f7c2894b86d984246671845a407fd4fc68aeb214
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJEw_GeomW3W3_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3W3_VF_sse4_1_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Water3
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW3W3_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
92     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
93     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
94     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
97     __m128           dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
98     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
99     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
100     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
101     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
102     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
103     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
104     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
105     real             *charge;
106     int              nvdwtype;
107     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
108     int              *vdwtype;
109     real             *vdwparam;
110     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
111     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
112     __m128           c6grid_00;
113     __m128           c6grid_01;
114     __m128           c6grid_02;
115     __m128           c6grid_10;
116     __m128           c6grid_11;
117     __m128           c6grid_12;
118     __m128           c6grid_20;
119     __m128           c6grid_21;
120     __m128           c6grid_22;
121     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
122     real             *vdwgridparam;
123     __m128           one_half  = _mm_set1_ps(0.5);
124     __m128           minus_one = _mm_set1_ps(-1.0);
125     __m128i          ewitab;
126     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
127     real             *ewtab;
128     __m128           dummy_mask,cutoff_mask;
129     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
130     __m128           one     = _mm_set1_ps(1.0);
131     __m128           two     = _mm_set1_ps(2.0);
132     x                = xx[0];
133     f                = ff[0];
134
135     nri              = nlist->nri;
136     iinr             = nlist->iinr;
137     jindex           = nlist->jindex;
138     jjnr             = nlist->jjnr;
139     shiftidx         = nlist->shift;
140     gid              = nlist->gid;
141     shiftvec         = fr->shift_vec[0];
142     fshift           = fr->fshift[0];
143     facel            = _mm_set1_ps(fr->epsfac);
144     charge           = mdatoms->chargeA;
145     nvdwtype         = fr->ntype;
146     vdwparam         = fr->nbfp;
147     vdwtype          = mdatoms->typeA;
148     vdwgridparam     = fr->ljpme_c6grid;
149     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
150     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
151     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
152
153     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
154     ewtab            = fr->ic->tabq_coul_FDV0;
155     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
156     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
157
158     /* Setup water-specific parameters */
159     inr              = nlist->iinr[0];
160     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
161     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
162     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
163     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
164
165     jq0              = _mm_set1_ps(charge[inr+0]);
166     jq1              = _mm_set1_ps(charge[inr+1]);
167     jq2              = _mm_set1_ps(charge[inr+2]);
168     vdwjidx0A        = 2*vdwtype[inr+0];
169     qq00             = _mm_mul_ps(iq0,jq0);
170     c6_00            = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
171     c12_00           = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
172     c6grid_00        = _mm_set1_ps(vdwgridparam[vdwioffset0+vdwjidx0A]);
173     qq01             = _mm_mul_ps(iq0,jq1);
174     qq02             = _mm_mul_ps(iq0,jq2);
175     qq10             = _mm_mul_ps(iq1,jq0);
176     qq11             = _mm_mul_ps(iq1,jq1);
177     qq12             = _mm_mul_ps(iq1,jq2);
178     qq20             = _mm_mul_ps(iq2,jq0);
179     qq21             = _mm_mul_ps(iq2,jq1);
180     qq22             = _mm_mul_ps(iq2,jq2);
181
182     /* Avoid stupid compiler warnings */
183     jnrA = jnrB = jnrC = jnrD = 0;
184     j_coord_offsetA = 0;
185     j_coord_offsetB = 0;
186     j_coord_offsetC = 0;
187     j_coord_offsetD = 0;
188
189     outeriter        = 0;
190     inneriter        = 0;
191
192     for(iidx=0;iidx<4*DIM;iidx++)
193     {
194         scratch[iidx] = 0.0;
195     }
196
197     /* Start outer loop over neighborlists */
198     for(iidx=0; iidx<nri; iidx++)
199     {
200         /* Load shift vector for this list */
201         i_shift_offset   = DIM*shiftidx[iidx];
202
203         /* Load limits for loop over neighbors */
204         j_index_start    = jindex[iidx];
205         j_index_end      = jindex[iidx+1];
206
207         /* Get outer coordinate index */
208         inr              = iinr[iidx];
209         i_coord_offset   = DIM*inr;
210
211         /* Load i particle coords and add shift vector */
212         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
213                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
214
215         fix0             = _mm_setzero_ps();
216         fiy0             = _mm_setzero_ps();
217         fiz0             = _mm_setzero_ps();
218         fix1             = _mm_setzero_ps();
219         fiy1             = _mm_setzero_ps();
220         fiz1             = _mm_setzero_ps();
221         fix2             = _mm_setzero_ps();
222         fiy2             = _mm_setzero_ps();
223         fiz2             = _mm_setzero_ps();
224
225         /* Reset potential sums */
226         velecsum         = _mm_setzero_ps();
227         vvdwsum          = _mm_setzero_ps();
228
229         /* Start inner kernel loop */
230         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
231         {
232
233             /* Get j neighbor index, and coordinate index */
234             jnrA             = jjnr[jidx];
235             jnrB             = jjnr[jidx+1];
236             jnrC             = jjnr[jidx+2];
237             jnrD             = jjnr[jidx+3];
238             j_coord_offsetA  = DIM*jnrA;
239             j_coord_offsetB  = DIM*jnrB;
240             j_coord_offsetC  = DIM*jnrC;
241             j_coord_offsetD  = DIM*jnrD;
242
243             /* load j atom coordinates */
244             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
245                                               x+j_coord_offsetC,x+j_coord_offsetD,
246                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
247
248             /* Calculate displacement vector */
249             dx00             = _mm_sub_ps(ix0,jx0);
250             dy00             = _mm_sub_ps(iy0,jy0);
251             dz00             = _mm_sub_ps(iz0,jz0);
252             dx01             = _mm_sub_ps(ix0,jx1);
253             dy01             = _mm_sub_ps(iy0,jy1);
254             dz01             = _mm_sub_ps(iz0,jz1);
255             dx02             = _mm_sub_ps(ix0,jx2);
256             dy02             = _mm_sub_ps(iy0,jy2);
257             dz02             = _mm_sub_ps(iz0,jz2);
258             dx10             = _mm_sub_ps(ix1,jx0);
259             dy10             = _mm_sub_ps(iy1,jy0);
260             dz10             = _mm_sub_ps(iz1,jz0);
261             dx11             = _mm_sub_ps(ix1,jx1);
262             dy11             = _mm_sub_ps(iy1,jy1);
263             dz11             = _mm_sub_ps(iz1,jz1);
264             dx12             = _mm_sub_ps(ix1,jx2);
265             dy12             = _mm_sub_ps(iy1,jy2);
266             dz12             = _mm_sub_ps(iz1,jz2);
267             dx20             = _mm_sub_ps(ix2,jx0);
268             dy20             = _mm_sub_ps(iy2,jy0);
269             dz20             = _mm_sub_ps(iz2,jz0);
270             dx21             = _mm_sub_ps(ix2,jx1);
271             dy21             = _mm_sub_ps(iy2,jy1);
272             dz21             = _mm_sub_ps(iz2,jz1);
273             dx22             = _mm_sub_ps(ix2,jx2);
274             dy22             = _mm_sub_ps(iy2,jy2);
275             dz22             = _mm_sub_ps(iz2,jz2);
276
277             /* Calculate squared distance and things based on it */
278             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
279             rsq01            = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
280             rsq02            = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
281             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
282             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
283             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
284             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
285             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
286             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
287
288             rinv00           = gmx_mm_invsqrt_ps(rsq00);
289             rinv01           = gmx_mm_invsqrt_ps(rsq01);
290             rinv02           = gmx_mm_invsqrt_ps(rsq02);
291             rinv10           = gmx_mm_invsqrt_ps(rsq10);
292             rinv11           = gmx_mm_invsqrt_ps(rsq11);
293             rinv12           = gmx_mm_invsqrt_ps(rsq12);
294             rinv20           = gmx_mm_invsqrt_ps(rsq20);
295             rinv21           = gmx_mm_invsqrt_ps(rsq21);
296             rinv22           = gmx_mm_invsqrt_ps(rsq22);
297
298             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
299             rinvsq01         = _mm_mul_ps(rinv01,rinv01);
300             rinvsq02         = _mm_mul_ps(rinv02,rinv02);
301             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
302             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
303             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
304             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
305             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
306             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
307
308             fjx0             = _mm_setzero_ps();
309             fjy0             = _mm_setzero_ps();
310             fjz0             = _mm_setzero_ps();
311             fjx1             = _mm_setzero_ps();
312             fjy1             = _mm_setzero_ps();
313             fjz1             = _mm_setzero_ps();
314             fjx2             = _mm_setzero_ps();
315             fjy2             = _mm_setzero_ps();
316             fjz2             = _mm_setzero_ps();
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             r00              = _mm_mul_ps(rsq00,rinv00);
323
324             /* EWALD ELECTROSTATICS */
325
326             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
327             ewrt             = _mm_mul_ps(r00,ewtabscale);
328             ewitab           = _mm_cvttps_epi32(ewrt);
329             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
330             ewitab           = _mm_slli_epi32(ewitab,2);
331             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
332             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
333             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
334             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
335             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
336             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
337             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
338             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
339             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
340
341             /* Analytical LJ-PME */
342             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
343             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
344             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
345             exponent         = gmx_simd_exp_r(ewcljrsq);
346             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
347             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
348             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
349             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
350             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
351             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
352             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
353             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velecsum         = _mm_add_ps(velecsum,velec);
357             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
358
359             fscal            = _mm_add_ps(felec,fvdw);
360
361             /* Calculate temporary vectorial force */
362             tx               = _mm_mul_ps(fscal,dx00);
363             ty               = _mm_mul_ps(fscal,dy00);
364             tz               = _mm_mul_ps(fscal,dz00);
365
366             /* Update vectorial force */
367             fix0             = _mm_add_ps(fix0,tx);
368             fiy0             = _mm_add_ps(fiy0,ty);
369             fiz0             = _mm_add_ps(fiz0,tz);
370
371             fjx0             = _mm_add_ps(fjx0,tx);
372             fjy0             = _mm_add_ps(fjy0,ty);
373             fjz0             = _mm_add_ps(fjz0,tz);
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             r01              = _mm_mul_ps(rsq01,rinv01);
380
381             /* EWALD ELECTROSTATICS */
382
383             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
384             ewrt             = _mm_mul_ps(r01,ewtabscale);
385             ewitab           = _mm_cvttps_epi32(ewrt);
386             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
387             ewitab           = _mm_slli_epi32(ewitab,2);
388             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
389             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
390             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
391             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
392             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
393             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
394             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
395             velec            = _mm_mul_ps(qq01,_mm_sub_ps(rinv01,velec));
396             felec            = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velecsum         = _mm_add_ps(velecsum,velec);
400
401             fscal            = felec;
402
403             /* Calculate temporary vectorial force */
404             tx               = _mm_mul_ps(fscal,dx01);
405             ty               = _mm_mul_ps(fscal,dy01);
406             tz               = _mm_mul_ps(fscal,dz01);
407
408             /* Update vectorial force */
