Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sse4_1_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse4_1_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse4_1_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse4_1_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128           c6grid_00;
102     __m128           c6grid_10;
103     __m128           c6grid_20;
104     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
105     real             *vdwgridparam;
106     __m128           one_half  = _mm_set1_ps(0.5);
107     __m128           minus_one = _mm_set1_ps(-1.0);
108     __m128i          ewitab;
109     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128           dummy_mask,cutoff_mask;
112     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113     __m128           one     = _mm_set1_ps(1.0);
114     __m128           two     = _mm_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_ps(fr->ic->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131     vdwgridparam     = fr->ljpme_c6grid;
132     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
133     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
134     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
135
136     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
144     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
145     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = jnrC = jnrD = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152     j_coord_offsetC = 0;
153     j_coord_offsetD = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
180
181         fix0             = _mm_setzero_ps();
182         fiy0             = _mm_setzero_ps();
183         fiz0             = _mm_setzero_ps();
184         fix1             = _mm_setzero_ps();
185         fiy1             = _mm_setzero_ps();
186         fiz1             = _mm_setzero_ps();
187         fix2             = _mm_setzero_ps();
188         fiy2             = _mm_setzero_ps();
189         fiz2             = _mm_setzero_ps();
190
191         /* Reset potential sums */
192         velecsum         = _mm_setzero_ps();
193         vvdwsum          = _mm_setzero_ps();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208
209             /* load j atom coordinates */
210             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211                                               x+j_coord_offsetC,x+j_coord_offsetD,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_ps(ix0,jx0);
216             dy00             = _mm_sub_ps(iy0,jy0);
217             dz00             = _mm_sub_ps(iz0,jz0);
218             dx10             = _mm_sub_ps(ix1,jx0);
219             dy10             = _mm_sub_ps(iy1,jy0);
220             dz10             = _mm_sub_ps(iz1,jz0);
221             dx20             = _mm_sub_ps(ix2,jx0);
222             dy20             = _mm_sub_ps(iy2,jy0);
223             dz20             = _mm_sub_ps(iz2,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
227             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
228             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
229
230             rinv00           = sse41_invsqrt_f(rsq00);
231             rinv10           = sse41_invsqrt_f(rsq10);
232             rinv20           = sse41_invsqrt_f(rsq20);
233
234             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
235             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
236             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
237
238             /* Load parameters for j particles */
239             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
240                                                               charge+jnrC+0,charge+jnrD+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243             vdwjidx0C        = 2*vdwtype[jnrC+0];
244             vdwjidx0D        = 2*vdwtype[jnrD+0];
245
246             fjx0             = _mm_setzero_ps();
247             fjy0             = _mm_setzero_ps();
248             fjz0             = _mm_setzero_ps();
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             r00              = _mm_mul_ps(rsq00,rinv00);
255
256             /* Compute parameters for interactions between i and j atoms */
257             qq00             = _mm_mul_ps(iq0,jq0);
258             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
259                                          vdwparam+vdwioffset0+vdwjidx0B,
260                                          vdwparam+vdwioffset0+vdwjidx0C,
261                                          vdwparam+vdwioffset0+vdwjidx0D,
262                                          &c6_00,&c12_00);
263
264             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
265                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
266                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
267                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
268
269             /* EWALD ELECTROSTATICS */
270
271             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
272             ewrt             = _mm_mul_ps(r00,ewtabscale);
273             ewitab           = _mm_cvttps_epi32(ewrt);
274             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
275             ewitab           = _mm_slli_epi32(ewitab,2);
276             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
277             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
278             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
279             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
280             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
281             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
282             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
283             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
284             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
285
286             /* Analytical LJ-PME */
