e799a6a77b32e481801a1147ca72902372ede840
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sse4_1_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse4_1_single.h"
48 #include "kernelutil_x86_sse4_1_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse4_1_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse4_1_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           c6grid_00;
103     __m128           c6grid_10;
104     __m128           c6grid_20;
105     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
106     real             *vdwgridparam;
107     __m128           one_half  = _mm_set1_ps(0.5);
108     __m128           minus_one = _mm_set1_ps(-1.0);
109     __m128i          ewitab;
110     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     real             *ewtab;
112     __m128           dummy_mask,cutoff_mask;
113     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
114     __m128           one     = _mm_set1_ps(1.0);
115     __m128           two     = _mm_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_ps(fr->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132     vdwgridparam     = fr->ljpme_c6grid;
133     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
134     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
135     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
136
137     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
145     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
146     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
147     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149     /* Avoid stupid compiler warnings */
150     jnrA = jnrB = jnrC = jnrD = 0;
151     j_coord_offsetA = 0;
152     j_coord_offsetB = 0;
153     j_coord_offsetC = 0;
154     j_coord_offsetD = 0;
155
156     outeriter        = 0;
157     inneriter        = 0;
158
159     for(iidx=0;iidx<4*DIM;iidx++)
160     {
161         scratch[iidx] = 0.0;
162     }
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
180                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
181
182         fix0             = _mm_setzero_ps();
183         fiy0             = _mm_setzero_ps();
184         fiz0             = _mm_setzero_ps();
185         fix1             = _mm_setzero_ps();
186         fiy1             = _mm_setzero_ps();
187         fiz1             = _mm_setzero_ps();
188         fix2             = _mm_setzero_ps();
189         fiy2             = _mm_setzero_ps();
190         fiz2             = _mm_setzero_ps();
191
192         /* Reset potential sums */
193         velecsum         = _mm_setzero_ps();
194         vvdwsum          = _mm_setzero_ps();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             jnrC             = jjnr[jidx+2];
204             jnrD             = jjnr[jidx+3];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209
210             /* load j atom coordinates */
211             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
212                                               x+j_coord_offsetC,x+j_coord_offsetD,
213                                               &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm_sub_ps(ix0,jx0);
217             dy00             = _mm_sub_ps(iy0,jy0);
218             dz00             = _mm_sub_ps(iz0,jz0);
219             dx10             = _mm_sub_ps(ix1,jx0);
220             dy10             = _mm_sub_ps(iy1,jy0);
221             dz10             = _mm_sub_ps(iz1,jz0);
222             dx20             = _mm_sub_ps(ix2,jx0);
223             dy20             = _mm_sub_ps(iy2,jy0);
224             dz20             = _mm_sub_ps(iz2,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
228             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
229             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
230
231             rinv00           = gmx_mm_invsqrt_ps(rsq00);
232             rinv10           = gmx_mm_invsqrt_ps(rsq10);
233             rinv20           = gmx_mm_invsqrt_ps(rsq20);
234
235             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
236             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
237             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
241                                                               charge+jnrC+0,charge+jnrD+0);
242             vdwjidx0A        = 2*vdwtype[jnrA+0];
243             vdwjidx0B        = 2*vdwtype[jnrB+0];
244             vdwjidx0C        = 2*vdwtype[jnrC+0];
245             vdwjidx0D        = 2*vdwtype[jnrD+0];
246
247             fjx0             = _mm_setzero_ps();
248             fjy0             = _mm_setzero_ps();
249             fjz0             = _mm_setzero_ps();
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             r00              = _mm_mul_ps(rsq00,rinv00);
256
257             /* Compute parameters for interactions between i and j atoms */
258             qq00             = _mm_mul_ps(iq0,jq0);
259             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
260                                          vdwparam+vdwioffset0+vdwjidx0B,
261                                          vdwparam+vdwioffset0+vdwjidx0C,
262                                          vdwparam+vdwioffset0+vdwjidx0D,
263                                          &c6_00,&c12_00);
264
265             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
266                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
267                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
268                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
269
270             /* EWALD ELECTROSTATICS */
271
272             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
273             ewrt             = _mm_mul_ps(r00,ewtabscale);
274             ewitab           = _mm_cvttps_epi32(ewrt);
275             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
276             ewitab           = _mm_slli_epi32(ewitab,2);
277             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
278             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
279             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
280             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
281             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
282             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
283             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
284             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
285             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
286
