Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse4_1_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           c6grid_00;
105     __m128           c6grid_10;
106     __m128           c6grid_20;
107     __m128           c6grid_30;
108     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     real             *vdwgridparam;
110     __m128           one_half  = _mm_set1_ps(0.5);
111     __m128           minus_one = _mm_set1_ps(-1.0);
112     __m128i          ewitab;
113     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
114     real             *ewtab;
115     __m128           dummy_mask,cutoff_mask;
116     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
117     __m128           one     = _mm_set1_ps(1.0);
118     __m128           two     = _mm_set1_ps(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm_set1_ps(fr->ic->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
137     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
138     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
139
140     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
148     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
149     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = jnrC = jnrD = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156     j_coord_offsetC = 0;
157     j_coord_offsetD = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     for(iidx=0;iidx<4*DIM;iidx++)
163     {
164         scratch[iidx] = 0.0;
165     }
166
167     /* Start outer loop over neighborlists */
168     for(iidx=0; iidx<nri; iidx++)
169     {
170         /* Load shift vector for this list */
171         i_shift_offset   = DIM*shiftidx[iidx];
172
173         /* Load limits for loop over neighbors */
174         j_index_start    = jindex[iidx];
175         j_index_end      = jindex[iidx+1];
176
177         /* Get outer coordinate index */
178         inr              = iinr[iidx];
179         i_coord_offset   = DIM*inr;
180
181         /* Load i particle coords and add shift vector */
182         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
183                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
184
185         fix0             = _mm_setzero_ps();
186         fiy0             = _mm_setzero_ps();
187         fiz0             = _mm_setzero_ps();
188         fix1             = _mm_setzero_ps();
189         fiy1             = _mm_setzero_ps();
190         fiz1             = _mm_setzero_ps();
191         fix2             = _mm_setzero_ps();
192         fiy2             = _mm_setzero_ps();
193         fiz2             = _mm_setzero_ps();
194         fix3             = _mm_setzero_ps();
195         fiy3             = _mm_setzero_ps();
196         fiz3             = _mm_setzero_ps();
197
198         /* Reset potential sums */
199         velecsum         = _mm_setzero_ps();
200         vvdwsum          = _mm_setzero_ps();
201
202         /* Start inner kernel loop */
203         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
204         {
205
206             /* Get j neighbor index, and coordinate index */
207             jnrA             = jjnr[jidx];
208             jnrB             = jjnr[jidx+1];
209             jnrC             = jjnr[jidx+2];
210             jnrD             = jjnr[jidx+3];
211             j_coord_offsetA  = DIM*jnrA;
212             j_coord_offsetB  = DIM*jnrB;
213             j_coord_offsetC  = DIM*jnrC;
214             j_coord_offsetD  = DIM*jnrD;
215
216             /* load j atom coordinates */
217             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
218                                               x+j_coord_offsetC,x+j_coord_offsetD,
219                                               &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm_sub_ps(ix0,jx0);
223             dy00             = _mm_sub_ps(iy0,jy0);
224             dz00             = _mm_sub_ps(iz0,jz0);
225             dx10             = _mm_sub_ps(ix1,jx0);
226             dy10             = _mm_sub_ps(iy1,jy0);
227             dz10             = _mm_sub_ps(iz1,jz0);
228             dx20             = _mm_sub_ps(ix2,jx0);
229             dy20             = _mm_sub_ps(iy2,jy0);
230             dz20             = _mm_sub_ps(iz2,jz0);
231             dx30             = _mm_sub_ps(ix3,jx0);
232             dy30             = _mm_sub_ps(iy3,jy0);
233             dz30             = _mm_sub_ps(iz3,jz0);
234
235             /* Calculate squared distance and things based on it */
236             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
237             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
238             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
239             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
240
241             rinv00           = sse41_invsqrt_f(rsq00);
242             rinv10           = sse41_invsqrt_f(rsq10);
243             rinv20           = sse41_invsqrt_f(rsq20);
244             rinv30           = sse41_invsqrt_f(rsq30);
245
246             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
247             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
248             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
249             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
250
251             /* Load parameters for j particles */
252             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
253                                                               charge+jnrC+0,charge+jnrD+0);
254             vdwjidx0A        = 2*vdwtype[jnrA+0];
255             vdwjidx0B        = 2*vdwtype[jnrB+0];
256             vdwjidx0C        = 2*vdwtype[jnrC+0];
257             vdwjidx0D        = 2*vdwtype[jnrD+0];
258
259             fjx0             = _mm_setzero_ps();
260             fjy0             = _mm_setzero_ps();
261             fjz0             = _mm_setzero_ps();
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             r00              = _mm_mul_ps(rsq00,rinv00);
268
269             /* Compute parameters for interactions between i and j atoms */
270             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
271                                          vdwparam+vdwioffset0+vdwjidx0B,
272                                          vdwparam+vdwioffset0+vdwjidx0C,
273                                          vdwparam+vdwioffset0+vdwjidx0D,
274                                          &c6_00,&c12_00);
275
276             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
277                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
278                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
279                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
280
281             /* Analytical LJ-PME */
282             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
283             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
284             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
285             exponent         = sse41_exp_f(ewcljrsq);
286             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
287             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
288             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
289             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
290             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
291             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