287             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
288             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
289             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
290             exponent         = sse41_exp_f(ewcljrsq);
291             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
292             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
293             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
294             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
295             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
296             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
297             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
298             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velecsum         = _mm_add_ps(velecsum,velec);
302             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
303
304             fscal            = _mm_add_ps(felec,fvdw);
305
306             /* Calculate temporary vectorial force */
307             tx               = _mm_mul_ps(fscal,dx00);
308             ty               = _mm_mul_ps(fscal,dy00);
309             tz               = _mm_mul_ps(fscal,dz00);
310
311             /* Update vectorial force */
312             fix0             = _mm_add_ps(fix0,tx);
313             fiy0             = _mm_add_ps(fiy0,ty);
314             fiz0             = _mm_add_ps(fiz0,tz);
315
316             fjx0             = _mm_add_ps(fjx0,tx);
317             fjy0             = _mm_add_ps(fjy0,ty);
318             fjz0             = _mm_add_ps(fjz0,tz);
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             r10              = _mm_mul_ps(rsq10,rinv10);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm_mul_ps(iq1,jq0);
328
329             /* EWALD ELECTROSTATICS */
330
331             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
332             ewrt             = _mm_mul_ps(r10,ewtabscale);
333             ewitab           = _mm_cvttps_epi32(ewrt);
334             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
335             ewitab           = _mm_slli_epi32(ewitab,2);
336             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
337             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
338             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
339             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
340             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
341             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
342             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
343             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
344             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm_mul_ps(fscal,dx10);
353             ty               = _mm_mul_ps(fscal,dy10);
354             tz               = _mm_mul_ps(fscal,dz10);
355
356             /* Update vectorial force */
357             fix1             = _mm_add_ps(fix1,tx);
358             fiy1             = _mm_add_ps(fiy1,ty);
359             fiz1             = _mm_add_ps(fiz1,tz);
360
361             fjx0             = _mm_add_ps(fjx0,tx);
362             fjy0             = _mm_add_ps(fjy0,ty);
363             fjz0             = _mm_add_ps(fjz0,tz);
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             r20              = _mm_mul_ps(rsq20,rinv20);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq20             = _mm_mul_ps(iq2,jq0);
373
374             /* EWALD ELECTROSTATICS */
375
376             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
377             ewrt             = _mm_mul_ps(r20,ewtabscale);
378             ewitab           = _mm_cvttps_epi32(ewrt);
379             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
380             ewitab           = _mm_slli_epi32(ewitab,2);
381             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
382             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
383             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
384             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
385             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
386             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
387             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
388             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
389             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velecsum         = _mm_add_ps(velecsum,velec);
393
394             fscal            = felec;
395
396             /* Calculate temporary vectorial force */
397             tx               = _mm_mul_ps(fscal,dx20);
398             ty               = _mm_mul_ps(fscal,dy20);
399             tz               = _mm_mul_ps(fscal,dz20);
400
401             /* Update vectorial force */
402             fix2             = _mm_add_ps(fix2,tx);
403             fiy2             = _mm_add_ps(fiy2,ty);
404             fiz2             = _mm_add_ps(fiz2,tz);
405
406             fjx0             = _mm_add_ps(fjx0,tx);
407             fjy0             = _mm_add_ps(fjy0,ty);
408             fjz0             = _mm_add_ps(fjz0,tz);
409
410             fjptrA             = f+j_coord_offsetA;
411             fjptrB             = f+j_coord_offsetB;
412             fjptrC             = f+j_coord_offsetC;
413             fjptrD             = f+j_coord_offsetD;
414
415             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
416
417             /* Inner loop uses 151 flops */
418         }
419
420         if(jidx<j_index_end)
421         {
422
423             /* Get j neighbor index, and coordinate index */
424             jnrlistA         = jjnr[jidx];
425             jnrlistB         = jjnr[jidx+1];
426             jnrlistC         = jjnr[jidx+2];
427             jnrlistD         = jjnr[jidx+3];
428             /* Sign of each element will be negative for non-real atoms.