287             /* Analytical LJ-PME */
288             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
289             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
290             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
291             exponent         = gmx_simd_exp_r(ewcljrsq);
292             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
293             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
294             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
295             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
296             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
297             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
298             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
299             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
300
301             /* Update potential sum for this i atom from the interaction with this j atom. */
302             velecsum         = _mm_add_ps(velecsum,velec);
303             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
304
305             fscal            = _mm_add_ps(felec,fvdw);
306
307             /* Calculate temporary vectorial force */
308             tx               = _mm_mul_ps(fscal,dx00);
309             ty               = _mm_mul_ps(fscal,dy00);
310             tz               = _mm_mul_ps(fscal,dz00);
311
312             /* Update vectorial force */
313             fix0             = _mm_add_ps(fix0,tx);
314             fiy0             = _mm_add_ps(fiy0,ty);
315             fiz0             = _mm_add_ps(fiz0,tz);
316
317             fjx0             = _mm_add_ps(fjx0,tx);
318             fjy0             = _mm_add_ps(fjy0,ty);
319             fjz0             = _mm_add_ps(fjz0,tz);
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             r10              = _mm_mul_ps(rsq10,rinv10);
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq10             = _mm_mul_ps(iq1,jq0);
329
330             /* EWALD ELECTROSTATICS */
331
332             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
333             ewrt             = _mm_mul_ps(r10,ewtabscale);
334             ewitab           = _mm_cvttps_epi32(ewrt);
335             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
336             ewitab           = _mm_slli_epi32(ewitab,2);
337             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
338             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
339             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
340             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
341             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
342             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
343             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
344             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
345             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velecsum         = _mm_add_ps(velecsum,velec);
349
350             fscal            = felec;
351
352             /* Calculate temporary vectorial force */
353             tx               = _mm_mul_ps(fscal,dx10);
354             ty               = _mm_mul_ps(fscal,dy10);
355             tz               = _mm_mul_ps(fscal,dz10);
356
357             /* Update vectorial force */
358             fix1             = _mm_add_ps(fix1,tx);
359             fiy1             = _mm_add_ps(fiy1,ty);
360             fiz1             = _mm_add_ps(fiz1,tz);
361
362             fjx0             = _mm_add_ps(fjx0,tx);
363             fjy0             = _mm_add_ps(fjy0,ty);
364             fjz0             = _mm_add_ps(fjz0,tz);
365
366             /**************************
367              * CALCULATE INTERACTIONS *
368              **************************/
369
370             r20              = _mm_mul_ps(rsq20,rinv20);
371
372             /* Compute parameters for interactions between i and j atoms */
373             qq20             = _mm_mul_ps(iq2,jq0);
374
375             /* EWALD ELECTROSTATICS */
376
377             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
378             ewrt             = _mm_mul_ps(r20,ewtabscale);
379             ewitab           = _mm_cvttps_epi32(ewrt);
380             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
381             ewitab           = _mm_slli_epi32(ewitab,2);
382             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
383             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
384             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
385             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
386             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
387             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
388             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
389             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
390             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
391
392             /* Update potential sum for this i atom from the interaction with this j atom. */
393             velecsum         = _mm_add_ps(velecsum,velec);
394
395             fscal            = felec;
396
397             /* Calculate temporary vectorial force */
398             tx               = _mm_mul_ps(fscal,dx20);
399             ty               = _mm_mul_ps(fscal,dy20);
400             tz               = _mm_mul_ps(fscal,dz20);
401
402             /* Update vectorial force */
403             fix2             = _mm_add_ps(fix2,tx);
404             fiy2             = _mm_add_ps(fiy2,ty);
405             fiz2             = _mm_add_ps(fiz2,tz);
406
407             fjx0             = _mm_add_ps(fjx0,tx);
408             fjy0             = _mm_add_ps(fjy0,ty);
409             fjz0             = _mm_add_ps(fjz0,tz);
410
411             fjptrA             = f+j_coord_offsetA;
412             fjptrB             = f+j_coord_offsetB;
413             fjptrC             = f+j_coord_offsetC;
414             fjptrD             = f+j_coord_offsetD;
415
416             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
417
418             /* Inner loop uses 151 flops */
419         }
420
421         if(jidx<j_index_end)
422         {
423
424             /* Get j neighbor index, and coordinate index */
425             jnrlistA         = jjnr[jidx];
426             jnrlistB         = jjnr[jidx+1];
427             jnrlistC         = jjnr[jidx+2];
428             jnrlistD         = jjnr[jidx+3];
429             /* Sign of each element will be negative for non-real atoms.