409             fix0             = _mm_add_ps(fix0,tx);
410             fiy0             = _mm_add_ps(fiy0,ty);
411             fiz0             = _mm_add_ps(fiz0,tz);
412
413             fjx1             = _mm_add_ps(fjx1,tx);
414             fjy1             = _mm_add_ps(fjy1,ty);
415             fjz1             = _mm_add_ps(fjz1,tz);
416
417             /**************************
418              * CALCULATE INTERACTIONS *
419              **************************/
420
421             r02              = _mm_mul_ps(rsq02,rinv02);
422
423             /* EWALD ELECTROSTATICS */
424
425             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
426             ewrt             = _mm_mul_ps(r02,ewtabscale);
427             ewitab           = _mm_cvttps_epi32(ewrt);
428             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
429             ewitab           = _mm_slli_epi32(ewitab,2);
430             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
431             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
432             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
433             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
434             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
435             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
436             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
437             velec            = _mm_mul_ps(qq02,_mm_sub_ps(rinv02,velec));
438             felec            = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
439
440             /* Update potential sum for this i atom from the interaction with this j atom. */
441             velecsum         = _mm_add_ps(velecsum,velec);
442
443             fscal            = felec;
444
445             /* Calculate temporary vectorial force */
446             tx               = _mm_mul_ps(fscal,dx02);
447             ty               = _mm_mul_ps(fscal,dy02);
448             tz               = _mm_mul_ps(fscal,dz02);
449
450             /* Update vectorial force */
451             fix0             = _mm_add_ps(fix0,tx);
452             fiy0             = _mm_add_ps(fiy0,ty);
453             fiz0             = _mm_add_ps(fiz0,tz);
454
455             fjx2             = _mm_add_ps(fjx2,tx);
456             fjy2             = _mm_add_ps(fjy2,ty);
457             fjz2             = _mm_add_ps(fjz2,tz);
458
459             /**************************
460              * CALCULATE INTERACTIONS *
461              **************************/
462
463             r10              = _mm_mul_ps(rsq10,rinv10);
464
465             /* EWALD ELECTROSTATICS */
466
467             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
468             ewrt             = _mm_mul_ps(r10,ewtabscale);
469             ewitab           = _mm_cvttps_epi32(ewrt);
470             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
471             ewitab           = _mm_slli_epi32(ewitab,2);
472             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
473             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
474             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
475             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
476             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
477             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
478             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
479             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
480             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
481
482             /* Update potential sum for this i atom from the interaction with this j atom. */
483             velecsum         = _mm_add_ps(velecsum,velec);
484
485             fscal            = felec;
486
487             /* Calculate temporary vectorial force */
488             tx               = _mm_mul_ps(fscal,dx10);
489             ty               = _mm_mul_ps(fscal,dy10);
490             tz               = _mm_mul_ps(fscal,dz10);
491
492             /* Update vectorial force */
493             fix1             = _mm_add_ps(fix1,tx);
494             fiy1             = _mm_add_ps(fiy1,ty);
495             fiz1             = _mm_add_ps(fiz1,tz);
496
497             fjx0             = _mm_add_ps(fjx0,tx);
498             fjy0             = _mm_add_ps(fjy0,ty);
499             fjz0             = _mm_add_ps(fjz0,tz);
500
501             /**************************
502              * CALCULATE INTERACTIONS *
503              **************************/
504
505             r11              = _mm_mul_ps(rsq11,rinv11);
506
507             /* EWALD ELECTROSTATICS */
508
509             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
510             ewrt             = _mm_mul_ps(r11,ewtabscale);
511             ewitab           = _mm_cvttps_epi32(ewrt);
512             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
513             ewitab           = _mm_slli_epi32(ewitab,2);
514             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
515             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
516             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
517             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
518             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
519             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
520             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
521             velec            = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
522             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
523
524             /* Update potential sum for this i atom from the interaction with this j atom. */
525             velecsum         = _mm_add_ps(velecsum,velec);
526
527             fscal            = felec;
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_ps(fscal,dx11);
531             ty               = _mm_mul_ps(fscal,dy11);
532             tz               = _mm_mul_ps(fscal,dz11);
533
534             /* Update vectorial force */
535             fix1             = _mm_add_ps(fix1,tx);
536             fiy1             = _mm_add_ps(fiy1,ty);
537             fiz1             = _mm_add_ps(fiz1,tz);
538
539             fjx1             = _mm_add_ps(fjx1,tx);
540             fjy1             = _mm_add_ps(fjy1,ty);
541             fjz1             = _mm_add_ps(fjz1,tz);
542
543             /**************************
544              * CALCULATE INTERACTIONS *
545              **************************/
546
547             r12              = _mm_mul_ps(rsq12,rinv12);
548
549             /* EWALD ELECTROSTATICS */
550
551             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
552             ewrt             = _mm_mul_ps(r12,ewtabscale);
553             ewitab           = _mm_cvttps_epi32(ewrt);
554             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
555             ewitab           = _mm_slli_epi32(ewitab,2);
556             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
557             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
558             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
559             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
560             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
561             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
562             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
563             velec            = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
564             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
565
566             /* Update potential sum for this i atom from the interaction with this j atom. */
567             velecsum         = _mm_add_ps(velecsum,velec);
568
569             fscal            = felec;
570
571             /* Calculate temporary vectorial force */
572             tx               = _mm_mul_ps(fscal,dx12);
573             ty               = _mm_mul_ps(fscal,dy12);
574             tz               = _mm_mul_ps(fscal,dz12);
575
576             /* Update vectorial force */
577             fix1             = _mm_add_ps(fix1,tx);
578             fiy1             = _mm_add_ps(fiy1,ty);
579             fiz1             = _mm_add_ps(fiz1,tz);
580
581             fjx2             = _mm_add_ps(fjx2,tx);
582             fjy2             = _mm_add_ps(fjy2,ty);
583             fjz2             = _mm_add_ps(fjz2,tz);
584
585             /**************************
586              * CALCULATE INTERACTIONS *
587              **************************/
588
589             r20              = _mm_mul_ps(rsq20,rinv20);
590
591             /* EWALD ELECTROSTATICS */
592
593             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
594             ewrt             = _mm_mul_ps(r20,ewtabscale);
595             ewitab           = _mm_cvttps_epi32(ewrt);
596             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
597             ewitab           = _mm_slli_epi32(ewitab,2);
598             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
599             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
600             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
601             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
602             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
603             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
604             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
605             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
606             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
607
608             /* Update potential sum for this i atom from the interaction with this j atom. */
609             velecsum         = _mm_add_ps(velecsum,velec);
610
611             fscal            = felec;
612
613             /* Calculate temporary vectorial force */
614             tx               = _mm_mul_ps(fscal,dx20);
615             ty               = _mm_mul_ps(fscal,dy20);
616             tz               = _mm_mul_ps(fscal,dz20);
617
618             /* Update vectorial force */
619             fix2             = _mm_add_ps(fix2,tx);
620             fiy2             = _mm_add_ps(fiy2,ty);
621             fiz2             = _mm_add_ps(fiz2,tz);
622
623             fjx0             = _mm_add_ps(fjx0,tx);
624             fjy0             = _mm_add_ps(fjy0,ty);
625             fjz0             = _mm_add_ps(fjz0,tz);
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             r21              = _mm_mul_ps(rsq21,rinv21);
632
633             /* EWALD ELECTROSTATICS */
634
635             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
636             ewrt             = _mm_mul_ps(r21,ewtabscale);
637             ewitab           = _mm_cvttps_epi32(ewrt);
638             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
639             ewitab           = _mm_slli_epi32(ewitab,2);
640             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
641             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
642             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
643             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
644             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
645             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
646             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
647             velec            = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
648             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velecsum         = _mm_add_ps(velecsum,velec);
652
653             fscal            = felec;
654
655             /* Calculate temporary vectorial force */
656             tx               = _mm_mul_ps(fscal,dx21);
657             ty               = _mm_mul_ps(fscal,dy21);
658             tz               = _mm_mul_ps(fscal,dz21);
659
660             /* Update vectorial force */
661             fix2             = _mm_add_ps(fix2,tx);
662             fiy2             = _mm_add_ps(fiy2,ty);
663             fiz2             = _mm_add_ps(fiz2,tz);
664
665             fjx1             = _mm_add_ps(fjx1,tx);
666             fjy1             = _mm_add_ps(fjy1,ty);
667             fjz1             = _mm_add_ps(fjz1,tz);
668
669             /**************************
670              * CALCULATE INTERACTIONS *
671              **************************/
672
673             r22              = _mm_mul_ps(rsq22,rinv22);
674
675             /* EWALD ELECTROSTATICS */
676
677             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
678             ewrt             = _mm_mul_ps(r22,ewtabscale);
679             ewitab           = _mm_cvttps_epi32(ewrt);
680             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
681             ewitab           = _mm_slli_epi32(ewitab,2);
682             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
683             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
684             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
685             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
686             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
687             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
688             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
689             velec            = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
690             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
691
692             /* Update potential sum for this i atom from the interaction with this j atom. */
693             velecsum         = _mm_add_ps(velecsum,velec);
694
695             fscal            = felec;
696
697             /* Calculate temporary vectorial force */
698             tx               = _mm_mul_ps(fscal,dx22);
699             ty               = _mm_mul_ps(fscal,dy22);
700             tz               = _mm_mul_ps(fscal,dz22);
701
702             /* Update vectorial force */
703             fix2             = _mm_add_ps(fix2,tx);
704             fiy2             = _mm_add_ps(fiy2,ty);
705             fiz2             = _mm_add_ps(fiz2,tz);
706
707             fjx2             = _mm_add_ps(fjx2,tx);
708             fjy2             = _mm_add_ps(fjy2,ty);
709             fjz2             = _mm_add_ps(fjz2,tz);
710
711             fjptrA             = f+j_coord_offsetA;
712             fjptrB             = f+j_coord_offsetB;
713             fjptrC             = f+j_coord_offsetC;
714             fjptrD             = f+j_coord_offsetD;
715
716             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
717                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
718
719             /* Inner loop uses 397 flops */
720         }
721
722         if(jidx<j_index_end)
723         {
724
725             /* Get j neighbor index, and coordinate index */
726             jnrlistA         = jjnr[jidx];
727             jnrlistB         = jjnr[jidx+1];
728             jnrlistC         = jjnr[jidx+2];
729             jnrlistD         = jjnr[jidx+3];
730             /* Sign of each element will be negative for non-real atoms.