429              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
430              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
431              */
432             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
433             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
434             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
435             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
436             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
437             j_coord_offsetA  = DIM*jnrA;
438             j_coord_offsetB  = DIM*jnrB;
439             j_coord_offsetC  = DIM*jnrC;
440             j_coord_offsetD  = DIM*jnrD;
441
442             /* load j atom coordinates */
443             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
444                                               x+j_coord_offsetC,x+j_coord_offsetD,
445                                               &jx0,&jy0,&jz0);
446
447             /* Calculate displacement vector */
448             dx00             = _mm_sub_ps(ix0,jx0);
449             dy00             = _mm_sub_ps(iy0,jy0);
450             dz00             = _mm_sub_ps(iz0,jz0);
451             dx10             = _mm_sub_ps(ix1,jx0);
452             dy10             = _mm_sub_ps(iy1,jy0);
453             dz10             = _mm_sub_ps(iz1,jz0);
454             dx20             = _mm_sub_ps(ix2,jx0);
455             dy20             = _mm_sub_ps(iy2,jy0);
456             dz20             = _mm_sub_ps(iz2,jz0);
457
458             /* Calculate squared distance and things based on it */
459             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
460             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
461             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
462
463             rinv00           = sse41_invsqrt_f(rsq00);
464             rinv10           = sse41_invsqrt_f(rsq10);
465             rinv20           = sse41_invsqrt_f(rsq20);
466
467             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
468             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
469             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
470
471             /* Load parameters for j particles */
472             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
473                                                               charge+jnrC+0,charge+jnrD+0);
474             vdwjidx0A        = 2*vdwtype[jnrA+0];
475             vdwjidx0B        = 2*vdwtype[jnrB+0];
476             vdwjidx0C        = 2*vdwtype[jnrC+0];
477             vdwjidx0D        = 2*vdwtype[jnrD+0];
478
479             fjx0             = _mm_setzero_ps();
480             fjy0             = _mm_setzero_ps();
481             fjz0             = _mm_setzero_ps();
482
483             /**************************
484              * CALCULATE INTERACTIONS *
485              **************************/
486
487             r00              = _mm_mul_ps(rsq00,rinv00);
488             r00              = _mm_andnot_ps(dummy_mask,r00);
489
490             /* Compute parameters for interactions between i and j atoms */
491             qq00             = _mm_mul_ps(iq0,jq0);
492             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
493                                          vdwparam+vdwioffset0+vdwjidx0B,
494                                          vdwparam+vdwioffset0+vdwjidx0C,
495                                          vdwparam+vdwioffset0+vdwjidx0D,
496                                          &c6_00,&c12_00);
497
498             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
499                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
500                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
501                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
502
503             /* EWALD ELECTROSTATICS */
504
505             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
506             ewrt             = _mm_mul_ps(r00,ewtabscale);
507             ewitab           = _mm_cvttps_epi32(ewrt);
508             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
509             ewitab           = _mm_slli_epi32(ewitab,2);
510             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
511             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
512             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
513             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
514             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
515             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
516             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
517             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
518             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
519
520             /* Analytical LJ-PME */
521             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
522             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
523             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
524             exponent         = sse41_exp_f(ewcljrsq);
525             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
526             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
527             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
528             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
529             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
530             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
531             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
532             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
533
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             velec            = _mm_andnot_ps(dummy_mask,velec);
536             velecsum         = _mm_add_ps(velecsum,velec);
537             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
538             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
539
540             fscal            = _mm_add_ps(felec,fvdw);
541
542             fscal            = _mm_andnot_ps(dummy_mask,fscal);
543
544             /* Calculate temporary vectorial force */
545             tx               = _mm_mul_ps(fscal,dx00);
546             ty               = _mm_mul_ps(fscal,dy00);
547             tz               = _mm_mul_ps(fscal,dz00);
548
549             /* Update vectorial force */
550             fix0             = _mm_add_ps(fix0,tx);
551             fiy0             = _mm_add_ps(fiy0,ty);
552             fiz0             = _mm_add_ps(fiz0,tz);
553
554             fjx0             = _mm_add_ps(fjx0,tx);
555             fjy0             = _mm_add_ps(fjy0,ty);
556             fjz0             = _mm_add_ps(fjz0,tz);
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             r10              = _mm_mul_ps(rsq10,rinv10);