430              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
431              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
432              */
433             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
434             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
435             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
436             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
437             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
438             j_coord_offsetA  = DIM*jnrA;
439             j_coord_offsetB  = DIM*jnrB;
440             j_coord_offsetC  = DIM*jnrC;
441             j_coord_offsetD  = DIM*jnrD;
442
443             /* load j atom coordinates */
444             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
445                                               x+j_coord_offsetC,x+j_coord_offsetD,
446                                               &jx0,&jy0,&jz0);
447
448             /* Calculate displacement vector */
449             dx00             = _mm_sub_ps(ix0,jx0);
450             dy00             = _mm_sub_ps(iy0,jy0);
451             dz00             = _mm_sub_ps(iz0,jz0);
452             dx10             = _mm_sub_ps(ix1,jx0);
453             dy10             = _mm_sub_ps(iy1,jy0);
454             dz10             = _mm_sub_ps(iz1,jz0);
455             dx20             = _mm_sub_ps(ix2,jx0);
456             dy20             = _mm_sub_ps(iy2,jy0);
457             dz20             = _mm_sub_ps(iz2,jz0);
458
459             /* Calculate squared distance and things based on it */
460             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
461             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
462             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
463
464             rinv00           = gmx_mm_invsqrt_ps(rsq00);
465             rinv10           = gmx_mm_invsqrt_ps(rsq10);
466             rinv20           = gmx_mm_invsqrt_ps(rsq20);
467
468             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
469             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
470             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
471
472             /* Load parameters for j particles */
473             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
474                                                               charge+jnrC+0,charge+jnrD+0);
475             vdwjidx0A        = 2*vdwtype[jnrA+0];
476             vdwjidx0B        = 2*vdwtype[jnrB+0];
477             vdwjidx0C        = 2*vdwtype[jnrC+0];
478             vdwjidx0D        = 2*vdwtype[jnrD+0];
479
480             fjx0             = _mm_setzero_ps();
481             fjy0             = _mm_setzero_ps();
482             fjz0             = _mm_setzero_ps();
483
484             /**************************
485              * CALCULATE INTERACTIONS *
486              **************************/
487
488             r00              = _mm_mul_ps(rsq00,rinv00);
489             r00              = _mm_andnot_ps(dummy_mask,r00);
490
491             /* Compute parameters for interactions between i and j atoms */
492             qq00             = _mm_mul_ps(iq0,jq0);
493             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
494                                          vdwparam+vdwioffset0+vdwjidx0B,
495                                          vdwparam+vdwioffset0+vdwjidx0C,
496                                          vdwparam+vdwioffset0+vdwjidx0D,
497                                          &c6_00,&c12_00);
498
499             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
500                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
501                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
502                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
503
504             /* EWALD ELECTROSTATICS */
505
506             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
507             ewrt             = _mm_mul_ps(r00,ewtabscale);
508             ewitab           = _mm_cvttps_epi32(ewrt);
509             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
510             ewitab           = _mm_slli_epi32(ewitab,2);
511             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
512             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
513             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
514             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
515             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
516             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
517             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
518             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
519             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
520
521             /* Analytical LJ-PME */
522             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
523             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
524             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
525             exponent         = gmx_simd_exp_r(ewcljrsq);
526             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
527             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
528             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
529             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
530             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
531             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
532             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
533             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
534
535             /* Update potential sum for this i atom from the interaction with this j atom. */
536             velec            = _mm_andnot_ps(dummy_mask,velec);
537             velecsum         = _mm_add_ps(velecsum,velec);
538             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
539             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
540
541             fscal            = _mm_add_ps(felec,fvdw);
542
543             fscal            = _mm_andnot_ps(dummy_mask,fscal);
544
545             /* Calculate temporary vectorial force */
546             tx               = _mm_mul_ps(fscal,dx00);
547             ty               = _mm_mul_ps(fscal,dy00);
548             tz               = _mm_mul_ps(fscal,dz00);
549
550             /* Update vectorial force */
551             fix0             = _mm_add_ps(fix0,tx);
552             fiy0             = _mm_add_ps(fiy0,ty);
553             fiz0             = _mm_add_ps(fiz0,tz);
554
555             fjx0             = _mm_add_ps(fjx0,tx);
556             fjy0             = _mm_add_ps(fjy0,ty);
557             fjz0             = _mm_add_ps(fjz0,tz);
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             r10              = _mm_mul_ps(rsq10,rinv10);