292             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
293             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
297
298             fscal            = fvdw;
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm_mul_ps(fscal,dx00);
302             ty               = _mm_mul_ps(fscal,dy00);
303             tz               = _mm_mul_ps(fscal,dz00);
304
305             /* Update vectorial force */
306             fix0             = _mm_add_ps(fix0,tx);
307             fiy0             = _mm_add_ps(fiy0,ty);
308             fiz0             = _mm_add_ps(fiz0,tz);
309
310             fjx0             = _mm_add_ps(fjx0,tx);
311             fjy0             = _mm_add_ps(fjy0,ty);
312             fjz0             = _mm_add_ps(fjz0,tz);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r10              = _mm_mul_ps(rsq10,rinv10);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm_mul_ps(iq1,jq0);
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
326             ewrt             = _mm_mul_ps(r10,ewtabscale);
327             ewitab           = _mm_cvttps_epi32(ewrt);
328             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
329             ewitab           = _mm_slli_epi32(ewitab,2);
330             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
331             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
332             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
333             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
334             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
335             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
336             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
337             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
338             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velecsum         = _mm_add_ps(velecsum,velec);
342
343             fscal            = felec;
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm_mul_ps(fscal,dx10);
347             ty               = _mm_mul_ps(fscal,dy10);
348             tz               = _mm_mul_ps(fscal,dz10);
349
350             /* Update vectorial force */
351             fix1             = _mm_add_ps(fix1,tx);
352             fiy1             = _mm_add_ps(fiy1,ty);
353             fiz1             = _mm_add_ps(fiz1,tz);
354
355             fjx0             = _mm_add_ps(fjx0,tx);
356             fjy0             = _mm_add_ps(fjy0,ty);
357             fjz0             = _mm_add_ps(fjz0,tz);
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             r20              = _mm_mul_ps(rsq20,rinv20);
364
365             /* Compute parameters for interactions between i and j atoms */
366             qq20             = _mm_mul_ps(iq2,jq0);
367
368             /* EWALD ELECTROSTATICS */
369
370             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
371             ewrt             = _mm_mul_ps(r20,ewtabscale);
372             ewitab           = _mm_cvttps_epi32(ewrt);
373             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
374             ewitab           = _mm_slli_epi32(ewitab,2);
375             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
376             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
377             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
378             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
379             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
380             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
381             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
382             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
383             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
384
385             /* Update potential sum for this i atom from the interaction with this j atom. */
386             velecsum         = _mm_add_ps(velecsum,velec);
387
388             fscal            = felec;
389
390             /* Calculate temporary vectorial force */
391             tx               = _mm_mul_ps(fscal,dx20);
392             ty               = _mm_mul_ps(fscal,dy20);
393             tz               = _mm_mul_ps(fscal,dz20);
394
395             /* Update vectorial force */
396             fix2             = _mm_add_ps(fix2,tx);
397             fiy2             = _mm_add_ps(fiy2,ty);
398             fiz2             = _mm_add_ps(fiz2,tz);
399
400             fjx0             = _mm_add_ps(fjx0,tx);
401             fjy0             = _mm_add_ps(fjy0,ty);
402             fjz0             = _mm_add_ps(fjz0,tz);
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             r30              = _mm_mul_ps(rsq30,rinv30);
409
410             /* Compute parameters for interactions between i and j atoms */
411             qq30             = _mm_mul_ps(iq3,jq0);
412
413             /* EWALD ELECTROSTATICS */
414
415             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
416             ewrt             = _mm_mul_ps(r30,ewtabscale);
417             ewitab           = _mm_cvttps_epi32(ewrt);
418             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
419             ewitab           = _mm_slli_epi32(ewitab,2);
420             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
421             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
422             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
423             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
424             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
425             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
426             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
427             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
428             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
429
430             /* Update potential sum for this i atom from the interaction with this j atom. */
431             velecsum         = _mm_add_ps(velecsum,velec);
432
433             fscal            = felec;
434
435             /* Calculate temporary vectorial force */
436             tx               = _mm_mul_ps(fscal,dx30);
437             ty               = _mm_mul_ps(fscal,dy30);
438             tz               = _mm_mul_ps(fscal,dz30);
439
440             /* Update vectorial force */
441             fix3             = _mm_add_ps(fix3,tx);
442             fiy3             = _mm_add_ps(fiy3,ty);
443             fiz3             = _mm_add_ps(fiz3,tz);
444
445             fjx0             = _mm_add_ps(fjx0,tx);
446             fjy0             = _mm_add_ps(fjy0,ty);
447             fjz0             = _mm_add_ps(fjz0,tz);
448
449             fjptrA             = f+j_coord_offsetA;
450             fjptrB             = f+j_coord_offsetB;
451             fjptrC             = f+j_coord_offsetC;
452             fjptrD             = f+j_coord_offsetD;
453
454             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
455
456             /* Inner loop uses 174 flops */
457         }
458
459         if(jidx<j_index_end)
460         {
461
462             /* Get j neighbor index, and coordinate index */
463             jnrlistA         = jjnr[jidx];
464             jnrlistB         = jjnr[jidx+1];
465             jnrlistC         = jjnr[jidx+2];
466             jnrlistD         = jjnr[jidx+3];
467             /* Sign of each element will be negative for non-real atoms.