563             r10              = _mm_andnot_ps(dummy_mask,r10);
564
565             /* Compute parameters for interactions between i and j atoms */
566             qq10             = _mm_mul_ps(iq1,jq0);
567
568             /* EWALD ELECTROSTATICS */
569
570             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
571             ewrt             = _mm_mul_ps(r10,ewtabscale);
572             ewitab           = _mm_cvttps_epi32(ewrt);
573             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
574             ewitab           = _mm_slli_epi32(ewitab,2);
575             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
576             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
577             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
578             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
579             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
580             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
581             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
582             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
583             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
584
585             /* Update potential sum for this i atom from the interaction with this j atom. */
586             velec            = _mm_andnot_ps(dummy_mask,velec);
587             velecsum         = _mm_add_ps(velecsum,velec);
588
589             fscal            = felec;
590
591             fscal            = _mm_andnot_ps(dummy_mask,fscal);
592
593             /* Calculate temporary vectorial force */
594             tx               = _mm_mul_ps(fscal,dx10);
595             ty               = _mm_mul_ps(fscal,dy10);
596             tz               = _mm_mul_ps(fscal,dz10);
597
598             /* Update vectorial force */
599             fix1             = _mm_add_ps(fix1,tx);
600             fiy1             = _mm_add_ps(fiy1,ty);
601             fiz1             = _mm_add_ps(fiz1,tz);
602
603             fjx0             = _mm_add_ps(fjx0,tx);
604             fjy0             = _mm_add_ps(fjy0,ty);
605             fjz0             = _mm_add_ps(fjz0,tz);
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             r20              = _mm_mul_ps(rsq20,rinv20);
612             r20              = _mm_andnot_ps(dummy_mask,r20);
613
614             /* Compute parameters for interactions between i and j atoms */
615             qq20             = _mm_mul_ps(iq2,jq0);
616
617             /* EWALD ELECTROSTATICS */
618
619             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
620             ewrt             = _mm_mul_ps(r20,ewtabscale);
621             ewitab           = _mm_cvttps_epi32(ewrt);
622             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
623             ewitab           = _mm_slli_epi32(ewitab,2);
624             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
625             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
626             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
627             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
628             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
629             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
630             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
631             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
632             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
633
634             /* Update potential sum for this i atom from the interaction with this j atom. */
635             velec            = _mm_andnot_ps(dummy_mask,velec);
636             velecsum         = _mm_add_ps(velecsum,velec);
637
638             fscal            = felec;
639
640             fscal            = _mm_andnot_ps(dummy_mask,fscal);
641
642             /* Calculate temporary vectorial force */
643             tx               = _mm_mul_ps(fscal,dx20);
644             ty               = _mm_mul_ps(fscal,dy20);
645             tz               = _mm_mul_ps(fscal,dz20);
646
647             /* Update vectorial force */
648             fix2             = _mm_add_ps(fix2,tx);
649             fiy2             = _mm_add_ps(fiy2,ty);
650             fiz2             = _mm_add_ps(fiz2,tz);
651
652             fjx0             = _mm_add_ps(fjx0,tx);
653             fjy0             = _mm_add_ps(fjy0,ty);
654             fjz0             = _mm_add_ps(fjz0,tz);
655
656             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
657             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
658             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
659             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
660
661             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
662
663             /* Inner loop uses 154 flops */
664         }
665
666         /* End of innermost loop */
667
668         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
669                                               f+i_coord_offset,fshift+i_shift_offset);
670
671         ggid                        = gid[iidx];
672         /* Update potential energies */
673         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
674         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
675
676         /* Increment number of inner iterations */
677         inneriter                  += j_index_end - j_index_start;
678
679         /* Outer loop uses 20 flops */
680     }
681
682     /* Increment number of outer iterations */
683     outeriter        += nri;
684
685     /* Update outer/inner flops */
686
687     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
688 }
689 /*
690  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse4_1_single
691  * Electrostatics interaction: Ewald
692  * VdW interaction:            LJEwald
693  * Geometry:                   Water3-Particle
694  * Calculate force/pot:        Force
695  */
696 void
697 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse4_1_single
698                     (t_nblist                    * gmx_restrict       nlist,
699                      rvec                        * gmx_restrict          xx,
700                      rvec                        * gmx_restrict          ff,
701                      struct t_forcerec           * gmx_restrict          fr,
702                      t_mdatoms                   * gmx_restrict     mdatoms,
703                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
704                      t_nrnb                      * gmx_restrict        nrnb)
705 {
706     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
707      * just 0 for non-waters.
708      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
709      * jnr indices corresponding to data put in the four positions in the SIMD register.