564             r10              = _mm_andnot_ps(dummy_mask,r10);
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq10             = _mm_mul_ps(iq1,jq0);
568
569             /* EWALD ELECTROSTATICS */
570
571             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
572             ewrt             = _mm_mul_ps(r10,ewtabscale);
573             ewitab           = _mm_cvttps_epi32(ewrt);
574             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
575             ewitab           = _mm_slli_epi32(ewitab,2);
576             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
577             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
578             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
579             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
580             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
581             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
582             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
583             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
584             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
585
586             /* Update potential sum for this i atom from the interaction with this j atom. */
587             velec            = _mm_andnot_ps(dummy_mask,velec);
588             velecsum         = _mm_add_ps(velecsum,velec);
589
590             fscal            = felec;
591
592             fscal            = _mm_andnot_ps(dummy_mask,fscal);
593
594             /* Calculate temporary vectorial force */
595             tx               = _mm_mul_ps(fscal,dx10);
596             ty               = _mm_mul_ps(fscal,dy10);
597             tz               = _mm_mul_ps(fscal,dz10);
598
599             /* Update vectorial force */
600             fix1             = _mm_add_ps(fix1,tx);
601             fiy1             = _mm_add_ps(fiy1,ty);
602             fiz1             = _mm_add_ps(fiz1,tz);
603
604             fjx0             = _mm_add_ps(fjx0,tx);
605             fjy0             = _mm_add_ps(fjy0,ty);
606             fjz0             = _mm_add_ps(fjz0,tz);
607
608             /**************************
609              * CALCULATE INTERACTIONS *
610              **************************/
611
612             r20              = _mm_mul_ps(rsq20,rinv20);
613             r20              = _mm_andnot_ps(dummy_mask,r20);
614
615             /* Compute parameters for interactions between i and j atoms */
616             qq20             = _mm_mul_ps(iq2,jq0);
617
618             /* EWALD ELECTROSTATICS */
619
620             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
621             ewrt             = _mm_mul_ps(r20,ewtabscale);
622             ewitab           = _mm_cvttps_epi32(ewrt);
623             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
624             ewitab           = _mm_slli_epi32(ewitab,2);
625             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
626             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
627             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
628             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
629             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
630             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
631             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
632             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
633             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
634
635             /* Update potential sum for this i atom from the interaction with this j atom. */
636             velec            = _mm_andnot_ps(dummy_mask,velec);
637             velecsum         = _mm_add_ps(velecsum,velec);
638
639             fscal            = felec;
640
641             fscal            = _mm_andnot_ps(dummy_mask,fscal);
642
643             /* Calculate temporary vectorial force */
644             tx               = _mm_mul_ps(fscal,dx20);
645             ty               = _mm_mul_ps(fscal,dy20);
646             tz               = _mm_mul_ps(fscal,dz20);
647
648             /* Update vectorial force */
649             fix2             = _mm_add_ps(fix2,tx);
650             fiy2             = _mm_add_ps(fiy2,ty);
651             fiz2             = _mm_add_ps(fiz2,tz);
652
653             fjx0             = _mm_add_ps(fjx0,tx);
654             fjy0             = _mm_add_ps(fjy0,ty);
655             fjz0             = _mm_add_ps(fjz0,tz);
656
657             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
658             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
659             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
660             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
661
662             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
663
664             /* Inner loop uses 154 flops */
665         }
666
667         /* End of innermost loop */
668
669         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
670                                               f+i_coord_offset,fshift+i_shift_offset);
671
672         ggid                        = gid[iidx];
673         /* Update potential energies */
674         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
675         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
676
677         /* Increment number of inner iterations */
678         inneriter                  += j_index_end - j_index_start;
679
680         /* Outer loop uses 20 flops */
681     }
682
683     /* Increment number of outer iterations */
684     outeriter        += nri;
685
686     /* Update outer/inner flops */
687
688     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
689 }
690 /*
691  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse4_1_single
692  * Electrostatics interaction: Ewald
693  * VdW interaction:            LJEwald
694  * Geometry:                   Water3-Particle
695  * Calculate force/pot:        Force
696  */
697 void
698 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse4_1_single
699                     (t_nblist                    * gmx_restrict       nlist,
700                      rvec                        * gmx_restrict          xx,
701                      rvec                        * gmx_restrict          ff,
702                      t_forcerec                  * gmx_restrict          fr,
703                      t_mdatoms                   * gmx_restrict     mdatoms,
704                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
705                      t_nrnb                      * gmx_restrict        nrnb)
706 {
707     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
708      * just 0 for non-waters.
709      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
710      * jnr indices corresponding to data put in the four positions in the SIMD register.