468              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
469              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
470              */
471             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
472             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
473             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
474             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
475             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
476             j_coord_offsetA  = DIM*jnrA;
477             j_coord_offsetB  = DIM*jnrB;
478             j_coord_offsetC  = DIM*jnrC;
479             j_coord_offsetD  = DIM*jnrD;
480
481             /* load j atom coordinates */
482             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
483                                               x+j_coord_offsetC,x+j_coord_offsetD,
484                                               &jx0,&jy0,&jz0);
485
486             /* Calculate displacement vector */
487             dx00             = _mm_sub_ps(ix0,jx0);
488             dy00             = _mm_sub_ps(iy0,jy0);
489             dz00             = _mm_sub_ps(iz0,jz0);
490             dx10             = _mm_sub_ps(ix1,jx0);
491             dy10             = _mm_sub_ps(iy1,jy0);
492             dz10             = _mm_sub_ps(iz1,jz0);
493             dx20             = _mm_sub_ps(ix2,jx0);
494             dy20             = _mm_sub_ps(iy2,jy0);
495             dz20             = _mm_sub_ps(iz2,jz0);
496             dx30             = _mm_sub_ps(ix3,jx0);
497             dy30             = _mm_sub_ps(iy3,jy0);
498             dz30             = _mm_sub_ps(iz3,jz0);
499
500             /* Calculate squared distance and things based on it */
501             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
502             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
503             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
504             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
505
506             rinv00           = sse41_invsqrt_f(rsq00);
507             rinv10           = sse41_invsqrt_f(rsq10);
508             rinv20           = sse41_invsqrt_f(rsq20);
509             rinv30           = sse41_invsqrt_f(rsq30);
510
511             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
512             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
513             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
514             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
515
516             /* Load parameters for j particles */
517             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
518                                                               charge+jnrC+0,charge+jnrD+0);
519             vdwjidx0A        = 2*vdwtype[jnrA+0];
520             vdwjidx0B        = 2*vdwtype[jnrB+0];
521             vdwjidx0C        = 2*vdwtype[jnrC+0];
522             vdwjidx0D        = 2*vdwtype[jnrD+0];
523
524             fjx0             = _mm_setzero_ps();
525             fjy0             = _mm_setzero_ps();
526             fjz0             = _mm_setzero_ps();
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             r00              = _mm_mul_ps(rsq00,rinv00);
533             r00              = _mm_andnot_ps(dummy_mask,r00);
534
535             /* Compute parameters for interactions between i and j atoms */
536             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
537                                          vdwparam+vdwioffset0+vdwjidx0B,
538                                          vdwparam+vdwioffset0+vdwjidx0C,
539                                          vdwparam+vdwioffset0+vdwjidx0D,
540                                          &c6_00,&c12_00);
541
542             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
543                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
544                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
545                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
546
547             /* Analytical LJ-PME */
548             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
549             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
550             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
551             exponent         = sse41_exp_f(ewcljrsq);
552             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
553             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
554             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
555             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
556             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
557             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
558             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
559             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
560
561             /* Update potential sum for this i atom from the interaction with this j atom. */
562             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
563             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
564
565             fscal            = fvdw;
566
567             fscal            = _mm_andnot_ps(dummy_mask,fscal);
568
569             /* Calculate temporary vectorial force */
570             tx               = _mm_mul_ps(fscal,dx00);
571             ty               = _mm_mul_ps(fscal,dy00);
572             tz               = _mm_mul_ps(fscal,dz00);
573
574             /* Update vectorial force */
575             fix0             = _mm_add_ps(fix0,tx);
576             fiy0             = _mm_add_ps(fiy0,ty);
577             fiz0             = _mm_add_ps(fiz0,tz);
578
579             fjx0             = _mm_add_ps(fjx0,tx);
580             fjy0             = _mm_add_ps(fjy0,ty);
581             fjz0             = _mm_add_ps(fjz0,tz);
582
583             /**************************
584              * CALCULATE INTERACTIONS *
585              **************************/
586
587             r10              = _mm_mul_ps(rsq10,rinv10);
588             r10              = _mm_andnot_ps(dummy_mask,r10);
589
590             /* Compute parameters for interactions between i and j atoms */
591             qq10             = _mm_mul_ps(iq1,jq0);
592
593             /* EWALD ELECTROSTATICS */
594
595             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
596             ewrt             = _mm_mul_ps(r10,ewtabscale);
597             ewitab           = _mm_cvttps_epi32(ewrt);
598             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
599             ewitab           = _mm_slli_epi32(ewitab,2);
600             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
601             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
602             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
603             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
604             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
605             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
606             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
607             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
608             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
609
610             /* Update potential sum for this i atom from the interaction with this j atom. */
611             velec            = _mm_andnot_ps(dummy_mask,velec);
612             velecsum         = _mm_add_ps(velecsum,velec);
613
614             fscal            = felec;
615
616             fscal            = _mm_andnot_ps(dummy_mask,fscal);