710      */
711     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
712     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
713     int              jnrA,jnrB,jnrC,jnrD;
714     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
715     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
716     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
717     real             rcutoff_scalar;
718     real             *shiftvec,*fshift,*x,*f;
719     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
720     real             scratch[4*DIM];
721     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
722     int              vdwioffset0;
723     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
724     int              vdwioffset1;
725     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
726     int              vdwioffset2;
727     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
728     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
729     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
730     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
731     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
732     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
733     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
734     real             *charge;
735     int              nvdwtype;
736     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
737     int              *vdwtype;
738     real             *vdwparam;
739     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
740     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
741     __m128           c6grid_00;
742     __m128           c6grid_10;
743     __m128           c6grid_20;
744     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
745     real             *vdwgridparam;
746     __m128           one_half  = _mm_set1_ps(0.5);
747     __m128           minus_one = _mm_set1_ps(-1.0);
748     __m128i          ewitab;
749     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
750     real             *ewtab;
751     __m128           dummy_mask,cutoff_mask;
752     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
753     __m128           one     = _mm_set1_ps(1.0);
754     __m128           two     = _mm_set1_ps(2.0);
755     x                = xx[0];
756     f                = ff[0];
757
758     nri              = nlist->nri;
759     iinr             = nlist->iinr;
760     jindex           = nlist->jindex;
761     jjnr             = nlist->jjnr;
762     shiftidx         = nlist->shift;
763     gid              = nlist->gid;
764     shiftvec         = fr->shift_vec[0];
765     fshift           = fr->fshift[0];
766     facel            = _mm_set1_ps(fr->ic->epsfac);
767     charge           = mdatoms->chargeA;
768     nvdwtype         = fr->ntype;
769     vdwparam         = fr->nbfp;
770     vdwtype          = mdatoms->typeA;
771     vdwgridparam     = fr->ljpme_c6grid;
772     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
773     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
774     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
775
776     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
777     ewtab            = fr->ic->tabq_coul_F;
778     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
779     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
780
781     /* Setup water-specific parameters */
782     inr              = nlist->iinr[0];
783     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
784     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
785     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
786     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
787
788     /* Avoid stupid compiler warnings */
789     jnrA = jnrB = jnrC = jnrD = 0;
790     j_coord_offsetA = 0;
791     j_coord_offsetB = 0;
792     j_coord_offsetC = 0;
793     j_coord_offsetD = 0;
794
795     outeriter        = 0;
796     inneriter        = 0;
797
798     for(iidx=0;iidx<4*DIM;iidx++)
799     {
800         scratch[iidx] = 0.0;
801     }
802
803     /* Start outer loop over neighborlists */
804     for(iidx=0; iidx<nri; iidx++)
805     {
806         /* Load shift vector for this list */
807         i_shift_offset   = DIM*shiftidx[iidx];
808
809         /* Load limits for loop over neighbors */
810         j_index_start    = jindex[iidx];
811         j_index_end      = jindex[iidx+1];
812
813         /* Get outer coordinate index */
814         inr              = iinr[iidx];
815         i_coord_offset   = DIM*inr;
816
817         /* Load i particle coords and add shift vector */
818         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
819                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
820
821         fix0             = _mm_setzero_ps();
822         fiy0             = _mm_setzero_ps();
823         fiz0             = _mm_setzero_ps();
824         fix1             = _mm_setzero_ps();
825         fiy1             = _mm_setzero_ps();
826         fiz1             = _mm_setzero_ps();
827         fix2             = _mm_setzero_ps();
828         fiy2             = _mm_setzero_ps();
829         fiz2             = _mm_setzero_ps();
830
831         /* Start inner kernel loop */
832         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
833         {
834
835             /* Get j neighbor index, and coordinate index */
836             jnrA             = jjnr[jidx];
837             jnrB             = jjnr[jidx+1];
838             jnrC             = jjnr[jidx+2];
839             jnrD             = jjnr[jidx+3];
840             j_coord_offsetA  = DIM*jnrA;
841             j_coord_offsetB  = DIM*jnrB;
842             j_coord_offsetC  = DIM*jnrC;
843             j_coord_offsetD  = DIM*jnrD;
844
845             /* load j atom coordinates */
846             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
847                                               x+j_coord_offsetC,x+j_coord_offsetD,
848                                               &jx0,&jy0,&jz0);
849
850             /* Calculate displacement vector */
851             dx00             = _mm_sub_ps(ix0,jx0);
852             dy00             = _mm_sub_ps(iy0,jy0);
853             dz00             = _mm_sub_ps(iz0,jz0);
854             dx10             = _mm_sub_ps(ix1,jx0);
855             dy10             = _mm_sub_ps(iy1,jy0);
856             dz10             = _mm_sub_ps(iz1,jz0);
857             dx20             = _mm_sub_ps(ix2,jx0);
858             dy20             = _mm_sub_ps(iy2,jy0);
859             dz20             = _mm_sub_ps(iz2,jz0);
860
861             /* Calculate squared distance and things based on it */
862             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
863             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
864             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
865
866             rinv00           = sse41_invsqrt_f(rsq00);
867             rinv10           = sse41_invsqrt_f(rsq10);
868             rinv20           = sse41_invsqrt_f(rsq20);
869
870             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
871             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
872             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
873
874             /* Load parameters for j particles */
875             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
876                                                               charge+jnrC+0,charge+jnrD+0);