711      */
712     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
713     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
714     int              jnrA,jnrB,jnrC,jnrD;
715     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
716     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
717     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
718     real             rcutoff_scalar;
719     real             *shiftvec,*fshift,*x,*f;
720     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
721     real             scratch[4*DIM];
722     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
723     int              vdwioffset0;
724     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
725     int              vdwioffset1;
726     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
727     int              vdwioffset2;
728     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
729     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
730     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
731     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
732     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
733     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
734     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
735     real             *charge;
736     int              nvdwtype;
737     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
738     int              *vdwtype;
739     real             *vdwparam;
740     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
741     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
742     __m128           c6grid_00;
743     __m128           c6grid_10;
744     __m128           c6grid_20;
745     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
746     real             *vdwgridparam;
747     __m128           one_half  = _mm_set1_ps(0.5);
748     __m128           minus_one = _mm_set1_ps(-1.0);
749     __m128i          ewitab;
750     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
751     real             *ewtab;
752     __m128           dummy_mask,cutoff_mask;
753     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
754     __m128           one     = _mm_set1_ps(1.0);
755     __m128           two     = _mm_set1_ps(2.0);
756     x                = xx[0];
757     f                = ff[0];
758
759     nri              = nlist->nri;
760     iinr             = nlist->iinr;
761     jindex           = nlist->jindex;
762     jjnr             = nlist->jjnr;
763     shiftidx         = nlist->shift;
764     gid              = nlist->gid;
765     shiftvec         = fr->shift_vec[0];
766     fshift           = fr->fshift[0];
767     facel            = _mm_set1_ps(fr->epsfac);
768     charge           = mdatoms->chargeA;
769     nvdwtype         = fr->ntype;
770     vdwparam         = fr->nbfp;
771     vdwtype          = mdatoms->typeA;
772     vdwgridparam     = fr->ljpme_c6grid;
773     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
774     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
775     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
776
777     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
778     ewtab            = fr->ic->tabq_coul_F;
779     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
780     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
781
782     /* Setup water-specific parameters */
783     inr              = nlist->iinr[0];
784     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
785     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
786     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
787     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
788
789     /* Avoid stupid compiler warnings */
790     jnrA = jnrB = jnrC = jnrD = 0;
791     j_coord_offsetA = 0;
792     j_coord_offsetB = 0;
793     j_coord_offsetC = 0;
794     j_coord_offsetD = 0;
795
796     outeriter        = 0;
797     inneriter        = 0;
798
799     for(iidx=0;iidx<4*DIM;iidx++)
800     {
801         scratch[iidx] = 0.0;
802     }
803
804     /* Start outer loop over neighborlists */
805     for(iidx=0; iidx<nri; iidx++)
806     {
807         /* Load shift vector for this list */
808         i_shift_offset   = DIM*shiftidx[iidx];
809
810         /* Load limits for loop over neighbors */
811         j_index_start    = jindex[iidx];
812         j_index_end      = jindex[iidx+1];
813
814         /* Get outer coordinate index */
815         inr              = iinr[iidx];
816         i_coord_offset   = DIM*inr;
817
818         /* Load i particle coords and add shift vector */
819         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
820                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
821
822         fix0             = _mm_setzero_ps();
823         fiy0             = _mm_setzero_ps();
824         fiz0             = _mm_setzero_ps();
825         fix1             = _mm_setzero_ps();
826         fiy1             = _mm_setzero_ps();
827         fiz1             = _mm_setzero_ps();
828         fix2             = _mm_setzero_ps();
829         fiy2             = _mm_setzero_ps();
830         fiz2             = _mm_setzero_ps();
831
832         /* Start inner kernel loop */
833         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
834         {
835
836             /* Get j neighbor index, and coordinate index */
837             jnrA             = jjnr[jidx];
838             jnrB             = jjnr[jidx+1];
839             jnrC             = jjnr[jidx+2];
840             jnrD             = jjnr[jidx+3];
841             j_coord_offsetA  = DIM*jnrA;
842             j_coord_offsetB  = DIM*jnrB;
843             j_coord_offsetC  = DIM*jnrC;
844             j_coord_offsetD  = DIM*jnrD;
845
846             /* load j atom coordinates */
847             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
848                                               x+j_coord_offsetC,x+j_coord_offsetD,
849                                               &jx0,&jy0,&jz0);
850
851             /* Calculate displacement vector */
852             dx00             = _mm_sub_ps(ix0,jx0);
853             dy00             = _mm_sub_ps(iy0,jy0);
854             dz00             = _mm_sub_ps(iz0,jz0);
855             dx10             = _mm_sub_ps(ix1,jx0);
856             dy10             = _mm_sub_ps(iy1,jy0);
857             dz10             = _mm_sub_ps(iz1,jz0);
858             dx20             = _mm_sub_ps(ix2,jx0);