731              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
732              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
733              */
734             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
735             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
736             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
737             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
738             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
739             j_coord_offsetA  = DIM*jnrA;
740             j_coord_offsetB  = DIM*jnrB;
741             j_coord_offsetC  = DIM*jnrC;
742             j_coord_offsetD  = DIM*jnrD;
743
744             /* load j atom coordinates */
745             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
746                                               x+j_coord_offsetC,x+j_coord_offsetD,
747                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
748
749             /* Calculate displacement vector */
750             dx00             = _mm_sub_ps(ix0,jx0);
751             dy00             = _mm_sub_ps(iy0,jy0);
752             dz00             = _mm_sub_ps(iz0,jz0);
753             dx01             = _mm_sub_ps(ix0,jx1);
754             dy01             = _mm_sub_ps(iy0,jy1);
755             dz01             = _mm_sub_ps(iz0,jz1);
756             dx02             = _mm_sub_ps(ix0,jx2);
757             dy02             = _mm_sub_ps(iy0,jy2);
758             dz02             = _mm_sub_ps(iz0,jz2);
759             dx10             = _mm_sub_ps(ix1,jx0);
760             dy10             = _mm_sub_ps(iy1,jy0);
761             dz10             = _mm_sub_ps(iz1,jz0);
762             dx11             = _mm_sub_ps(ix1,jx1);
763             dy11             = _mm_sub_ps(iy1,jy1);
764             dz11             = _mm_sub_ps(iz1,jz1);
765             dx12             = _mm_sub_ps(ix1,jx2);
766             dy12             = _mm_sub_ps(iy1,jy2);
767             dz12             = _mm_sub_ps(iz1,jz2);
768             dx20             = _mm_sub_ps(ix2,jx0);
769             dy20             = _mm_sub_ps(iy2,jy0);
770             dz20             = _mm_sub_ps(iz2,jz0);
771             dx21             = _mm_sub_ps(ix2,jx1);
772             dy21             = _mm_sub_ps(iy2,jy1);
773             dz21             = _mm_sub_ps(iz2,jz1);
774             dx22             = _mm_sub_ps(ix2,jx2);
775             dy22             = _mm_sub_ps(iy2,jy2);
776             dz22             = _mm_sub_ps(iz2,jz2);
777
778             /* Calculate squared distance and things based on it */
779             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
780             rsq01            = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
781             rsq02            = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
782             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
783             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
784             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
785             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
786             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
787             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
788
789             rinv00           = gmx_mm_invsqrt_ps(rsq00);
790             rinv01           = gmx_mm_invsqrt_ps(rsq01);
791             rinv02           = gmx_mm_invsqrt_ps(rsq02);
792             rinv10           = gmx_mm_invsqrt_ps(rsq10);
793             rinv11           = gmx_mm_invsqrt_ps(rsq11);
794             rinv12           = gmx_mm_invsqrt_ps(rsq12);
795             rinv20           = gmx_mm_invsqrt_ps(rsq20);
796             rinv21           = gmx_mm_invsqrt_ps(rsq21);
797             rinv22           = gmx_mm_invsqrt_ps(rsq22);
798
799             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
800             rinvsq01         = _mm_mul_ps(rinv01,rinv01);
801             rinvsq02         = _mm_mul_ps(rinv02,rinv02);
802             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
803             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
804             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
805             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
806             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
807             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
808
809             fjx0             = _mm_setzero_ps();
810             fjy0             = _mm_setzero_ps();
811             fjz0             = _mm_setzero_ps();
812             fjx1             = _mm_setzero_ps();
813             fjy1             = _mm_setzero_ps();
814             fjz1             = _mm_setzero_ps();
815             fjx2             = _mm_setzero_ps();
816             fjy2             = _mm_setzero_ps();
817             fjz2             = _mm_setzero_ps();
818
819             /**************************
820              * CALCULATE INTERACTIONS *
821              **************************/
822
823             r00              = _mm_mul_ps(rsq00,rinv00);
824             r00              = _mm_andnot_ps(dummy_mask,r00);
825
826             /* EWALD ELECTROSTATICS */
827
828             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
829             ewrt             = _mm_mul_ps(r00,ewtabscale);
830             ewitab           = _mm_cvttps_epi32(ewrt);
831             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
832             ewitab           = _mm_slli_epi32(ewitab,2);
833             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
834             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
835             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
836             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
837             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
838             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
839             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
840             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
841             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
842
843             /* Analytical LJ-PME */
844             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
845             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
846             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
847             exponent         = gmx_simd_exp_r(ewcljrsq);
848             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
849             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
850             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
851             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
852             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
853             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
854             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
855             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
856
857             /* Update potential sum for this i atom from the interaction with this j atom. */
858             velec            = _mm_andnot_ps(dummy_mask,velec);
859             velecsum         = _mm_add_ps(velecsum,velec);
860             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
861             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
862
863             fscal            = _mm_add_ps(felec,fvdw);
864
865             fscal            = _mm_andnot_ps(dummy_mask,fscal);
866
867             /* Calculate temporary vectorial force */
868             tx               = _mm_mul_ps(fscal,dx00);
869             ty               = _mm_mul_ps(fscal,dy00);
870             tz               = _mm_mul_ps(fscal,dz00);
871
872             /* Update vectorial force */
873             fix0             = _mm_add_ps(fix0,tx);
874             fiy0             = _mm_add_ps(fiy0,ty);
875             fiz0             = _mm_add_ps(fiz0,tz);
876
877             fjx0             = _mm_add_ps(fjx0,tx);
878             fjy0             = _mm_add_ps(fjy0,ty);
879             fjz0             = _mm_add_ps(fjz0,tz);
880
881             /**************************
882              * CALCULATE INTERACTIONS *
883              **************************/
884
885             r01              = _mm_mul_ps(rsq01,rinv01);
886             r01              = _mm_andnot_ps(dummy_mask,r01);
887
888             /* EWALD ELECTROSTATICS */
889
890             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
891             ewrt             = _mm_mul_ps(r01,ewtabscale);
892             ewitab           = _mm_cvttps_epi32(ewrt);
893             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
894             ewitab           = _mm_slli_epi32(ewitab,2);
895             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
896             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
897             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
898             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
899             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
900             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
901             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
902             velec            = _mm_mul_ps(qq01,_mm_sub_ps(rinv01,velec));
903             felec            = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
904
905             /* Update potential sum for this i atom from the interaction with this j atom. */
906             velec            = _mm_andnot_ps(dummy_mask,velec);
907             velecsum         = _mm_add_ps(velecsum,velec);
908
909             fscal            = felec;
910
911             fscal            = _mm_andnot_ps(dummy_mask,fscal);
912
913             /* Calculate temporary vectorial force */
914             tx               = _mm_mul_ps(fscal,dx01);
915             ty               = _mm_mul_ps(fscal,dy01);
916             tz               = _mm_mul_ps(fscal,dz01);
917
918             /* Update vectorial force */
919             fix0             = _mm_add_ps(fix0,tx);
920             fiy0             = _mm_add_ps(fiy0,ty);
921             fiz0             = _mm_add_ps(fiz0,tz);
922
923             fjx1             = _mm_add_ps(fjx1,tx);
924             fjy1             = _mm_add_ps(fjy1,ty);
925             fjz1             = _mm_add_ps(fjz1,tz);
926
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             r02              = _mm_mul_ps(rsq02,rinv02);
932             r02              = _mm_andnot_ps(dummy_mask,r02);
933
934             /* EWALD ELECTROSTATICS */
935
936             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
937             ewrt             = _mm_mul_ps(r02,ewtabscale);
938             ewitab           = _mm_cvttps_epi32(ewrt);
939             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
940             ewitab           = _mm_slli_epi32(ewitab,2);
941             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
942             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
943             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
944             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
945             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
946             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
947             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
948             velec            = _mm_mul_ps(qq02,_mm_sub_ps(rinv02,velec));
949             felec            = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
950
951             /* Update potential sum for this i atom from the interaction with this j atom. */
952             velec            = _mm_andnot_ps(dummy_mask,velec);
953             velecsum         = _mm_add_ps(velecsum,velec);
954
955             fscal            = felec;
956
957             fscal            = _mm_andnot_ps(dummy_mask,fscal);
958
959             /* Calculate temporary vectorial force */
960             tx               = _mm_mul_ps(fscal,dx02);
961             ty               = _mm_mul_ps(fscal,dy02);
962             tz               = _mm_mul_ps(fscal,dz02);
963
964             /* Update vectorial force */
965             fix0             = _mm_add_ps(fix0,tx);
966             fiy0             = _mm_add_ps(fiy0,ty);
967             fiz0             = _mm_add_ps(fiz0,tz);
968
969             fjx2             = _mm_add_ps(fjx2,tx);
970             fjy2             = _mm_add_ps(fjy2,ty);
971             fjz2             = _mm_add_ps(fjz2,tz);
972
973             /**************************
974              * CALCULATE INTERACTIONS *
975              **************************/
976
977             r10              = _mm_mul_ps(rsq10,rinv10);
978             r10              = _mm_andnot_ps(dummy_mask,r10);
979
980             /* EWALD ELECTROSTATICS */
981
982             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
983             ewrt             = _mm_mul_ps(r10,ewtabscale);
984             ewitab           = _mm_cvttps_epi32(ewrt);
985             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
986             ewitab           = _mm_slli_epi32(ewitab,2);
987             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
988             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
989             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
990             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
991             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
992             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
993             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
994             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
995             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
996
997             /* Update potential sum for this i atom from the interaction with this j atom. */
998             velec            = _mm_andnot_ps(dummy_mask,velec);
999             velecsum         = _mm_add_ps(velecsum,velec);
1000
1001             fscal            = felec;
1002
1003             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1004