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm_mul_ps(fscal,dx10);
620             ty               = _mm_mul_ps(fscal,dy10);
621             tz               = _mm_mul_ps(fscal,dz10);
622
623             /* Update vectorial force */
624             fix1             = _mm_add_ps(fix1,tx);
625             fiy1             = _mm_add_ps(fiy1,ty);
626             fiz1             = _mm_add_ps(fiz1,tz);
627
628             fjx0             = _mm_add_ps(fjx0,tx);
629             fjy0             = _mm_add_ps(fjy0,ty);
630             fjz0             = _mm_add_ps(fjz0,tz);
631
632             /**************************
633              * CALCULATE INTERACTIONS *
634              **************************/
635
636             r20              = _mm_mul_ps(rsq20,rinv20);
637             r20              = _mm_andnot_ps(dummy_mask,r20);
638
639             /* Compute parameters for interactions between i and j atoms */
640             qq20             = _mm_mul_ps(iq2,jq0);
641
642             /* EWALD ELECTROSTATICS */
643
644             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
645             ewrt             = _mm_mul_ps(r20,ewtabscale);
646             ewitab           = _mm_cvttps_epi32(ewrt);
647             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
648             ewitab           = _mm_slli_epi32(ewitab,2);
649             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
650             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
651             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
652             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
653             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
654             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
655             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
656             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
657             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
658
659             /* Update potential sum for this i atom from the interaction with this j atom. */
660             velec            = _mm_andnot_ps(dummy_mask,velec);
661             velecsum         = _mm_add_ps(velecsum,velec);
662
663             fscal            = felec;
664
665             fscal            = _mm_andnot_ps(dummy_mask,fscal);
666
667             /* Calculate temporary vectorial force */
668             tx               = _mm_mul_ps(fscal,dx20);
669             ty               = _mm_mul_ps(fscal,dy20);
670             tz               = _mm_mul_ps(fscal,dz20);
671
672             /* Update vectorial force */
673             fix2             = _mm_add_ps(fix2,tx);
674             fiy2             = _mm_add_ps(fiy2,ty);
675             fiz2             = _mm_add_ps(fiz2,tz);
676
677             fjx0             = _mm_add_ps(fjx0,tx);
678             fjy0             = _mm_add_ps(fjy0,ty);
679             fjz0             = _mm_add_ps(fjz0,tz);
680
681             /**************************
682              * CALCULATE INTERACTIONS *
683              **************************/
684
685             r30              = _mm_mul_ps(rsq30,rinv30);
686             r30              = _mm_andnot_ps(dummy_mask,r30);
687
688             /* Compute parameters for interactions between i and j atoms */
689             qq30             = _mm_mul_ps(iq3,jq0);
690
691             /* EWALD ELECTROSTATICS */
692
693             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
694             ewrt             = _mm_mul_ps(r30,ewtabscale);
695             ewitab           = _mm_cvttps_epi32(ewrt);
696             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
697             ewitab           = _mm_slli_epi32(ewitab,2);
698             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
699             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
700             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
701             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
702             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
703             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
704             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
705             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
706             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
707
708             /* Update potential sum for this i atom from the interaction with this j atom. */
709             velec            = _mm_andnot_ps(dummy_mask,velec);
710             velecsum         = _mm_add_ps(velecsum,velec);
711
712             fscal            = felec;
713
714             fscal            = _mm_andnot_ps(dummy_mask,fscal);
715
716             /* Calculate temporary vectorial force */
717             tx               = _mm_mul_ps(fscal,dx30);
718             ty               = _mm_mul_ps(fscal,dy30);
719             tz               = _mm_mul_ps(fscal,dz30);
720
721             /* Update vectorial force */
722             fix3             = _mm_add_ps(fix3,tx);
723             fiy3             = _mm_add_ps(fiy3,ty);
724             fiz3             = _mm_add_ps(fiz3,tz);
725
726             fjx0             = _mm_add_ps(fjx0,tx);
727             fjy0             = _mm_add_ps(fjy0,ty);
728             fjz0             = _mm_add_ps(fjz0,tz);
729
730             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
731             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
732             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
733             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
734
735             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
736
737             /* Inner loop uses 178 flops */
738         }
739
740         /* End of innermost loop */
741
742         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
743                                               f+i_coord_offset,fshift+i_shift_offset);
744
745         ggid                        = gid[iidx];
746         /* Update potential energies */
747         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
748         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
749
750         /* Increment number of inner iterations */
751         inneriter                  += j_index_end - j_index_start;
752
753         /* Outer loop uses 26 flops */
754     }
755
756     /* Increment number of outer iterations */
757     outeriter        += nri;
758
759     /* Update outer/inner flops */
760
761     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*178);
762 }
763 /*
764  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse4_1_single
765  * Electrostatics interaction: Ewald
766  * VdW interaction:            LJEwald
767  * Geometry:                   Water4-Particle
768  * Calculate force/pot:        Force
769  */
770 void
771 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse4_1_single
772                     (t_nblist                    * gmx_restrict       nlist,
773                      rvec                        * gmx_restrict          xx,
774                      rvec                        * gmx_restrict          ff,
775                      struct t_forcerec           * gmx_restrict          fr,
776                      t_mdatoms                   * gmx_restrict     mdatoms,
777                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
778                      t_nrnb                      * gmx_restrict        nrnb)
779 {
780     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
781      * just 0 for non-waters.
782      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
783      * jnr indices corresponding to data put in the four positions in the SIMD register.