877             vdwjidx0A        = 2*vdwtype[jnrA+0];
878             vdwjidx0B        = 2*vdwtype[jnrB+0];
879             vdwjidx0C        = 2*vdwtype[jnrC+0];
880             vdwjidx0D        = 2*vdwtype[jnrD+0];
881
882             fjx0             = _mm_setzero_ps();
883             fjy0             = _mm_setzero_ps();
884             fjz0             = _mm_setzero_ps();
885
886             /**************************
887              * CALCULATE INTERACTIONS *
888              **************************/
889
890             r00              = _mm_mul_ps(rsq00,rinv00);
891
892             /* Compute parameters for interactions between i and j atoms */
893             qq00             = _mm_mul_ps(iq0,jq0);
894             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
895                                          vdwparam+vdwioffset0+vdwjidx0B,
896                                          vdwparam+vdwioffset0+vdwjidx0C,
897                                          vdwparam+vdwioffset0+vdwjidx0D,
898                                          &c6_00,&c12_00);
899
900             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
901                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
902                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
903                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
904
905             /* EWALD ELECTROSTATICS */
906
907             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
908             ewrt             = _mm_mul_ps(r00,ewtabscale);
909             ewitab           = _mm_cvttps_epi32(ewrt);
910             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
911             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
912                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
913                                          &ewtabF,&ewtabFn);
914             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
915             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
916
917             /* Analytical LJ-PME */
918             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
919             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
920             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
921             exponent         = sse41_exp_f(ewcljrsq);
922             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
923             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
924             /* f6A = 6 * C6grid * (1 - poly) */
925             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
926             /* f6B = C6grid * exponent * beta^6 */
927             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
928             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
929             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
930
931             fscal            = _mm_add_ps(felec,fvdw);
932
933             /* Calculate temporary vectorial force */
934             tx               = _mm_mul_ps(fscal,dx00);
935             ty               = _mm_mul_ps(fscal,dy00);
936             tz               = _mm_mul_ps(fscal,dz00);
937
938             /* Update vectorial force */
939             fix0             = _mm_add_ps(fix0,tx);
940             fiy0             = _mm_add_ps(fiy0,ty);
941             fiz0             = _mm_add_ps(fiz0,tz);
942
943             fjx0             = _mm_add_ps(fjx0,tx);
944             fjy0             = _mm_add_ps(fjy0,ty);
945             fjz0             = _mm_add_ps(fjz0,tz);
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             r10              = _mm_mul_ps(rsq10,rinv10);
952
953             /* Compute parameters for interactions between i and j atoms */
954             qq10             = _mm_mul_ps(iq1,jq0);
955
956             /* EWALD ELECTROSTATICS */
957
958             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
959             ewrt             = _mm_mul_ps(r10,ewtabscale);
960             ewitab           = _mm_cvttps_epi32(ewrt);
961             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
962             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
963                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
964                                          &ewtabF,&ewtabFn);
965             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
966             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
967
968             fscal            = felec;
969
970             /* Calculate temporary vectorial force */
971             tx               = _mm_mul_ps(fscal,dx10);
972             ty               = _mm_mul_ps(fscal,dy10);
973             tz               = _mm_mul_ps(fscal,dz10);
974
975             /* Update vectorial force */
976             fix1             = _mm_add_ps(fix1,tx);
977             fiy1             = _mm_add_ps(fiy1,ty);
978             fiz1             = _mm_add_ps(fiz1,tz);
979
980             fjx0             = _mm_add_ps(fjx0,tx);
981             fjy0             = _mm_add_ps(fjy0,ty);
982             fjz0             = _mm_add_ps(fjz0,tz);
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             r20              = _mm_mul_ps(rsq20,rinv20);
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq20             = _mm_mul_ps(iq2,jq0);
992
993             /* EWALD ELECTROSTATICS */
994
995             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
996             ewrt             = _mm_mul_ps(r20,ewtabscale);
997             ewitab           = _mm_cvttps_epi32(ewrt);
998             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
999             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1000                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1001                                          &ewtabF,&ewtabFn);
1002             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1003             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1004
1005             fscal            = felec;
1006
1007             /* Calculate temporary vectorial force */
1008             tx               = _mm_mul_ps(fscal,dx20);
1009             ty               = _mm_mul_ps(fscal,dy20);
1010             tz               = _mm_mul_ps(fscal,dz20);
1011
1012             /* Update vectorial force */
1013             fix2             = _mm_add_ps(fix2,tx);
1014             fiy2             = _mm_add_ps(fiy2,ty);
1015             fiz2             = _mm_add_ps(fiz2,tz);
1016
1017             fjx0             = _mm_add_ps(fjx0,tx);
1018             fjy0             = _mm_add_ps(fjy0,ty);
1019             fjz0             = _mm_add_ps(fjz0,tz);
1020
1021             fjptrA             = f+j_coord_offsetA;
1022             fjptrB             = f+j_coord_offsetB;
1023             fjptrC             = f+j_coord_offsetC;
1024             fjptrD             = f+j_coord_offsetD;
1025
1026             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1027
1028             /* Inner loop uses 131 flops */
1029         }
1030
1031         if(jidx<j_index_end)
1032         {
1033
1034             /* Get j neighbor index, and coordinate index */
1035             jnrlistA         = jjnr[jidx];
1036             jnrlistB         = jjnr[jidx+1];
1037             jnrlistC         = jjnr[jidx+2];
1038             jnrlistD         = jjnr[jidx+3];
1039             /* Sign of each element will be negative for non-real atoms.