1005             /* Calculate temporary vectorial force */
1006             tx               = _mm_mul_ps(fscal,dx10);
1007             ty               = _mm_mul_ps(fscal,dy10);
1008             tz               = _mm_mul_ps(fscal,dz10);
1009
1010             /* Update vectorial force */
1011             fix1             = _mm_add_ps(fix1,tx);
1012             fiy1             = _mm_add_ps(fiy1,ty);
1013             fiz1             = _mm_add_ps(fiz1,tz);
1014
1015             fjx0             = _mm_add_ps(fjx0,tx);
1016             fjy0             = _mm_add_ps(fjy0,ty);
1017             fjz0             = _mm_add_ps(fjz0,tz);
1018
1019             /**************************
1020              * CALCULATE INTERACTIONS *
1021              **************************/
1022
1023             r11              = _mm_mul_ps(rsq11,rinv11);
1024             r11              = _mm_andnot_ps(dummy_mask,r11);
1025
1026             /* EWALD ELECTROSTATICS */
1027
1028             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1029             ewrt             = _mm_mul_ps(r11,ewtabscale);
1030             ewitab           = _mm_cvttps_epi32(ewrt);
1031             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1032             ewitab           = _mm_slli_epi32(ewitab,2);
1033             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1034             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1035             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1036             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1037             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1038             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1039             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1040             velec            = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
1041             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1042
1043             /* Update potential sum for this i atom from the interaction with this j atom. */
1044             velec            = _mm_andnot_ps(dummy_mask,velec);
1045             velecsum         = _mm_add_ps(velecsum,velec);
1046
1047             fscal            = felec;
1048
1049             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1050
1051             /* Calculate temporary vectorial force */
1052             tx               = _mm_mul_ps(fscal,dx11);
1053             ty               = _mm_mul_ps(fscal,dy11);
1054             tz               = _mm_mul_ps(fscal,dz11);
1055
1056             /* Update vectorial force */
1057             fix1             = _mm_add_ps(fix1,tx);
1058             fiy1             = _mm_add_ps(fiy1,ty);
1059             fiz1             = _mm_add_ps(fiz1,tz);
1060
1061             fjx1             = _mm_add_ps(fjx1,tx);
1062             fjy1             = _mm_add_ps(fjy1,ty);
1063             fjz1             = _mm_add_ps(fjz1,tz);
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             r12              = _mm_mul_ps(rsq12,rinv12);
1070             r12              = _mm_andnot_ps(dummy_mask,r12);
1071
1072             /* EWALD ELECTROSTATICS */
1073
1074             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1075             ewrt             = _mm_mul_ps(r12,ewtabscale);
1076             ewitab           = _mm_cvttps_epi32(ewrt);
1077             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1078             ewitab           = _mm_slli_epi32(ewitab,2);
1079             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1080             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1081             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1082             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1083             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1084             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1085             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1086             velec            = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
1087             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1088
1089             /* Update potential sum for this i atom from the interaction with this j atom. */
1090             velec            = _mm_andnot_ps(dummy_mask,velec);
1091             velecsum         = _mm_add_ps(velecsum,velec);
1092
1093             fscal            = felec;
1094
1095             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1096
1097             /* Calculate temporary vectorial force */
1098             tx               = _mm_mul_ps(fscal,dx12);
1099             ty               = _mm_mul_ps(fscal,dy12);
1100             tz               = _mm_mul_ps(fscal,dz12);
1101
1102             /* Update vectorial force */
1103             fix1             = _mm_add_ps(fix1,tx);
1104             fiy1             = _mm_add_ps(fiy1,ty);
1105             fiz1             = _mm_add_ps(fiz1,tz);
1106
1107             fjx2             = _mm_add_ps(fjx2,tx);
1108             fjy2             = _mm_add_ps(fjy2,ty);
1109             fjz2             = _mm_add_ps(fjz2,tz);
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             r20              = _mm_mul_ps(rsq20,rinv20);
1116             r20              = _mm_andnot_ps(dummy_mask,r20);
1117
1118             /* EWALD ELECTROSTATICS */
1119
1120             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1121             ewrt             = _mm_mul_ps(r20,ewtabscale);
1122             ewitab           = _mm_cvttps_epi32(ewrt);
1123             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1124             ewitab           = _mm_slli_epi32(ewitab,2);
1125             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1126             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1127             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1128             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1129             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1130             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1131             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1132             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1133             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1134
1135             /* Update potential sum for this i atom from the interaction with this j atom. */
1136             velec            = _mm_andnot_ps(dummy_mask,velec);
1137             velecsum         = _mm_add_ps(velecsum,velec);
1138
1139             fscal            = felec;
1140
1141             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1142
1143             /* Calculate temporary vectorial force */
1144             tx               = _mm_mul_ps(fscal,dx20);
1145             ty               = _mm_mul_ps(fscal,dy20);
1146             tz               = _mm_mul_ps(fscal,dz20);
1147
1148             /* Update vectorial force */
1149             fix2             = _mm_add_ps(fix2,tx);
1150             fiy2             = _mm_add_ps(fiy2,ty);
1151             fiz2             = _mm_add_ps(fiz2,tz);
1152
1153             fjx0             = _mm_add_ps(fjx0,tx);
1154             fjy0             = _mm_add_ps(fjy0,ty);
1155             fjz0             = _mm_add_ps(fjz0,tz);
1156
1157             /**************************
1158              * CALCULATE INTERACTIONS *
1159              **************************/
1160
1161             r21              = _mm_mul_ps(rsq21,rinv21);
1162             r21              = _mm_andnot_ps(dummy_mask,r21);
1163
1164             /* EWALD ELECTROSTATICS */
1165
1166             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1167             ewrt             = _mm_mul_ps(r21,ewtabscale);
1168             ewitab           = _mm_cvttps_epi32(ewrt);
1169             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1170             ewitab           = _mm_slli_epi32(ewitab,2);
1171             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1172             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1173             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1174             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1175             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1176             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1177             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1178             velec            = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
1179             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1180
1181             /* Update potential sum for this i atom from the interaction with this j atom. */
1182             velec            = _mm_andnot_ps(dummy_mask,velec);
1183             velecsum         = _mm_add_ps(velecsum,velec);
1184
1185             fscal            = felec;
1186
1187             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1188
1189             /* Calculate temporary vectorial force */
1190             tx               = _mm_mul_ps(fscal,dx21);
1191             ty               = _mm_mul_ps(fscal,dy21);
1192             tz               = _mm_mul_ps(fscal,dz21);
1193
1194             /* Update vectorial force */
1195             fix2             = _mm_add_ps(fix2,tx);
1196             fiy2             = _mm_add_ps(fiy2,ty);
1197             fiz2             = _mm_add_ps(fiz2,tz);
1198
1199             fjx1             = _mm_add_ps(fjx1,tx);
1200             fjy1             = _mm_add_ps(fjy1,ty);
1201             fjz1             = _mm_add_ps(fjz1,tz);
1202
1203             /**************************
1204              * CALCULATE INTERACTIONS *
1205              **************************/
1206
1207             r22              = _mm_mul_ps(rsq22,rinv22);
1208             r22              = _mm_andnot_ps(dummy_mask,r22);
1209
1210             /* EWALD ELECTROSTATICS */
1211
1212             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1213             ewrt             = _mm_mul_ps(r22,ewtabscale);
1214             ewitab           = _mm_cvttps_epi32(ewrt);
1215             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1216             ewitab           = _mm_slli_epi32(ewitab,2);
1217             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1218             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1219             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1220             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1221             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1222             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1223             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1224             velec            = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
1225             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1226
1227             /* Update potential sum for this i atom from the interaction with this j atom. */
1228             velec            = _mm_andnot_ps(dummy_mask,velec);
1229             velecsum         = _mm_add_ps(velecsum,velec);
1230
1231             fscal            = felec;
1232
1233             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1234
1235             /* Calculate temporary vectorial force */
1236             tx               = _mm_mul_ps(fscal,dx22);
1237             ty               = _mm_mul_ps(fscal,dy22);
1238             tz               = _mm_mul_ps(fscal,dz22);
1239
1240             /* Update vectorial force */
1241             fix2             = _mm_add_ps(fix2,tx);
1242             fiy2             = _mm_add_ps(fiy2,ty);
1243             fiz2             = _mm_add_ps(fiz2,tz);
1244
1245             fjx2             = _mm_add_ps(fjx2,tx);
1246             fjy2             = _mm_add_ps(fjy2,ty);
1247             fjz2             = _mm_add_ps(fjz2,tz);
1248
1249             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1250             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1251             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1252             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1253
1254             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1255                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1256
1257             /* Inner loop uses 406 flops */
1258         }
1259
1260         /* End of innermost loop */
1261
1262         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1263                                               f+i_coord_offset,fshift+i_shift_offset);
1264
1265         ggid                        = gid[iidx];
1266         /* Update potential energies */
1267         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1268         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
1269
1270         /* Increment number of inner iterations */
1271         inneriter                  += j_index_end - j_index_start;
1272
1273         /* Outer loop uses 20 flops */
1274     }
1275
1276     /* Increment number of outer iterations */
1277     outeriter        += nri;
1278
1279     /* Update outer/inner flops */
1280
1281     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*406);
1282 }
1283 /*
1284  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3W3_F_sse4_1_single
1285  * Electrostatics interaction: Ewald
1286  * VdW interaction:            LJEwald
1287  * Geometry:                   Water3-Water3
1288  * Calculate force/pot:        Force
1289  */
1290 void
1291 nb_kernel_ElecEw_VdwLJEw_GeomW3W3_F_sse4_1_single
1292                     (t_nblist                    * gmx_restrict       nlist,
1293                      rvec                        * gmx_restrict          xx,
1294                      rvec                        * gmx_restrict          ff,
1295                      t_forcerec                  * gmx_restrict          fr,
1296                      t_mdatoms                   * gmx_restrict     mdatoms,
1297                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1298                      t_nrnb                      * gmx_restrict        nrnb)
1299 {
1300     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1301      * just 0 for non-waters.