784      */
785     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
786     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
787     int              jnrA,jnrB,jnrC,jnrD;
788     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
789     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
790     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
791     real             rcutoff_scalar;
792     real             *shiftvec,*fshift,*x,*f;
793     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
794     real             scratch[4*DIM];
795     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
796     int              vdwioffset0;
797     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
798     int              vdwioffset1;
799     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
800     int              vdwioffset2;
801     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
802     int              vdwioffset3;
803     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
804     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
805     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
806     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
807     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
808     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
809     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
810     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
811     real             *charge;
812     int              nvdwtype;
813     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
814     int              *vdwtype;
815     real             *vdwparam;
816     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
817     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
818     __m128           c6grid_00;
819     __m128           c6grid_10;
820     __m128           c6grid_20;
821     __m128           c6grid_30;
822     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
823     real             *vdwgridparam;
824     __m128           one_half  = _mm_set1_ps(0.5);
825     __m128           minus_one = _mm_set1_ps(-1.0);
826     __m128i          ewitab;
827     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
828     real             *ewtab;
829     __m128           dummy_mask,cutoff_mask;
830     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
831     __m128           one     = _mm_set1_ps(1.0);
832     __m128           two     = _mm_set1_ps(2.0);
833     x                = xx[0];
834     f                = ff[0];
835
836     nri              = nlist->nri;
837     iinr             = nlist->iinr;
838     jindex           = nlist->jindex;
839     jjnr             = nlist->jjnr;
840     shiftidx         = nlist->shift;
841     gid              = nlist->gid;
842     shiftvec         = fr->shift_vec[0];
843     fshift           = fr->fshift[0];
844     facel            = _mm_set1_ps(fr->ic->epsfac);
845     charge           = mdatoms->chargeA;
846     nvdwtype         = fr->ntype;
847     vdwparam         = fr->nbfp;
848     vdwtype          = mdatoms->typeA;
849     vdwgridparam     = fr->ljpme_c6grid;
850     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
851     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
852     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
853
854     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
855     ewtab            = fr->ic->tabq_coul_F;
856     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
857     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
858
859     /* Setup water-specific parameters */
860     inr              = nlist->iinr[0];
861     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
862     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
863     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
864     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
865
866     /* Avoid stupid compiler warnings */
867     jnrA = jnrB = jnrC = jnrD = 0;
868     j_coord_offsetA = 0;
869     j_coord_offsetB = 0;
870     j_coord_offsetC = 0;
871     j_coord_offsetD = 0;
872
873     outeriter        = 0;
874     inneriter        = 0;
875
876     for(iidx=0;iidx<4*DIM;iidx++)
877     {
878         scratch[iidx] = 0.0;
879     }
880
881     /* Start outer loop over neighborlists */
882     for(iidx=0; iidx<nri; iidx++)
883     {
884         /* Load shift vector for this list */
885         i_shift_offset   = DIM*shiftidx[iidx];
886
887         /* Load limits for loop over neighbors */
888         j_index_start    = jindex[iidx];
889         j_index_end      = jindex[iidx+1];
890
891         /* Get outer coordinate index */
892         inr              = iinr[iidx];
893         i_coord_offset   = DIM*inr;
894
895         /* Load i particle coords and add shift vector */
896         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
897                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
898
899         fix0             = _mm_setzero_ps();
900         fiy0             = _mm_setzero_ps();
901         fiz0             = _mm_setzero_ps();
902         fix1             = _mm_setzero_ps();
903         fiy1             = _mm_setzero_ps();
904         fiz1             = _mm_setzero_ps();
905         fix2             = _mm_setzero_ps();
906         fiy2             = _mm_setzero_ps();
907         fiz2             = _mm_setzero_ps();
908         fix3             = _mm_setzero_ps();
909         fiy3             = _mm_setzero_ps();
910         fiz3             = _mm_setzero_ps();
911
912         /* Start inner kernel loop */
913         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
914         {
915
916             /* Get j neighbor index, and coordinate index */
917             jnrA             = jjnr[jidx];
918             jnrB             = jjnr[jidx+1];
919             jnrC             = jjnr[jidx+2];
920             jnrD             = jjnr[jidx+3];
921             j_coord_offsetA  = DIM*jnrA;
922             j_coord_offsetB  = DIM*jnrB;
923             j_coord_offsetC  = DIM*jnrC;
924             j_coord_offsetD  = DIM*jnrD;
925
926             /* load j atom coordinates */
927             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
928                                               x+j_coord_offsetC,x+j_coord_offsetD,
929                                               &jx0,&jy0,&jz0);
930
931             /* Calculate displacement vector */
932             dx00             = _mm_sub_ps(ix0,jx0);
933             dy00             = _mm_sub_ps(iy0,jy0);
934             dz00             = _mm_sub_ps(iz0,jz0);
935             dx10             = _mm_sub_ps(ix1,jx0);
936             dy10             = _mm_sub_ps(iy1,jy0);
937             dz10             = _mm_sub_ps(iz1,jz0);
938             dx20             = _mm_sub_ps(ix2,jx0);
939             dy20             = _mm_sub_ps(iy2,jy0);
940             dz20             = _mm_sub_ps(iz2,jz0);
941             dx30             = _mm_sub_ps(ix3,jx0);
942             dy30             = _mm_sub_ps(iy3,jy0);
943             dz30             = _mm_sub_ps(iz3,jz0);
944
945             /* Calculate squared distance and things based on it */
946             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
947             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
948             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
949             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
950
951             rinv00           = sse41_invsqrt_f(rsq00);
952             rinv10           = sse41_invsqrt_f(rsq10);
953             rinv20           = sse41_invsqrt_f(rsq20);
954             rinv30           = sse41_invsqrt_f(rsq30);
955
956             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
957             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
958             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
959             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
960
961             /* Load parameters for j particles */
962             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
963                                                               charge+jnrC+0,charge+jnrD+0);
964             vdwjidx0A        = 2*vdwtype[jnrA+0];
965             vdwjidx0B        = 2*vdwtype[jnrB+0];