859             dy20             = _mm_sub_ps(iy2,jy0);
860             dz20             = _mm_sub_ps(iz2,jz0);
861
862             /* Calculate squared distance and things based on it */
863             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
864             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
865             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
866
867             rinv00           = gmx_mm_invsqrt_ps(rsq00);
868             rinv10           = gmx_mm_invsqrt_ps(rsq10);
869             rinv20           = gmx_mm_invsqrt_ps(rsq20);
870
871             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
872             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
873             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
874
875             /* Load parameters for j particles */
876             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
877                                                               charge+jnrC+0,charge+jnrD+0);
878             vdwjidx0A        = 2*vdwtype[jnrA+0];
879             vdwjidx0B        = 2*vdwtype[jnrB+0];
880             vdwjidx0C        = 2*vdwtype[jnrC+0];
881             vdwjidx0D        = 2*vdwtype[jnrD+0];
882
883             fjx0             = _mm_setzero_ps();
884             fjy0             = _mm_setzero_ps();
885             fjz0             = _mm_setzero_ps();
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             r00              = _mm_mul_ps(rsq00,rinv00);
892
893             /* Compute parameters for interactions between i and j atoms */
894             qq00             = _mm_mul_ps(iq0,jq0);
895             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
896                                          vdwparam+vdwioffset0+vdwjidx0B,
897                                          vdwparam+vdwioffset0+vdwjidx0C,
898                                          vdwparam+vdwioffset0+vdwjidx0D,
899                                          &c6_00,&c12_00);
900
901             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
902                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
903                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
904                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
905
906             /* EWALD ELECTROSTATICS */
907
908             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
909             ewrt             = _mm_mul_ps(r00,ewtabscale);
910             ewitab           = _mm_cvttps_epi32(ewrt);
911             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
912             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
913                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
914                                          &ewtabF,&ewtabFn);
915             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
916             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
917
918             /* Analytical LJ-PME */
919             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
920             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
921             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
922             exponent         = gmx_simd_exp_r(ewcljrsq);
923             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
924             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
925             /* f6A = 6 * C6grid * (1 - poly) */
926             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
927             /* f6B = C6grid * exponent * beta^6 */
928             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
929             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
930             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
931
932             fscal            = _mm_add_ps(felec,fvdw);
933
934             /* Calculate temporary vectorial force */
935             tx               = _mm_mul_ps(fscal,dx00);
936             ty               = _mm_mul_ps(fscal,dy00);
937             tz               = _mm_mul_ps(fscal,dz00);
938
939             /* Update vectorial force */
940             fix0             = _mm_add_ps(fix0,tx);
941             fiy0             = _mm_add_ps(fiy0,ty);
942             fiz0             = _mm_add_ps(fiz0,tz);
943
944             fjx0             = _mm_add_ps(fjx0,tx);
945             fjy0             = _mm_add_ps(fjy0,ty);
946             fjz0             = _mm_add_ps(fjz0,tz);
947
948             /**************************
949              * CALCULATE INTERACTIONS *
950              **************************/
951
952             r10              = _mm_mul_ps(rsq10,rinv10);
953
954             /* Compute parameters for interactions between i and j atoms */
955             qq10             = _mm_mul_ps(iq1,jq0);
956
957             /* EWALD ELECTROSTATICS */
958
959             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
960             ewrt             = _mm_mul_ps(r10,ewtabscale);
961             ewitab           = _mm_cvttps_epi32(ewrt);
962             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
963             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
964                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
965                                          &ewtabF,&ewtabFn);
966             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
967             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
968
969             fscal            = felec;
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm_mul_ps(fscal,dx10);
973             ty               = _mm_mul_ps(fscal,dy10);
974             tz               = _mm_mul_ps(fscal,dz10);
975
976             /* Update vectorial force */
977             fix1             = _mm_add_ps(fix1,tx);
978             fiy1             = _mm_add_ps(fiy1,ty);
979             fiz1             = _mm_add_ps(fiz1,tz);
980
981             fjx0             = _mm_add_ps(fjx0,tx);
982             fjy0             = _mm_add_ps(fjy0,ty);
983             fjz0             = _mm_add_ps(fjz0,tz);
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             r20              = _mm_mul_ps(rsq20,rinv20);
990
991             /* Compute parameters for interactions between i and j atoms */
992             qq20             = _mm_mul_ps(iq2,jq0);
993
994             /* EWALD ELECTROSTATICS */
995