1302      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
1303      * jnr indices corresponding to data put in the four positions in the SIMD register.
1304      */
1305     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1306     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1307     int              jnrA,jnrB,jnrC,jnrD;
1308     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1309     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1310     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1311     real             rcutoff_scalar;
1312     real             *shiftvec,*fshift,*x,*f;
1313     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1314     real             scratch[4*DIM];
1315     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1316     int              vdwioffset0;
1317     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1318     int              vdwioffset1;
1319     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1320     int              vdwioffset2;
1321     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1322     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1323     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1324     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1325     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1326     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1327     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1328     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1329     __m128           dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1330     __m128           dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1331     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1332     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1333     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1334     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1335     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1336     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1337     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
1338     real             *charge;
1339     int              nvdwtype;
1340     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1341     int              *vdwtype;
1342     real             *vdwparam;
1343     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
1344     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
1345     __m128           c6grid_00;
1346     __m128           c6grid_01;
1347     __m128           c6grid_02;
1348     __m128           c6grid_10;
1349     __m128           c6grid_11;
1350     __m128           c6grid_12;
1351     __m128           c6grid_20;
1352     __m128           c6grid_21;
1353     __m128           c6grid_22;
1354     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
1355     real             *vdwgridparam;
1356     __m128           one_half  = _mm_set1_ps(0.5);
1357     __m128           minus_one = _mm_set1_ps(-1.0);
1358     __m128i          ewitab;
1359     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1360     real             *ewtab;
1361     __m128           dummy_mask,cutoff_mask;
1362     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
1363     __m128           one     = _mm_set1_ps(1.0);
1364     __m128           two     = _mm_set1_ps(2.0);
1365     x                = xx[0];
1366     f                = ff[0];
1367
1368     nri              = nlist->nri;
1369     iinr             = nlist->iinr;
1370     jindex           = nlist->jindex;
1371     jjnr             = nlist->jjnr;
1372     shiftidx         = nlist->shift;
1373     gid              = nlist->gid;
1374     shiftvec         = fr->shift_vec[0];
1375     fshift           = fr->fshift[0];
1376     facel            = _mm_set1_ps(fr->epsfac);
1377     charge           = mdatoms->chargeA;
1378     nvdwtype         = fr->ntype;
1379     vdwparam         = fr->nbfp;
1380     vdwtype          = mdatoms->typeA;
1381     vdwgridparam     = fr->ljpme_c6grid;
1382     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
1383     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
1384     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
1385
1386     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
1387     ewtab            = fr->ic->tabq_coul_F;
1388     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
1389     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
1390
1391     /* Setup water-specific parameters */
1392     inr              = nlist->iinr[0];
1393     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
1394     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
1395     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
1396     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1397
1398     jq0              = _mm_set1_ps(charge[inr+0]);
1399     jq1              = _mm_set1_ps(charge[inr+1]);
1400     jq2              = _mm_set1_ps(charge[inr+2]);
1401     vdwjidx0A        = 2*vdwtype[inr+0];
1402     qq00             = _mm_mul_ps(iq0,jq0);
1403     c6_00            = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
1404     c12_00           = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
1405     c6grid_00        = _mm_set1_ps(vdwgridparam[vdwioffset0+vdwjidx0A]);
1406     qq01             = _mm_mul_ps(iq0,jq1);
1407     qq02             = _mm_mul_ps(iq0,jq2);
1408     qq10             = _mm_mul_ps(iq1,jq0);
1409     qq11             = _mm_mul_ps(iq1,jq1);
1410     qq12             = _mm_mul_ps(iq1,jq2);
1411     qq20             = _mm_mul_ps(iq2,jq0);
1412     qq21             = _mm_mul_ps(iq2,jq1);
1413     qq22             = _mm_mul_ps(iq2,jq2);
1414
1415     /* Avoid stupid compiler warnings */
1416     jnrA = jnrB = jnrC = jnrD = 0;
1417     j_coord_offsetA = 0;
1418     j_coord_offsetB = 0;
1419     j_coord_offsetC = 0;
1420     j_coord_offsetD = 0;
1421
1422     outeriter        = 0;
1423     inneriter        = 0;
1424
1425     for(iidx=0;iidx<4*DIM;iidx++)
1426     {
1427         scratch[iidx] = 0.0;
1428     }
1429
1430     /* Start outer loop over neighborlists */
1431     for(iidx=0; iidx<nri; iidx++)
1432     {
1433         /* Load shift vector for this list */
1434         i_shift_offset   = DIM*shiftidx[iidx];
1435
1436         /* Load limits for loop over neighbors */
1437         j_index_start    = jindex[iidx];
1438         j_index_end      = jindex[iidx+1];
1439
1440         /* Get outer coordinate index */
1441         inr              = iinr[iidx];
1442         i_coord_offset   = DIM*inr;
1443
1444         /* Load i particle coords and add shift vector */
1445         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1446                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1447
1448         fix0             = _mm_setzero_ps();
1449         fiy0             = _mm_setzero_ps();
1450         fiz0             = _mm_setzero_ps();
1451         fix1             = _mm_setzero_ps();
1452         fiy1             = _mm_setzero_ps();
1453         fiz1             = _mm_setzero_ps();
1454         fix2             = _mm_setzero_ps();
1455         fiy2             = _mm_setzero_ps();
1456         fiz2             = _mm_setzero_ps();
1457
1458         /* Start inner kernel loop */
1459         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1460         {
1461
1462             /* Get j neighbor index, and coordinate index */
1463             jnrA             = jjnr[jidx];
1464             jnrB             = jjnr[jidx+1];
1465             jnrC             = jjnr[jidx+2];
1466             jnrD             = jjnr[jidx+3];
1467             j_coord_offsetA  = DIM*jnrA;
1468             j_coord_offsetB  = DIM*jnrB;
1469             j_coord_offsetC  = DIM*jnrC;
1470             j_coord_offsetD  = DIM*jnrD;
1471
1472             /* load j atom coordinates */
1473             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1474                                               x+j_coord_offsetC,x+j_coord_offsetD,
1475                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1476
1477             /* Calculate displacement vector */
1478             dx00             = _mm_sub_ps(ix0,jx0);
1479             dy00             = _mm_sub_ps(iy0,jy0);
1480             dz00             = _mm_sub_ps(iz0,jz0);
1481             dx01             = _mm_sub_ps(ix0,jx1);
1482             dy01             = _mm_sub_ps(iy0,jy1);
1483             dz01             = _mm_sub_ps(iz0,jz1);
1484             dx02             = _mm_sub_ps(ix0,jx2);
1485             dy02             = _mm_sub_ps(iy0,jy2);
1486             dz02             = _mm_sub_ps(iz0,jz2);
1487             dx10             = _mm_sub_ps(ix1,jx0);
1488             dy10             = _mm_sub_ps(iy1,jy0);
1489             dz10             = _mm_sub_ps(iz1,jz0);
1490             dx11             = _mm_sub_ps(ix1,jx1);
1491             dy11             = _mm_sub_ps(iy1,jy1);
1492             dz11             = _mm_sub_ps(iz1,jz1);
1493             dx12             = _mm_sub_ps(ix1,jx2);
1494             dy12             = _mm_sub_ps(iy1,jy2);
1495             dz12             = _mm_sub_ps(iz1,jz2);
1496             dx20             = _mm_sub_ps(ix2,jx0);
1497             dy20             = _mm_sub_ps(iy2,jy0);
1498             dz20             = _mm_sub_ps(iz2,jz0);
1499             dx21             = _mm_sub_ps(ix2,jx1);
1500             dy21             = _mm_sub_ps(iy2,jy1);
1501             dz21             = _mm_sub_ps(iz2,jz1);
1502             dx22             = _mm_sub_ps(ix2,jx2);
1503             dy22             = _mm_sub_ps(iy2,jy2);
1504             dz22             = _mm_sub_ps(iz2,jz2);
1505
1506             /* Calculate squared distance and things based on it */
1507             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1508             rsq01            = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
1509             rsq02            = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
1510             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1511             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1512             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1513             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1514             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1515             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1516
1517             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1518             rinv01           = gmx_mm_invsqrt_ps(rsq01);
1519             rinv02           = gmx_mm_invsqrt_ps(rsq02);
1520             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1521             rinv11           = gmx_mm_invsqrt_ps(rsq11);
1522             rinv12           = gmx_mm_invsqrt_ps(rsq12);
1523             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1524             rinv21           = gmx_mm_invsqrt_ps(rsq21);
1525             rinv22           = gmx_mm_invsqrt_ps(rsq22);
1526
1527             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1528             rinvsq01         = _mm_mul_ps(rinv01,rinv01);
1529             rinvsq02         = _mm_mul_ps(rinv02,rinv02);
1530             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1531             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
1532             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
1533             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1534             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
1535             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
1536
1537             fjx0             = _mm_setzero_ps();
1538             fjy0             = _mm_setzero_ps();
1539             fjz0             = _mm_setzero_ps();
1540             fjx1             = _mm_setzero_ps();
1541             fjy1             = _mm_setzero_ps();
1542             fjz1             = _mm_setzero_ps();
1543             fjx2             = _mm_setzero_ps();
1544             fjy2             = _mm_setzero_ps();
1545             fjz2             = _mm_setzero_ps();
1546
1547             /**************************
1548              * CALCULATE INTERACTIONS *
1549              **************************/
1550
1551             r00              = _mm_mul_ps(rsq00,rinv00);
1552
1553             /* EWALD ELECTROSTATICS */
1554
1555             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1556             ewrt             = _mm_mul_ps(r00,ewtabscale);
1557             ewitab           = _mm_cvttps_epi32(ewrt);