966             vdwjidx0C        = 2*vdwtype[jnrC+0];
967             vdwjidx0D        = 2*vdwtype[jnrD+0];
968
969             fjx0             = _mm_setzero_ps();
970             fjy0             = _mm_setzero_ps();
971             fjz0             = _mm_setzero_ps();
972
973             /**************************
974              * CALCULATE INTERACTIONS *
975              **************************/
976
977             r00              = _mm_mul_ps(rsq00,rinv00);
978
979             /* Compute parameters for interactions between i and j atoms */
980             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
981                                          vdwparam+vdwioffset0+vdwjidx0B,
982                                          vdwparam+vdwioffset0+vdwjidx0C,
983                                          vdwparam+vdwioffset0+vdwjidx0D,
984                                          &c6_00,&c12_00);
985
986             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
987                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
988                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
989                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
990
991             /* Analytical LJ-PME */
992             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
993             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
994             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
995             exponent         = sse41_exp_f(ewcljrsq);
996             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
997             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
998             /* f6A = 6 * C6grid * (1 - poly) */
999             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1000             /* f6B = C6grid * exponent * beta^6 */
1001             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1002             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1003             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1004
1005             fscal            = fvdw;
1006
1007             /* Calculate temporary vectorial force */
1008             tx               = _mm_mul_ps(fscal,dx00);
1009             ty               = _mm_mul_ps(fscal,dy00);
1010             tz               = _mm_mul_ps(fscal,dz00);
1011
1012             /* Update vectorial force */
1013             fix0             = _mm_add_ps(fix0,tx);
1014             fiy0             = _mm_add_ps(fiy0,ty);
1015             fiz0             = _mm_add_ps(fiz0,tz);
1016
1017             fjx0             = _mm_add_ps(fjx0,tx);
1018             fjy0             = _mm_add_ps(fjy0,ty);
1019             fjz0             = _mm_add_ps(fjz0,tz);
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             r10              = _mm_mul_ps(rsq10,rinv10);
1026
1027             /* Compute parameters for interactions between i and j atoms */
1028             qq10             = _mm_mul_ps(iq1,jq0);
1029
1030             /* EWALD ELECTROSTATICS */
1031
1032             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1033             ewrt             = _mm_mul_ps(r10,ewtabscale);
1034             ewitab           = _mm_cvttps_epi32(ewrt);
1035             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1036             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1037                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1038                                          &ewtabF,&ewtabFn);
1039             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1040             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1041
1042             fscal            = felec;
1043
1044             /* Calculate temporary vectorial force */
1045             tx               = _mm_mul_ps(fscal,dx10);
1046             ty               = _mm_mul_ps(fscal,dy10);
1047             tz               = _mm_mul_ps(fscal,dz10);
1048
1049             /* Update vectorial force */
1050             fix1             = _mm_add_ps(fix1,tx);
1051             fiy1             = _mm_add_ps(fiy1,ty);
1052             fiz1             = _mm_add_ps(fiz1,tz);
1053
1054             fjx0             = _mm_add_ps(fjx0,tx);
1055             fjy0             = _mm_add_ps(fjy0,ty);
1056             fjz0             = _mm_add_ps(fjz0,tz);
1057
1058             /**************************
1059              * CALCULATE INTERACTIONS *
1060              **************************/
1061
1062             r20              = _mm_mul_ps(rsq20,rinv20);
1063
1064             /* Compute parameters for interactions between i and j atoms */
1065             qq20             = _mm_mul_ps(iq2,jq0);
1066
1067             /* EWALD ELECTROSTATICS */
1068
1069             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1070             ewrt             = _mm_mul_ps(r20,ewtabscale);
1071             ewitab           = _mm_cvttps_epi32(ewrt);
1072             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1073             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1074                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1075                                          &ewtabF,&ewtabFn);
1076             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1077             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1078
1079             fscal            = felec;
1080
1081             /* Calculate temporary vectorial force */
1082             tx               = _mm_mul_ps(fscal,dx20);
1083             ty               = _mm_mul_ps(fscal,dy20);
1084             tz               = _mm_mul_ps(fscal,dz20);
1085
1086             /* Update vectorial force */
1087             fix2             = _mm_add_ps(fix2,tx);
1088             fiy2             = _mm_add_ps(fiy2,ty);
1089             fiz2             = _mm_add_ps(fiz2,tz);
1090
1091             fjx0             = _mm_add_ps(fjx0,tx);
1092             fjy0             = _mm_add_ps(fjy0,ty);
1093             fjz0             = _mm_add_ps(fjz0,tz);
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             r30              = _mm_mul_ps(rsq30,rinv30);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq30             = _mm_mul_ps(iq3,jq0);
1103
1104             /* EWALD ELECTROSTATICS */
1105
1106             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1107             ewrt             = _mm_mul_ps(r30,ewtabscale);
1108             ewitab           = _mm_cvttps_epi32(ewrt);
1109             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1110             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1111                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1112                                          &ewtabF,&ewtabFn);
1113             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1114             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1115
1116             fscal            = felec;
1117
1118             /* Calculate temporary vectorial force */
1119             tx               = _mm_mul_ps(fscal,dx30);
1120             ty               = _mm_mul_ps(fscal,dy30);
1121             tz               = _mm_mul_ps(fscal,dz30);
1122
1123             /* Update vectorial force */
1124             fix3             = _mm_add_ps(fix3,tx);
1125             fiy3             = _mm_add_ps(fiy3,ty);
1126             fiz3             = _mm_add_ps(fiz3,tz);
1127
1128             fjx0             = _mm_add_ps(fjx0,tx);
1129             fjy0             = _mm_add_ps(fjy0,ty);
1130             fjz0             = _mm_add_ps(fjz0,tz);
1131
1132             fjptrA             = f+j_coord_offsetA;
1133             fjptrB             = f+j_coord_offsetB;
1134             fjptrC             = f+j_coord_offsetC;
1135             fjptrD             = f+j_coord_offsetD;
1136
1137             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1138
1139             /* Inner loop uses 154 flops */
1140         }
1141
1142         if(jidx<j_index_end)
1143         {
1144
1145             /* Get j neighbor index, and coordinate index */
1146             jnrlistA         = jjnr[jidx];
1147             jnrlistB         = jjnr[jidx+1];
1148             jnrlistC         = jjnr[jidx+2];
1149             jnrlistD         = jjnr[jidx+3];
1150             /* Sign of each element will be negative for non-real atoms.
