1             = _mm_add_ps(fix1,tx);
1298             fiy1             = _mm_add_ps(fiy1,ty);
1299             fiz1             = _mm_add_ps(fiz1,tz);
1300
1301             fjx0             = _mm_add_ps(fjx0,tx);
1302             fjy0             = _mm_add_ps(fjy0,ty);
1303             fjz0             = _mm_add_ps(fjz0,tz);
1304
1305             /**************************
1306              * CALCULATE INTERACTIONS *
1307              **************************/
1308
1309             r20              = _mm_mul_ps(rsq20,rinv20);
1310             r20              = _mm_andnot_ps(dummy_mask,r20);
1311
1312             /* Compute parameters for interactions between i and j atoms */
1313             qq20             = _mm_mul_ps(iq2,jq0);
1314
1315             /* EWALD ELECTROSTATICS */
1316
1317             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1318             ewrt             = _mm_mul_ps(r20,ewtabscale);
1319             ewitab           = _mm_cvttps_epi32(ewrt);
1320             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1321             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1322                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1323                                          &ewtabF,&ewtabFn);
1324             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1325             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1326
1327             fscal            = felec;
1328
1329             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1330
1331             /* Calculate temporary vectorial force */
1332             tx               = _mm_mul_ps(fscal,dx20);
1333             ty               = _mm_mul_ps(fscal,dy20);
1334             tz               = _mm_mul_ps(fscal,dz20);
1335
1336             /* Update vectorial force */
1337             fix2             = _mm_add_ps(fix2,tx);
1338             fiy2             = _mm_add_ps(fiy2,ty);
1339             fiz2             = _mm_add_ps(fiz2,tz);
1340
1341             fjx0             = _mm_add_ps(fjx0,tx);
1342             fjy0             = _mm_add_ps(fjy0,ty);
1343             fjz0             = _mm_add_ps(fjz0,tz);
1344
1345             /**************************
1346              * CALCULATE INTERACTIONS *
1347              **************************/
1348
1349             r30              = _mm_mul_ps(rsq30,rinv30);
1350             r30              = _mm_andnot_ps(dummy_mask,r30);
1351
1352             /* Compute parameters for interactions between i and j atoms */
1353             qq30             = _mm_mul_ps(iq3,jq0);
1354
1355             /* EWALD ELECTROSTATICS */
1356
1357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1358             ewrt             = _mm_mul_ps(r30,ewtabscale);
1359             ewitab           = _mm_cvttps_epi32(ewrt);
1360             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1361             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1362                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1363                                          &ewtabF,&ewtabFn);
1364             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1365             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1366
1367             fscal            = felec;
1368
1369             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1370
1371             /* Calculate temporary vectorial force */
1372             tx               = _mm_mul_ps(fscal,dx30);
1373             ty               = _mm_mul_ps(fscal,dy30);
1374             tz               = _mm_mul_ps(fscal,dz30);
1375
1376             /* Update vectorial force */
1377             fix3             = _mm_add_ps(fix3,tx);
1378             fiy3             = _mm_add_ps(fiy3,ty);
1379             fiz3             = _mm_add_ps(fiz3,tz);
1380
1381             fjx0             = _mm_add_ps(fjx0,tx);
1382             fjy0             = _mm_add_ps(fjy0,ty);
1383             fjz0             = _mm_add_ps(fjz0,tz);
1384
1385             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1386             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1387             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1388             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1389
1390             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1391
1392             /* Inner loop uses 158 flops */
1393         }
1394
1395         /* End of innermost loop */
1396
1397         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1398                                               f+i_coord_offset,fshift+i_shift_offset);
1399
1400         /* Increment number of inner iterations */
1401         inneriter                  += j_index_end - j_index_start;
1402
1403         /* Outer loop uses 24 flops */
1404     }
1405
1406     /* Increment number of outer iterations */
1407     outeriter        += nri;
1408
1409     /* Update outer/inner flops */
1410
1411     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*158);
1412 }