1558             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1559             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1560                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1561                                          &ewtabF,&ewtabFn);
1562             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1563             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1564
1565             /* Analytical LJ-PME */
1566             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1567             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1568             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1569             exponent         = gmx_simd_exp_r(ewcljrsq);
1570             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1571             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1572             /* f6A = 6 * C6grid * (1 - poly) */
1573             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1574             /* f6B = C6grid * exponent * beta^6 */
1575             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1576             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1577             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1578
1579             fscal            = _mm_add_ps(felec,fvdw);
1580
1581             /* Calculate temporary vectorial force */
1582             tx               = _mm_mul_ps(fscal,dx00);
1583             ty               = _mm_mul_ps(fscal,dy00);
1584             tz               = _mm_mul_ps(fscal,dz00);
1585
1586             /* Update vectorial force */
1587             fix0             = _mm_add_ps(fix0,tx);
1588             fiy0             = _mm_add_ps(fiy0,ty);
1589             fiz0             = _mm_add_ps(fiz0,tz);
1590
1591             fjx0             = _mm_add_ps(fjx0,tx);
1592             fjy0             = _mm_add_ps(fjy0,ty);
1593             fjz0             = _mm_add_ps(fjz0,tz);
1594
1595             /**************************
1596              * CALCULATE INTERACTIONS *
1597              **************************/
1598
1599             r01              = _mm_mul_ps(rsq01,rinv01);
1600
1601             /* EWALD ELECTROSTATICS */
1602
1603             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1604             ewrt             = _mm_mul_ps(r01,ewtabscale);
1605             ewitab           = _mm_cvttps_epi32(ewrt);
1606             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1607             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1608                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1609                                          &ewtabF,&ewtabFn);
1610             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1611             felec            = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
1612
1613             fscal            = felec;
1614
1615             /* Calculate temporary vectorial force */
1616             tx               = _mm_mul_ps(fscal,dx01);
1617             ty               = _mm_mul_ps(fscal,dy01);
1618             tz               = _mm_mul_ps(fscal,dz01);
1619
1620             /* Update vectorial force */
1621             fix0             = _mm_add_ps(fix0,tx);
1622             fiy0             = _mm_add_ps(fiy0,ty);
1623             fiz0             = _mm_add_ps(fiz0,tz);
1624
1625             fjx1             = _mm_add_ps(fjx1,tx);
1626             fjy1             = _mm_add_ps(fjy1,ty);
1627             fjz1             = _mm_add_ps(fjz1,tz);
1628
1629             /**************************
1630              * CALCULATE INTERACTIONS *
1631              **************************/
1632
1633             r02              = _mm_mul_ps(rsq02,rinv02);
1634
1635             /* EWALD ELECTROSTATICS */
1636
1637             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1638             ewrt             = _mm_mul_ps(r02,ewtabscale);
1639             ewitab           = _mm_cvttps_epi32(ewrt);
1640             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1641             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1642                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1643                                          &ewtabF,&ewtabFn);
1644             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1645             felec            = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
1646
1647             fscal            = felec;
1648
1649             /* Calculate temporary vectorial force */
1650             tx               = _mm_mul_ps(fscal,dx02);
1651             ty               = _mm_mul_ps(fscal,dy02);
1652             tz               = _mm_mul_ps(fscal,dz02);
1653
1654             /* Update vectorial force */
1655             fix0             = _mm_add_ps(fix0,tx);
1656             fiy0             = _mm_add_ps(fiy0,ty);
1657             fiz0             = _mm_add_ps(fiz0,tz);
1658
1659             fjx2             = _mm_add_ps(fjx2,tx);
1660             fjy2             = _mm_add_ps(fjy2,ty);
1661             fjz2             = _mm_add_ps(fjz2,tz);
1662
1663             /**************************
1664              * CALCULATE INTERACTIONS *
1665              **************************/
1666
1667             r10              = _mm_mul_ps(rsq10,rinv10);
1668
1669             /* EWALD ELECTROSTATICS */
1670
1671             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1672             ewrt             = _mm_mul_ps(r10,ewtabscale);
1673             ewitab           = _mm_cvttps_epi32(ewrt);
1674             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1675             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1676                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1677                                          &ewtabF,&ewtabFn);
1678             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1679             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1680
1681             fscal            = felec;
1682
1683             /* Calculate temporary vectorial force */
1684             tx               = _mm_mul_ps(fscal,dx10);
1685             ty               = _mm_mul_ps(fscal,dy10);
1686             tz               = _mm_mul_ps(fscal,dz10);
1687
1688             /* Update vectorial force */
1689             fix1             = _mm_add_ps(fix1,tx);
1690             fiy1             = _mm_add_ps(fiy1,ty);
1691             fiz1             = _mm_add_ps(fiz1,tz);
1692
1693             fjx0             = _mm_add_ps(fjx0,tx);
1694             fjy0             = _mm_add_ps(fjy0,ty);
1695             fjz0             = _mm_add_ps(fjz0,tz);
1696
1697             /**************************
1698              * CALCULATE INTERACTIONS *
1699              **************************/
1700
1701             r11              = _mm_mul_ps(rsq11,rinv11);
1702
1703             /* EWALD ELECTROSTATICS */
1704
1705             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1706             ewrt             = _mm_mul_ps(r11,ewtabscale);
1707             ewitab           = _mm_cvttps_epi32(ewrt);
1708             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1709             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1710                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1711                                          &ewtabF,&ewtabFn);
1712             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1713             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1714
1715             fscal            = felec;
1716
1717             /* Calculate temporary vectorial force */
1718             tx               = _mm_mul_ps(fscal,dx11);
1719             ty               = _mm_mul_ps(fscal,dy11);
1720             tz               = _mm_mul_ps(fscal,dz11);
1721
1722             /* Update vectorial force */
1723             fix1             = _mm_add_ps(fix1,tx);
1724             fiy1             = _mm_add_ps(fiy1,ty);
1725             fiz1             = _mm_add_ps(fiz1,tz);
1726
1727             fjx1             = _mm_add_ps(fjx1,tx);
1728             fjy1             = _mm_add_ps(fjy1,ty);
1729             fjz1             = _mm_add_ps(fjz1,tz);
1730
1731             /**************************
1732              * CALCULATE INTERACTIONS *
1733              **************************/
1734
1735             r12              = _mm_mul_ps(rsq12,rinv12);
1736
1737             /* EWALD ELECTROSTATICS */
1738
1739             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1740             ewrt             = _mm_mul_ps(r12,ewtabscale);
1741             ewitab           = _mm_cvttps_epi32(ewrt);
1742             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1743             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1744                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1745                                          &ewtabF,&ewtabFn);
1746             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1747             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1748
1749             fscal            = felec;
1750
1751             /* Calculate temporary vectorial force */
1752             tx               = _mm_mul_ps(fscal,dx12);
1753             ty               = _mm_mul_ps(fscal,dy12);
1754             tz               = _mm_mul_ps(fscal,dz12);
1755
1756             /* Update vectorial force */
1757             fix1             = _mm_add_ps(fix1,tx);
1758             fiy1             = _mm_add_ps(fiy1,ty);
1759             fiz1             = _mm_add_ps(fiz1,tz);
1760
1761             fjx2             = _mm_add_ps(fjx2,tx);
1762             fjy2             = _mm_add_ps(fjy2,ty);
1763             fjz2             = _mm_add_ps(fjz2,tz);
1764
1765             /**************************
1766              * CALCULATE INTERACTIONS *
1767              **************************/
1768
1769             r20              = _mm_mul_ps(rsq20,rinv20);
1770
1771             /* EWALD ELECTROSTATICS */
1772
1773             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1774             ewrt             = _mm_mul_ps(r20,ewtabscale);
1775             ewitab           = _mm_cvttps_epi32(ewrt);
1776             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1777             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1778                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1779                                          &ewtabF,&ewtabFn);
1780             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1781             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1782
1783             fscal            = felec;
1784
1785             /* Calculate temporary vectorial force */
1786             tx               = _mm_mul_ps(fscal,dx20);
1787             ty               = _mm_mul_ps(fscal,dy20);
1788             tz               = _mm_mul_ps(fscal,dz20);
1789
1790             /* Update vectorial force */
1791             fix2             = _mm_add_ps(fix2,tx);
1792             fiy2             = _mm_add_ps(fiy2,ty);
1793             fiz2             = _mm_add_ps(fiz2,tz);
1794
1795             fjx0             = _mm_add_ps(fjx0,tx);
1796             fjy0             = _mm_add_ps(fjy0,ty);
1797             fjz0             = _mm_add_ps(fjz0,tz);
1798
1799             /**************************
1800              * CALCULATE INTERACTIONS *
1801              **************************/
1802
1803             r21              = _mm_mul_ps(rsq21,rinv21);
1804
1805             /* EWALD ELECTROSTATICS */
1806
1807             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1808             ewrt             = _mm_mul_ps(r21,ewtabscale);
1809             ewitab           = _mm_cvttps_epi32(ewrt);
1810             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1811             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1812                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1813                                          &ewtabF,&ewtabFn);
1814             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1815             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1816
1817             fscal            = felec;
1818
1819             /* Calculate temporary vectorial force */
1820             tx               = _mm_mul_ps(fscal,dx21);
1821             ty               = _mm_mul_ps(fscal,dy21);
1822             tz               = _mm_mul_ps(fscal,dz21);
1823
1824             /* Update vectorial force */