1151              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1152              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1153              */
1154             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1155             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1156             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1157             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1158             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1159             j_coord_offsetA  = DIM*jnrA;
1160             j_coord_offsetB  = DIM*jnrB;
1161             j_coord_offsetC  = DIM*jnrC;
1162             j_coord_offsetD  = DIM*jnrD;
1163
1164             /* load j atom coordinates */
1165             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1166                                               x+j_coord_offsetC,x+j_coord_offsetD,
1167                                               &jx0,&jy0,&jz0);
1168
1169             /* Calculate displacement vector */
1170             dx00             = _mm_sub_ps(ix0,jx0);
1171             dy00             = _mm_sub_ps(iy0,jy0);
1172             dz00             = _mm_sub_ps(iz0,jz0);
1173             dx10             = _mm_sub_ps(ix1,jx0);
1174             dy10             = _mm_sub_ps(iy1,jy0);
1175             dz10             = _mm_sub_ps(iz1,jz0);
1176             dx20             = _mm_sub_ps(ix2,jx0);
1177             dy20             = _mm_sub_ps(iy2,jy0);
1178             dz20             = _mm_sub_ps(iz2,jz0);
1179             dx30             = _mm_sub_ps(ix3,jx0);
1180             dy30             = _mm_sub_ps(iy3,jy0);
1181             dz30             = _mm_sub_ps(iz3,jz0);
1182
1183             /* Calculate squared distance and things based on it */
1184             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1185             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1186             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1187             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1188
1189             rinv00           = sse41_invsqrt_f(rsq00);
1190             rinv10           = sse41_invsqrt_f(rsq10);
1191             rinv20           = sse41_invsqrt_f(rsq20);
1192             rinv30           = sse41_invsqrt_f(rsq30);
1193
1194             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1195             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1196             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1197             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1198
1199             /* Load parameters for j particles */
1200             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1201                                                               charge+jnrC+0,charge+jnrD+0);
1202             vdwjidx0A        = 2*vdwtype[jnrA+0];
1203             vdwjidx0B        = 2*vdwtype[jnrB+0];
1204             vdwjidx0C        = 2*vdwtype[jnrC+0];
1205             vdwjidx0D        = 2*vdwtype[jnrD+0];
1206
1207             fjx0             = _mm_setzero_ps();
1208             fjy0             = _mm_setzero_ps();
1209             fjz0             = _mm_setzero_ps();
1210
1211             /**************************
1212              * CALCULATE INTERACTIONS *
1213              **************************/
1214
1215             r00              = _mm_mul_ps(rsq00,rinv00);
1216             r00              = _mm_andnot_ps(dummy_mask,r00);
1217
1218             /* Compute parameters for interactions between i and j atoms */
1219             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1220                                          vdwparam+vdwioffset0+vdwjidx0B,
1221                                          vdwparam+vdwioffset0+vdwjidx0C,
1222                                          vdwparam+vdwioffset0+vdwjidx0D,
1223                                          &c6_00,&c12_00);
1224
1225             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1226                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1227                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1228                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1229
1230             /* Analytical LJ-PME */
1231             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1232             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1233             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1234             exponent         = sse41_exp_f(ewcljrsq);
1235             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1236             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1237             /* f6A = 6 * C6grid * (1 - poly) */
1238             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1239             /* f6B = C6grid * exponent * beta^6 */
1240             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1241             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1242             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1243
1244             fscal            = fvdw;
1245
1246             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1247
1248             /* Calculate temporary vectorial force */
1249             tx               = _mm_mul_ps(fscal,dx00);
1250             ty               = _mm_mul_ps(fscal,dy00);
1251             tz               = _mm_mul_ps(fscal,dz00);
1252
1253             /* Update vectorial force */
1254             fix0             = _mm_add_ps(fix0,tx);
1255             fiy0             = _mm_add_ps(fiy0,ty);
1256             fiz0             = _mm_add_ps(fiz0,tz);
1257
1258             fjx0             = _mm_add_ps(fjx0,tx);
1259             fjy0             = _mm_add_ps(fjy0,ty);
1260             fjz0             = _mm_add_ps(fjz0,tz);
1261
1262             /**************************
1263              * CALCULATE INTERACTIONS *
1264              **************************/
1265
1266             r10              = _mm_mul_ps(rsq10,rinv10);
1267             r10              = _mm_andnot_ps(dummy_mask,r10);
1268
1269             /* Compute parameters for interactions between i and j atoms */