996             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
997             ewrt             = _mm_mul_ps(r20,ewtabscale);
998             ewitab           = _mm_cvttps_epi32(ewrt);
999             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1000             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1001                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1002                                          &ewtabF,&ewtabFn);
1003             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1004             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1005
1006             fscal            = felec;
1007
1008             /* Calculate temporary vectorial force */
1009             tx               = _mm_mul_ps(fscal,dx20);
1010             ty               = _mm_mul_ps(fscal,dy20);
1011             tz               = _mm_mul_ps(fscal,dz20);
1012
1013             /* Update vectorial force */
1014             fix2             = _mm_add_ps(fix2,tx);
1015             fiy2             = _mm_add_ps(fiy2,ty);
1016             fiz2             = _mm_add_ps(fiz2,tz);
1017
1018             fjx0             = _mm_add_ps(fjx0,tx);
1019             fjy0             = _mm_add_ps(fjy0,ty);
1020             fjz0             = _mm_add_ps(fjz0,tz);
1021
1022             fjptrA             = f+j_coord_offsetA;
1023             fjptrB             = f+j_coord_offsetB;
1024             fjptrC             = f+j_coord_offsetC;
1025             fjptrD             = f+j_coord_offsetD;
1026
1027             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1028
1029             /* Inner loop uses 131 flops */
1030         }
1031
1032         if(jidx<j_index_end)
1033         {
1034
1035             /* Get j neighbor index, and coordinate index */
1036             jnrlistA         = jjnr[jidx];
1037             jnrlistB         = jjnr[jidx+1];
1038             jnrlistC         = jjnr[jidx+2];
1039             jnrlistD         = jjnr[jidx+3];
1040             /* Sign of each element will be negative for non-real atoms.
1041              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1042              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1043              */
1044             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1045             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1046             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1047             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1048             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1049             j_coord_offsetA  = DIM*jnrA;
1050             j_coord_offsetB  = DIM*jnrB;
1051             j_coord_offsetC  = DIM*jnrC;
1052             j_coord_offsetD  = DIM*jnrD;
1053
1054             /* load j atom coordinates */
1055             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1056                                               x+j_coord_offsetC,x+j_coord_offsetD,
1057                                               &jx0,&jy0,&jz0);
1058
1059             /* Calculate displacement vector */
1060             dx00             = _mm_sub_ps(ix0,jx0);
1061             dy00             = _mm_sub_ps(iy0,jy0);
1062             dz00             = _mm_sub_ps(iz0,jz0);
1063             dx10             = _mm_sub_ps(ix1,jx0);
1064             dy10             = _mm_sub_ps(iy1,jy0);
1065             dz10             = _mm_sub_ps(iz1,jz0);
1066             dx20             = _mm_sub_ps(ix2,jx0);
1067             dy20             = _mm_sub_ps(iy2,jy0);
1068             dz20             = _mm_sub_ps(iz2,jz0);
1069
1070             /* Calculate squared distance and things based on it */
1071             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1072             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1073             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1074
1075             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1076             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1077             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1078
1079             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1080             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1081             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1082
1083             /* Load parameters for j particles */
1084             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1085                                                               charge+jnrC+0,charge+jnrD+0);
1086             vdwjidx0A        = 2*vdwtype[jnrA+0];
1087             vdwjidx0B        = 2*vdwtype[jnrB+0];
1088             vdwjidx0C        = 2*vdwtype[jnrC+0];
1089             vdwjidx0D        = 2*vdwtype[jnrD+0];
1090
1091             fjx0             = _mm_setzero_ps();
1092             fjy0             = _mm_setzero_ps();
1093             fjz0             = _mm_setzero_ps();
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             r00              = _mm_mul_ps(rsq00,rinv00);
1100             r00              = _mm_andnot_ps(dummy_mask,r00);
1101
1102             /* Compute parameters for interactions between i and j atoms */
1103             qq00             = _mm_mul_ps(iq0,jq0);
1104             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1105                                          vdwparam+vdwioffset0+vdwjidx0B,
1106                                          vdwparam+vdwioffset0+vdwjidx0C,
1107                                          vdwparam+vdwioffset0+vdwjidx0D,
1108                                          &c6_00,&c12_00);
1109
1110             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1111                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1112                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1113                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1114
1115             /* EWALD ELECTROSTATICS */
1116
1117             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1118             ewrt             = _mm_mul_ps(r00,ewtabscale);
1119             ewitab           = _mm_cvttps_epi32(ewrt);
1120             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1121             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1122                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1123                                          &ewtabF,&ewtabFn);