1825             fix2             = _mm_add_ps(fix2,tx);
1826             fiy2             = _mm_add_ps(fiy2,ty);
1827             fiz2             = _mm_add_ps(fiz2,tz);
1828
1829             fjx1             = _mm_add_ps(fjx1,tx);
1830             fjy1             = _mm_add_ps(fjy1,ty);
1831             fjz1             = _mm_add_ps(fjz1,tz);
1832
1833             /**************************
1834              * CALCULATE INTERACTIONS *
1835              **************************/
1836
1837             r22              = _mm_mul_ps(rsq22,rinv22);
1838
1839             /* EWALD ELECTROSTATICS */
1840
1841             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1842             ewrt             = _mm_mul_ps(r22,ewtabscale);
1843             ewitab           = _mm_cvttps_epi32(ewrt);
1844             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1845             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1846                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1847                                          &ewtabF,&ewtabFn);
1848             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1849             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1850
1851             fscal            = felec;
1852
1853             /* Calculate temporary vectorial force */
1854             tx               = _mm_mul_ps(fscal,dx22);
1855             ty               = _mm_mul_ps(fscal,dy22);
1856             tz               = _mm_mul_ps(fscal,dz22);
1857
1858             /* Update vectorial force */
1859             fix2             = _mm_add_ps(fix2,tx);
1860             fiy2             = _mm_add_ps(fiy2,ty);
1861             fiz2             = _mm_add_ps(fiz2,tz);
1862
1863             fjx2             = _mm_add_ps(fjx2,tx);
1864             fjy2             = _mm_add_ps(fjy2,ty);
1865             fjz2             = _mm_add_ps(fjz2,tz);
1866
1867             fjptrA             = f+j_coord_offsetA;
1868             fjptrB             = f+j_coord_offsetB;
1869             fjptrC             = f+j_coord_offsetC;
1870             fjptrD             = f+j_coord_offsetD;
1871
1872             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1873                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1874
1875             /* Inner loop uses 347 flops */
1876         }
1877
1878         if(jidx<j_index_end)
1879         {
1880
1881             /* Get j neighbor index, and coordinate index */
1882             jnrlistA         = jjnr[jidx];
1883             jnrlistB         = jjnr[jidx+1];
1884             jnrlistC         = jjnr[jidx+2];
1885             jnrlistD         = jjnr[jidx+3];
1886             /* Sign of each element will be negative for non-real atoms.
1887              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1888              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1889              */
1890             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1891             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1892             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1893             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1894             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1895             j_coord_offsetA  = DIM*jnrA;
1896             j_coord_offsetB  = DIM*jnrB;
1897             j_coord_offsetC  = DIM*jnrC;
1898             j_coord_offsetD  = DIM*jnrD;
1899
1900             /* load j atom coordinates */
1901             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1902                                               x+j_coord_offsetC,x+j_coord_offsetD,
1903                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1904
1905             /* Calculate displacement vector */
1906             dx00             = _mm_sub_ps(ix0,jx0);
1907             dy00             = _mm_sub_ps(iy0,jy0);
1908             dz00             = _mm_sub_ps(iz0,jz0);
1909             dx01             = _mm_sub_ps(ix0,jx1);
1910             dy01             = _mm_sub_ps(iy0,jy1);
1911             dz01             = _mm_sub_ps(iz0,jz1);
1912             dx02             = _mm_sub_ps(ix0,jx2);
1913             dy02             = _mm_sub_ps(iy0,jy2);
1914             dz02             = _mm_sub_ps(iz0,jz2);
1915             dx10             = _mm_sub_ps(ix1,jx0);
1916             dy10             = _mm_sub_ps(iy1,jy0);
1917             dz10             = _mm_sub_ps(iz1,jz0);
1918             dx11             = _mm_sub_ps(ix1,jx1);
1919             dy11             = _mm_sub_ps(iy1,jy1);
1920             dz11             = _mm_sub_ps(iz1,jz1);
1921             dx12             = _mm_sub_ps(ix1,jx2);
1922             dy12             = _mm_sub_ps(iy1,jy2);
1923             dz12             = _mm_sub_ps(iz1,jz2);
1924             dx20             = _mm_sub_ps(ix2,jx0);
1925             dy20             = _mm_sub_ps(iy2,jy0);
1926             dz20             = _mm_sub_ps(iz2,jz0);
1927             dx21             = _mm_sub_ps(ix2,jx1);
1928             dy21             = _mm_sub_ps(iy2,jy1);
1929             dz21             = _mm_sub_ps(iz2,jz1);
1930             dx22             = _mm_sub_ps(ix2,jx2);
1931             dy22             = _mm_sub_ps(iy2,jy2);
1932             dz22             = _mm_sub_ps(iz2,jz2);
1933
1934             /* Calculate squared distance and things based on it */
1935             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1936             rsq01            = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
1937             rsq02            = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
1938             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1939             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1940             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1941             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1942             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1943             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1944
1945             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1946             rinv01           = gmx_mm_invsqrt_ps(rsq01);
1947             rinv02           = gmx_mm_invsqrt_ps(rsq02);
1948             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1949             rinv11           = gmx_mm_invsqrt_ps(rsq11);
1950             rinv12           = gmx_mm_invsqrt_ps(rsq12);
1951             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1952             rinv21           = gmx_mm_invsqrt_ps(rsq21);
1953             rinv22           = gmx_mm_invsqrt_ps(rsq22);
1954
1955             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1956             rinvsq01         = _mm_mul_ps(rinv01,rinv01);
1957             rinvsq02         = _mm_mul_ps(rinv02,rinv02);
1958             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1959             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
1960             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
1961             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1962             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
1963             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
1964
1965             fjx0             = _mm_setzero_ps();
1966             fjy0             = _mm_setzero_ps();
1967             fjz0             = _mm_setzero_ps();
1968             fjx1             = _mm_setzero_ps();
1969             fjy1             = _mm_setzero_ps();
1970             fjz1             = _mm_setzero_ps();
1971             fjx2             = _mm_setzero_ps();
1972             fjy2             = _mm_setzero_ps();
1973             fjz2             = _mm_setzero_ps();
1974
1975             /**************************
1976              * CALCULATE INTERACTIONS *
1977              **************************/
1978
1979             r00              = _mm_mul_ps(rsq00,rinv00);
1980             r00              = _mm_andnot_ps(dummy_mask,r00);
1981
1982             /* EWALD ELECTROSTATICS */
1983
1984             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1985             ewrt             = _mm_mul_ps(r00,ewtabscale);
1986             ewitab           = _mm_cvttps_epi32(ewrt);
1987             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1988             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1989                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1990                                          &ewtabF,&ewtabFn);
1991             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1992             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1993
1994             /* Analytical LJ-PME */
1995             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1996             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1997             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1998             exponent         = gmx_simd_exp_r(ewcljrsq);
1999             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
2000             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
2001             /* f6A = 6 * C6grid * (1 - poly) */
2002             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
2003             /* f6B = C6grid * exponent * beta^6 */
2004             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
2005             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
2006             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
2007
2008             fscal            = _mm_add_ps(felec,fvdw);
2009
2010             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2011
2012             /* Calculate temporary vectorial force */
2013             tx               = _mm_mul_ps(fscal,dx00);
2014             ty               = _mm_mul_ps(fscal,dy00);
2015             tz               = _mm_mul_ps(fscal,dz00);
2016
2017             /* Update vectorial force */
2018             fix0             = _mm_add_ps(fix0,tx);
2019             fiy0             = _mm_add_ps(fiy0,ty);
2020             fiz0             = _mm_add_ps(fiz0,tz);
2021
2022             fjx0             = _mm_add_ps(fjx0,tx);
2023             fjy0             = _mm_add_ps(fjy0,ty);
2024             fjz0             = _mm_add_ps(fjz0,tz);
2025
2026             /**************************
2027              * CALCULATE INTERACTIONS *
2028              **************************/
2029
2030             r01              = _mm_mul_ps(rsq01,rinv01);
2031             r01              = _mm_andnot_ps(dummy_mask,r01);
2032
2033             /* EWALD ELECTROSTATICS */
2034
2035             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2036             ewrt             = _mm_mul_ps(r01,ewtabscale);
2037             ewitab           = _mm_cvttps_epi32(ewrt);
2038             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2039             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2040                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2041                                          &ewtabF,&ewtabFn);
2042             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2043             felec            = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
2044
2045             fscal            = felec;
2046
2047             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2048
2049             /* Calculate temporary vectorial force */
2050             tx               = _mm_mul_ps(fscal,dx01);
2051             ty               = _mm_mul_ps(fscal,dy01);
2052             tz               = _mm_mul_ps(fscal,dz01);
2053
2054             /* Update vectorial force */
2055             fix0             = _mm_add_ps(fix0,tx);
2056             fiy0             = _mm_add_ps(fiy0,ty);
2057             fiz0             = _mm_add_ps(fiz0,tz);
2058
2059             fjx1             = _mm_add_ps(fjx1,tx);
2060             fjy1             = _mm_add_ps(fjy1,ty);
2061             fjz1             = _mm_add_ps(fjz1,tz);
2062
2063             /**************************
2064              * CALCULATE INTERACTIONS *
2065              **************************/
2066
2067             r02              = _mm_mul_ps(rsq02,rinv02);
2068             r02              = _mm_andnot_ps(dummy_mask,r02);
2069
2070             /* EWALD ELECTROSTATICS */
2071
2072             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2073             ewrt             = _mm_mul_ps(r02,ewtabscale);