1270             qq10             = _mm_mul_ps(iq1,jq0);
1271
1272             /* EWALD ELECTROSTATICS */
1273
1274             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1275             ewrt             = _mm_mul_ps(r10,ewtabscale);
1276             ewitab           = _mm_cvttps_epi32(ewrt);
1277             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1278             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1279                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1280                                          &ewtabF,&ewtabFn);
1281             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1282             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1283
1284             fscal            = felec;
1285
1286             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1287
1288             /* Calculate temporary vectorial force */
1289             tx               = _mm_mul_ps(fscal,dx10);
1290             ty               = _mm_mul_ps(fscal,dy10);
1291             tz               = _mm_mul_ps(fscal,dz10);
1292
1293             /* Update vectorial force */
1294             fix1             = _mm_add_ps(fix1,tx);
1295             fiy1             = _mm_add_ps(fiy1,ty);
1296             fiz1             = _mm_add_ps(fiz1,tz);
1297
1298             fjx0             = _mm_add_ps(fjx0,tx);
1299             fjy0             = _mm_add_ps(fjy0,ty);
1300             fjz0             = _mm_add_ps(fjz0,tz);
1301
1302             /**************************
1303              * CALCULATE INTERACTIONS *
1304              **************************/
1305
1306             r20              = _mm_mul_ps(rsq20,rinv20);
1307             r20              = _mm_andnot_ps(dummy_mask,r20);
1308
1309             /* Compute parameters for interactions between i and j atoms */
1310             qq20             = _mm_mul_ps(iq2,jq0);
1311
1312             /* EWALD ELECTROSTATICS */
1313
1314             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1315             ewrt             = _mm_mul_ps(r20,ewtabscale);
1316             ewitab           = _mm_cvttps_epi32(ewrt);
1317             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1318             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1319                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1320                                          &ewtabF,&ewtabFn);
1321             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1322             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1323
1324             fscal            = felec;
1325
1326             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1327
1328             /* Calculate temporary vectorial force */
1329             tx               = _mm_mul_ps(fscal,dx20);
1330             ty               = _mm_mul_ps(fscal,dy20);
1331             tz               = _mm_mul_ps(fscal,dz20);
1332
1333             /* Update vectorial force */
1334             fix2             = _mm_add_ps(fix2,tx);
1335             fiy2             = _mm_add_ps(fiy2,ty);
1336             fiz2             = _mm_add_ps(fiz2,tz);
1337
1338             fjx0             = _mm_add_ps(fjx0,tx);
1339             fjy0             = _mm_add_ps(fjy0,ty);
1340             fjz0             = _mm_add_ps(fjz0,tz);
1341
1342             /**************************
1343              * CALCULATE INTERACTIONS *
1344              **************************/
1345
1346             r30              = _mm_mul_ps(rsq30,rinv30);
1347             r30              = _mm_andnot_ps(dummy_mask,r30);
1348
1349             /* Compute parameters for interactions between i and j atoms */
1350             qq30             = _mm_mul_ps(iq3,jq0);
1351
1352             /* EWALD ELECTROSTATICS */
1353
1354             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1355             ewrt             = _mm_mul_ps(r30,ewtabscale);
1356             ewitab           = _mm_cvttps_epi32(ewrt);
1357             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1358             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1359                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1360                                          &ewtabF,&ewtabFn);
1361             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1362             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1363
1364             fscal            = felec;
1365
1366             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1367
1368             /* Calculate temporary vectorial force */
1369             tx               = _mm_mul_ps(fscal,dx30);
1370             ty               = _mm_mul_ps(fscal,dy30);
1371             tz               = _mm_mul_ps(fscal,dz30);
1372
1373             /* Update vectorial force */
1374             fix3             = _mm_add_ps(fix3,tx);
1375             fiy3             = _mm_add_ps(fiy3,ty);
1376             fiz3             = _mm_add_ps(fiz3,tz);
1377
1378             fjx0             = _mm_add_ps(fjx0,tx);
1379             fjy0             = _mm_add_ps(fjy0,ty);
1380             fjz0             = _mm_add_ps(fjz0,tz);
1381
1382             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1383             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1384             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1385             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1386
1387             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1388
1389             /* Inner loop uses 158 flops */
1390         }
1391
1392         /* End of innermost loop */
1393
1394         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1395                                               f+i_coord_offset,fshift+i_shift_offset);
1396
1397         /* Increment number of inner iterations */
1398         inneriter                  += j_index_end - j_index_start;
1399
1400         /* Outer loop uses 24 flops */
1401     }
1402
1403     /* Increment number of outer iterations */
1404     outeriter        += nri;
1405
1406     /* Update outer/inner flops */
1407
1408     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*158);
1409 }