1040              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1041              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1042              */
1043             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1044             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1045             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1046             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1047             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1048             j_coord_offsetA  = DIM*jnrA;
1049             j_coord_offsetB  = DIM*jnrB;
1050             j_coord_offsetC  = DIM*jnrC;
1051             j_coord_offsetD  = DIM*jnrD;
1052
1053             /* load j atom coordinates */
1054             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1055                                               x+j_coord_offsetC,x+j_coord_offsetD,
1056                                               &jx0,&jy0,&jz0);
1057
1058             /* Calculate displacement vector */
1059             dx00             = _mm_sub_ps(ix0,jx0);
1060             dy00             = _mm_sub_ps(iy0,jy0);
1061             dz00             = _mm_sub_ps(iz0,jz0);
1062             dx10             = _mm_sub_ps(ix1,jx0);
1063             dy10             = _mm_sub_ps(iy1,jy0);
1064             dz10             = _mm_sub_ps(iz1,jz0);
1065             dx20             = _mm_sub_ps(ix2,jx0);
1066             dy20             = _mm_sub_ps(iy2,jy0);
1067             dz20             = _mm_sub_ps(iz2,jz0);
1068
1069             /* Calculate squared distance and things based on it */
1070             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1071             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1072             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1073
1074             rinv00           = sse41_invsqrt_f(rsq00);
1075             rinv10           = sse41_invsqrt_f(rsq10);
1076             rinv20           = sse41_invsqrt_f(rsq20);
1077
1078             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1079             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1080             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1081
1082             /* Load parameters for j particles */
1083             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1084                                                               charge+jnrC+0,charge+jnrD+0);
1085             vdwjidx0A        = 2*vdwtype[jnrA+0];
1086             vdwjidx0B        = 2*vdwtype[jnrB+0];
1087             vdwjidx0C        = 2*vdwtype[jnrC+0];
1088             vdwjidx0D        = 2*vdwtype[jnrD+0];
1089
1090             fjx0             = _mm_setzero_ps();
1091             fjy0             = _mm_setzero_ps();
1092             fjz0             = _mm_setzero_ps();
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             r00              = _mm_mul_ps(rsq00,rinv00);
1099             r00              = _mm_andnot_ps(dummy_mask,r00);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq00             = _mm_mul_ps(iq0,jq0);
1103             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1104                                          vdwparam+vdwioffset0+vdwjidx0B,
1105                                          vdwparam+vdwioffset0+vdwjidx0C,
1106                                          vdwparam+vdwioffset0+vdwjidx0D,
1107                                          &c6_00,&c12_00);
1108
1109             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1110                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1111                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1112                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1113
1114             /* EWALD ELECTROSTATICS */
1115
1116             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1117             ewrt             = _mm_mul_ps(r00,ewtabscale);
1118             ewitab           = _mm_cvttps_epi32(ewrt);
1119             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1120             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1121                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1122                                          &ewtabF,&ewtabFn);
1123             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1124             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1125
1126             /* Analytical LJ-PME */
1127             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1128             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1129             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1130             exponent         = sse41_exp_f(ewcljrsq);
1131             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1132             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1133             /* f6A = 6 * C6grid * (1 - poly) */
1134             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1135             /* f6B = C6grid * exponent * beta^6 */
1136             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1137             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1138             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1139
1140             fscal            = _mm_add_ps(felec,fvdw);
1141
1142             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1143