2074             ewitab           = _mm_cvttps_epi32(ewrt);
2075             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2076             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2077                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2078                                          &ewtabF,&ewtabFn);
2079             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2080             felec            = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
2081
2082             fscal            = felec;
2083
2084             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2085
2086             /* Calculate temporary vectorial force */
2087             tx               = _mm_mul_ps(fscal,dx02);
2088             ty               = _mm_mul_ps(fscal,dy02);
2089             tz               = _mm_mul_ps(fscal,dz02);
2090
2091             /* Update vectorial force */
2092             fix0             = _mm_add_ps(fix0,tx);
2093             fiy0             = _mm_add_ps(fiy0,ty);
2094             fiz0             = _mm_add_ps(fiz0,tz);
2095
2096             fjx2             = _mm_add_ps(fjx2,tx);
2097             fjy2             = _mm_add_ps(fjy2,ty);
2098             fjz2             = _mm_add_ps(fjz2,tz);
2099
2100             /**************************
2101              * CALCULATE INTERACTIONS *
2102              **************************/
2103
2104             r10              = _mm_mul_ps(rsq10,rinv10);
2105             r10              = _mm_andnot_ps(dummy_mask,r10);
2106
2107             /* EWALD ELECTROSTATICS */
2108
2109             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2110             ewrt             = _mm_mul_ps(r10,ewtabscale);
2111             ewitab           = _mm_cvttps_epi32(ewrt);
2112             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2113             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2114                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2115                                          &ewtabF,&ewtabFn);
2116             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2117             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
2118
2119             fscal            = felec;
2120
2121             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2122
2123             /* Calculate temporary vectorial force */
2124             tx               = _mm_mul_ps(fscal,dx10);
2125             ty               = _mm_mul_ps(fscal,dy10);
2126             tz               = _mm_mul_ps(fscal,dz10);
2127
2128             /* Update vectorial force */
2129             fix1             = _mm_add_ps(fix1,tx);
2130             fiy1             = _mm_add_ps(fiy1,ty);
2131             fiz1             = _mm_add_ps(fiz1,tz);
2132
2133             fjx0             = _mm_add_ps(fjx0,tx);
2134             fjy0             = _mm_add_ps(fjy0,ty);
2135             fjz0             = _mm_add_ps(fjz0,tz);
2136
2137             /**************************
2138              * CALCULATE INTERACTIONS *
2139              **************************/
2140
2141             r11              = _mm_mul_ps(rsq11,rinv11);
2142             r11              = _mm_andnot_ps(dummy_mask,r11);
2143
2144             /* EWALD ELECTROSTATICS */
2145
2146             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2147             ewrt             = _mm_mul_ps(r11,ewtabscale);
2148             ewitab           = _mm_cvttps_epi32(ewrt);
2149             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2150             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2151                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2152                                          &ewtabF,&ewtabFn);
2153             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2154             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
2155
2156             fscal            = felec;
2157
2158             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2159
2160             /* Calculate temporary vectorial force */
2161             tx               = _mm_mul_ps(fscal,dx11);
2162             ty               = _mm_mul_ps(fscal,dy11);
2163             tz               = _mm_mul_ps(fscal,dz11);
2164
2165             /* Update vectorial force */
2166             fix1             = _mm_add_ps(fix1,tx);
2167             fiy1             = _mm_add_ps(fiy1,ty);
2168             fiz1             = _mm_add_ps(fiz1,tz);
2169
2170             fjx1             = _mm_add_ps(fjx1,tx);
2171             fjy1             = _mm_add_ps(fjy1,ty);
2172             fjz1             = _mm_add_ps(fjz1,tz);
2173
2174             /**************************
2175              * CALCULATE INTERACTIONS *
2176              **************************/
2177
2178             r12              = _mm_mul_ps(rsq12,rinv12);
2179             r12              = _mm_andnot_ps(dummy_mask,r12);
2180
2181             /* EWALD ELECTROSTATICS */
2182
2183             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2184             ewrt             = _mm_mul_ps(r12,ewtabscale);
2185             ewitab           = _mm_cvttps_epi32(ewrt);
2186             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2187             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2188                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2189                                          &ewtabF,&ewtabFn);
2190             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2191             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
2192
2193             fscal            = felec;
2194
2195             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2196
2197             /* Calculate temporary vectorial force */
2198             tx               = _mm_mul_ps(fscal,dx12);
2199             ty               = _mm_mul_ps(fscal,dy12);
2200             tz               = _mm_mul_ps(fscal,dz12);
2201
2202             /* Update vectorial force */
2203             fix1             = _mm_add_ps(fix1,tx);
2204             fiy1             = _mm_add_ps(fiy1,ty);
2205             fiz1             = _mm_add_ps(fiz1,tz);
2206
2207             fjx2             = _mm_add_ps(fjx2,tx);
2208             fjy2             = _mm_add_ps(fjy2,ty);
2209             fjz2             = _mm_add_ps(fjz2,tz);
2210
2211             /**************************
2212              * CALCULATE INTERACTIONS *
2213              **************************/
2214
2215             r20              = _mm_mul_ps(rsq20,rinv20);
2216             r20              = _mm_andnot_ps(dummy_mask,r20);
2217
2218             /* EWALD ELECTROSTATICS */
2219
2220             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2221             ewrt             = _mm_mul_ps(r20,ewtabscale);
2222             ewitab           = _mm_cvttps_epi32(ewrt);
2223             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2224             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2225                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2226                                          &ewtabF,&ewtabFn);
2227             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2228             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
2229
2230             fscal            = felec;
2231
2232             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2233
2234             /* Calculate temporary vectorial force */
2235             tx               = _mm_mul_ps(fscal,dx20);
2236             ty               = _mm_mul_ps(fscal,dy20);
2237             tz               = _mm_mul_ps(fscal,dz20);
2238
2239             /* Update vectorial force */
2240             fix2             = _mm_add_ps(fix2,tx);
2241             fiy2             = _mm_add_ps(fiy2,ty);
2242             fiz2             = _mm_add_ps(fiz2,tz);
2243
2244             fjx0             = _mm_add_ps(fjx0,tx);
2245             fjy0             = _mm_add_ps(fjy0,ty);
2246             fjz0             = _mm_add_ps(fjz0,tz);
2247
2248             /**************************
2249              * CALCULATE INTERACTIONS *
2250              **************************/
2251
2252             r21              = _mm_mul_ps(rsq21,rinv21);
2253             r21              = _mm_andnot_ps(dummy_mask,r21);
2254
2255             /* EWALD ELECTROSTATICS */
2256
2257             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2258             ewrt             = _mm_mul_ps(r21,ewtabscale);
2259             ewitab           = _mm_cvttps_epi32(ewrt);
2260             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2261             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2262                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2263                                          &ewtabF,&ewtabFn);
2264             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2265             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
2266
2267             fscal            = felec;
2268
2269             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2270
2271             /* Calculate temporary vectorial force */
2272             tx               = _mm_mul_ps(fscal,dx21);
2273             ty               = _mm_mul_ps(fscal,dy21);
2274             tz               = _mm_mul_ps(fscal,dz21);
2275
2276             /* Update vectorial force */
2277             fix2             = _mm_add_ps(fix2,tx);
2278             fiy2             = _mm_add_ps(fiy2,ty);
2279             fiz2             = _mm_add_ps(fiz2,tz);
2280
2281             fjx1             = _mm_add_ps(fjx1,tx);
2282             fjy1             = _mm_add_ps(fjy1,ty);
2283             fjz1             = _mm_add_ps(fjz1,tz);
2284
2285             /**************************
2286              * CALCULATE INTERACTIONS *
2287              **************************/
2288
2289             r22              = _mm_mul_ps(rsq22,rinv22);
2290             r22              = _mm_andnot_ps(dummy_mask,r22);
2291
2292             /* EWALD ELECTROSTATICS */
2293
2294             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2295             ewrt             = _mm_mul_ps(r22,ewtabscale);
2296             ewitab           = _mm_cvttps_epi32(ewrt);
2297             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
2298             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
2299                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
2300                                          &ewtabF,&ewtabFn);
2301             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2302             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
2303
2304             fscal            = felec;
2305
2306             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2307
2308             /* Calculate temporary vectorial force */
2309             tx               = _mm_mul_ps(fscal,dx22);
2310             ty               = _mm_mul_ps(fscal,dy22);
2311             tz               = _mm_mul_ps(fscal,dz22);
2312
2313             /* Update vectorial force */
2314             fix2             = _mm_add_ps(fix2,tx);
2315             fiy2             = _mm_add_ps(fiy2,ty);
2316             fiz2             = _mm_add_ps(fiz2,tz);
2317
2318             fjx2             = _mm_add_ps(fjx2,tx);
2319             fjy2             = _mm_add_ps(fjy2,ty);
2320             fjz2             = _mm_add_ps(fjz2,tz);
2321
2322             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2323             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2324             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2325             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2326
2327             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
2328                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2329
2330             /* Inner loop uses 356 flops */
2331         }
2332
2333         /* End of innermost loop */
2334
2335         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2336                                               f+i_coord_offset,fshift+i_shift_offset);
2337
2338         /* Increment number of inner iterations */
2339         inneriter                  += j_index_end - j_index_start;
2340
2341         /* Outer loop uses 18 flops */
2342     }
2343
2344     /* Increment number of outer iterations */
2345     outeriter        += nri;
2346
2347     /* Update outer/inner flops */
2348
2349     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*356);
2350 }