1124             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1125             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1126
1127             /* Analytical LJ-PME */
1128             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1129             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1130             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1131             exponent         = gmx_simd_exp_r(ewcljrsq);
1132             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1133             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1134             /* f6A = 6 * C6grid * (1 - poly) */
1135             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1136             /* f6B = C6grid * exponent * beta^6 */
1137             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1138             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1139             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1140
1141             fscal            = _mm_add_ps(felec,fvdw);
1142
1143             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1144
1145             /* Calculate temporary vectorial force */
1146             tx               = _mm_mul_ps(fscal,dx00);
1147             ty               = _mm_mul_ps(fscal,dy00);
1148             tz               = _mm_mul_ps(fscal,dz00);
1149
1150             /* Update vectorial force */
1151             fix0             = _mm_add_ps(fix0,tx);
1152             fiy0             = _mm_add_ps(fiy0,ty);
1153             fiz0             = _mm_add_ps(fiz0,tz);
1154
1155             fjx0             = _mm_add_ps(fjx0,tx);
1156             fjy0             = _mm_add_ps(fjy0,ty);
1157             fjz0             = _mm_add_ps(fjz0,tz);
1158
1159             /**************************
1160              * CALCULATE INTERACTIONS *
1161              **************************/
1162
1163             r10              = _mm_mul_ps(rsq10,rinv10);
1164             r10              = _mm_andnot_ps(dummy_mask,r10);
1165
1166             /* Compute parameters for interactions between i and j atoms */
1167             qq10             = _mm_mul_ps(iq1,jq0);
1168
1169             /* EWALD ELECTROSTATICS */
1170
1171             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1172             ewrt             = _mm_mul_ps(r10,ewtabscale);
1173             ewitab           = _mm_cvttps_epi32(ewrt);
1174             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1175             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1176                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1177                                          &ewtabF,&ewtabFn);
1178             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1179             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1180
1181             fscal            = felec;
1182
1183             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1184
1185             /* Calculate temporary vectorial force */
1186             tx               = _mm_mul_ps(fscal,dx10);
1187             ty               = _mm_mul_ps(fscal,dy10);
1188             tz               = _mm_mul_ps(fscal,dz10);
1189
1190             /* Update vectorial force */
1191             fix1             = _mm_add_ps(fix1,tx);
1192             fiy1             = _mm_add_ps(fiy1,ty);
1193             fiz1             = _mm_add_ps(fiz1,tz);
1194
1195             fjx0             = _mm_add_ps(fjx0,tx);
1196             fjy0             = _mm_add_ps(fjy0,ty);
1197             fjz0             = _mm_add_ps(fjz0,tz);
1198
1199             /**************************
1200              * CALCULATE INTERACTIONS *
1201              **************************/
1202
1203             r20              = _mm_mul_ps(rsq20,rinv20);
1204             r20              = _mm_andnot_ps(dummy_mask,r20);
1205
1206             /* Compute parameters for interactions between i and j atoms */
1207             qq20             = _mm_mul_ps(iq2,jq0);
1208
1209             /* EWALD ELECTROSTATICS */
1210
1211             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1212             ewrt             = _mm_mul_ps(r20,ewtabscale);
1213             ewitab           = _mm_cvttps_epi32(ewrt);
1214             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1215             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1216                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1217                                          &ewtabF,&ewtabFn);
1218             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1219             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1220
1221             fscal            = felec;
1222
1223             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1224
1225             /* Calculate temporary vectorial force */
1226             tx               = _mm_mul_ps(fscal,dx20);
1227             ty               = _mm_mul_ps(fscal,dy20);
1228             tz               = _mm_mul_ps(fscal,dz20);
1229
1230             /* Update vectorial force */
1231             fix2             = _mm_add_ps(fix2,tx);
1232             fiy2             = _mm_add_ps(fiy2,ty);
1233             fiz2             = _mm_add_ps(fiz2,tz);
1234
1235             fjx0             = _mm_add_ps(fjx0,tx);
1236             fjy0             = _mm_add_ps(fjy0,ty);
1237             fjz0             = _mm_add_ps(fjz0,tz);
1238
1239             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1240             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1241             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1242             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1243
1244             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1245
1246             /* Inner loop uses 134 flops */
1247         }
1248
1249         /* End of innermost loop */
1250
1251         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1252                                               f+i_coord_offset,fshift+i_shift_offset);
1253
1254         /* Increment number of inner iterations */
1255         inneriter                  += j_index_end - j_index_start;
1256
1257         /* Outer loop uses 18 flops */
1258     }
1259
1260     /* Increment number of outer iterations */
1261     outeriter        += nri;
1262
1263     /* Update outer/inner flops */
1264
1265     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*134);
1266 }