1144             /* Calculate temporary vectorial force */
1145             tx               = _mm_mul_ps(fscal,dx00);
1146             ty               = _mm_mul_ps(fscal,dy00);
1147             tz               = _mm_mul_ps(fscal,dz00);
1148
1149             /* Update vectorial force */
1150             fix0             = _mm_add_ps(fix0,tx);
1151             fiy0             = _mm_add_ps(fiy0,ty);
1152             fiz0             = _mm_add_ps(fiz0,tz);
1153
1154             fjx0             = _mm_add_ps(fjx0,tx);
1155             fjy0             = _mm_add_ps(fjy0,ty);
1156             fjz0             = _mm_add_ps(fjz0,tz);
1157
1158             /**************************
1159              * CALCULATE INTERACTIONS *
1160              **************************/
1161
1162             r10              = _mm_mul_ps(rsq10,rinv10);
1163             r10              = _mm_andnot_ps(dummy_mask,r10);
1164
1165             /* Compute parameters for interactions between i and j atoms */
1166             qq10             = _mm_mul_ps(iq1,jq0);
1167
1168             /* EWALD ELECTROSTATICS */
1169
1170             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1171             ewrt             = _mm_mul_ps(r10,ewtabscale);
1172             ewitab           = _mm_cvttps_epi32(ewrt);
1173             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1174             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1175                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1176                                          &ewtabF,&ewtabFn);
1177             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1178             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1179
1180             fscal            = felec;
1181
1182             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1183
1184             /* Calculate temporary vectorial force */
1185             tx               = _mm_mul_ps(fscal,dx10);
1186             ty               = _mm_mul_ps(fscal,dy10);
1187             tz               = _mm_mul_ps(fscal,dz10);
1188
1189             /* Update vectorial force */
1190             fix1             = _mm_add_ps(fix1,tx);
1191             fiy1             = _mm_add_ps(fiy1,ty);
1192             fiz1             = _mm_add_ps(fiz1,tz);
1193
1194             fjx0             = _mm_add_ps(fjx0,tx);
1195             fjy0             = _mm_add_ps(fjy0,ty);
1196             fjz0             = _mm_add_ps(fjz0,tz);
1197
1198             /**************************
1199              * CALCULATE INTERACTIONS *
1200              **************************/
1201
1202             r20              = _mm_mul_ps(rsq20,rinv20);
1203             r20              = _mm_andnot_ps(dummy_mask,r20);
1204
1205             /* Compute parameters for interactions between i and j atoms */
1206             qq20             = _mm_mul_ps(iq2,jq0);
1207
1208             /* EWALD ELECTROSTATICS */
1209
1210             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1211             ewrt             = _mm_mul_ps(r20,ewtabscale);
1212             ewitab           = _mm_cvttps_epi32(ewrt);
1213             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1214             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1215                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1216                                          &ewtabF,&ewtabFn);
1217             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1218             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1219
1220             fscal            = felec;
1221
1222             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1223
1224             /* Calculate temporary vectorial force */
1225             tx               = _mm_mul_ps(fscal,dx20);
1226             ty               = _mm_mul_ps(fscal,dy20);
1227             tz               = _mm_mul_ps(fscal,dz20);
1228
1229             /* Update vectorial force */
1230             fix2             = _mm_add_ps(fix2,tx);
1231             fiy2             = _mm_add_ps(fiy2,ty);
1232             fiz2             = _mm_add_ps(fiz2,tz);
1233
1234             fjx0             = _mm_add_ps(fjx0,tx);
1235             fjy0             = _mm_add_ps(fjy0,ty);
1236             fjz0             = _mm_add_ps(fjz0,tz);
1237
1238             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1239             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1240             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1241             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1242
1243             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1244
1245             /* Inner loop uses 134 flops */
1246         }
1247
1248         /* End of innermost loop */
1249
1250         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1251                                               f+i_coord_offset,fshift+i_shift_offset);
1252
1253         /* Increment number of inner iterations */
1254         inneriter                  += j_index_end - j_index_start;
1255
1256         /* Outer loop uses 18 flops */
1257     }
1258
1259     /* Increment number of outer iterations */
1260     outeriter        += nri;
1261
1262     /* Update outer/inner flops */
1263
1264     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*134);
1265 }